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DIRECT AND INVERSE DEGENERATE PARABOLIC
DIFFERENTIAL EQUATIONS WITH MULTI-VALUED
OPERATORS

ANGELO FAVINI, ALFREDO LORENZI, HIROKI TANABE

In memory of Alfredo Lorenzi

ABSTRACT. Real interpolation spaces are used for solving some identification
linear evolution problems in Banach spaces, under space regularity assump-
tions.

1. INTRODUCTION

This note starts with the following direct problem in a Banach space X,

iy(t) + Ay(t) > f(t), 0<t<T,

dt (1.1)
y(0) = wo.
Here A is a possibly multivalued linear operator such that
p(A) DX, ={AeC;Re <c(l+4 |ImA)}, (1.2)
and the following inequality holds for A € ¥,
A=A ooy <e(t+[A)77, (1.3)

where ¢, o and 3 are positive constants satisfying 6 < « < 1. It is shown in the book
by Favini and Yagi [6] that —A generates a C*°-semigroup e *4, 0 < t < co. We are
interested in extending some of the results obtained in the paper by Favini, Lorenzi
Tanabe [2], where A is assumed to be single-valued, to the case where A is multi-
valued. In [2] supposing that yo € D(A), Ay € X4, f € C([0,T]; X)NB([0, T]; )?f‘)
or with (X, D(A))s,c in place of )?g, the existence and uniqueness of a solution to
with some regularity property is established, where B([0,7];Y) stands for the
set of all bounded functions defined in [0,7] with values in a Banach space Y. In
this paper we show analogous results in case A is multivalued replacing Ay, € X’f‘
or Ayo € (X, D(A))g,00 by Ayo N X # 0 or Ayo N (X, D(A))g.c0 # 0.
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We begin by modifying the definitions of the spaces X4 and X9 in case where A
is not necessarily single valued replacing A(t + A)~!' and Ae™*4 by I —t(t + A)~!
and de~*4 /dt respectively and prove some preliminary results on these spaces.

The results proved for the direct problem are applied to the following identifica-
tion problem:

y(t) + Ay(t) 3 f(H)z + h(t), te[0,T],

y(0) = o,

Dly(t)] = g(t), te€l0,T],
where y € C([0,T]; X), f € C([0,T];C) are unknown, z € X, h € C([0,T]; X),
g € C([0,T]; C) are given elements and ® € X*. Under some regularlty assumptions
on z, h and g it is shown that a unique solution to problem exists. An extension
of this result to equations with several unknown scalar functions

at”
(1.4)

t) + Ay(t) ij (t)z; + h(t), tel0,T7,

at?
(1.5)
y(O) = Yo,
q)j[y(t)}:g](t)v j:]-v"'vna tG[O,T],
is also established.
The above results are applied to the following problems
d
—M Lu(t) = f(t telo,T
S Mut) + Lu(t) = (1), ¢ €[0,T), w6
Mu(0) = Muy,
and
d
ﬁMu )+ Lu(t ij (t)z; + h(t), telo,T),
(1.7)
Mu(()) = Muy,
O, [Mu(t) =g;t), j=1,...,n, te[0,T],
where L and M are linear closed operators such that
D(L) c D(M) (1.8)
and for A € X, a bounded inverse of AM + L exists and
IMOAM + L) Ml zx) < e(1+A)77. (1.9)

Then A = LM ! satisfies (1.2) and . A solution to or is easily
obtained from that to or (1.5) with yo = Muy.

We refer to the monograph [5] for diverse problems concerning regular evolution
equations via Mathematical Physics. These identification problems were discussed
in the papers [I] and [5] by using at all different techniques. Our present approach
allows us to weaken the assumptions and to improve the regularity of solutions.

The plan of this paper is as follows. In section 2 preliminary results on interme-
diate spaces are collected. Section 3 is devoted to the existence and uniqueness of
a solution to the direct problem . In Section 4 identification problem is
solved by transforming it to a simple Volterra integral equation for f. In Section 5
the general identification problem is solved by applying the Banach fixed point
theorem. This result is extended to equations with several unknown scalar
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functions in Section 6. Finally, in Section 7 these results are applied to problems

and (9.

2. PRELIMINARIES

Let A be a possibly multivalued linear operator in the complex Banach space X
satisfying (|1.2) and (1.3). Then it is shown in Chapter III of Favini and Yagi [0]
that —A generates a semigroup e~ 4, 0 < t < oo, satisfying

H%e_tAHC(X) < CptP=i=/e i =0,1,2, Cy > 0. (2.1)
The set D(A) makes a Banach space with norm
lull pay = ¢i€nju lollx for w € D(A). (2.2)
It is known that
A*I%G*M = %e*t“‘A*1 = —e 4 }1_{% e u=u forue D(A). (2.3)

If u € D(A), then in view of (2.3) and (2.1)) one has for ¢ € Au
d d
H@eftAUHX = II%G*“‘A*%HX = lle™gllx < CotP~V/*|1¢]|x.
This implies, by (2.2)),
d _ _
e ullx < ot/ ul
This inequality and the one obtained with the aid of an analogous argument imply

d2
=€

o T 2piay.x) < CotPTD/A(2.4)

=" 2(p(ay,x) < CotP= D/,
Definition. For 0 < 6 < 1,
X0 ={ueX;|uyo = sup t||u—t(t+ A lulx < oo},
A 0<t<oo

lullxq = lulxq + [lullx,
S d
XG ={ue X;lulg, =supt® =0/ et y| x < oo},
A >0 dt
lullq = lul gg + lullx-
One of the definition of (X, D(A))g, o is

(X, D(A))o.e = {u = uo(t) +us(t) V1 € (0,00): sup [1uo(t) [ x < oo,
<t<oo

sup '~ s (8)|pa) < oo},
0<t<oo

HUH(X,D(A))Q,(X,

= inf sup [[t%uo(t + sup [[t7 s (t .
wma(errty w00y Lo B, I w0 Ollx + sup I ®)lown }

Lemma 2.1. The following inclusion relation holds for 0 < 6 < 1,
X4 C (X, D(A))g.00-
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Proof. Suppose u € Xfl. Set
ug(t) =u —t(t + A) " tu,  wy(t) =t(t+ A) " .
Then u = ug(t) + uq (¢) and

sup ||t9u0(t)HX = sup t9||u —t(t+ A)_1u||X < 0.
<t<oo 0<t<oco

Since (t + A)uq(t) 3 tu, one has Auq(t) 2 t(u — uy(t)), and hence
lur (D)l pay < tlu —ur(®)l|x = tlu— ¢t + A) " ul|x.
Therefore,

sup ||t9_1u1(t)HD(A) < sup tGHu —(t+A) Ml x < oo
0<t<oo 0<t<oo

Lemma 2.2. The following inclusion relation holds for 0 < 6 < 1,
(X, D(A))g,00 C X5.

Proof. Let u € (X,D(A))s,00. From (2.1), with ¢ = 1, and the first inequality of
(2.4)) it follows that

d _ — a
||%e Ml x < CotH 0| (x pay. (2.5)
This readily implies u € )Z'z. O

Lemma 2.3. Suppose a+ 3+ 0 > 2. Then for u € (X, D(A))p.00, € u — u as

t — 0. Ifv e D(A), the set AvN (X, D(A))g.00 consists of at most a single element

—limy_o e .

Proof. Let uw € D(A) and ¢ € Au. Then in view of (2.3) one gets
t d t d t

ety —u :/ —e T Audr :/ — e TAA  Ydr = —/ e TAgdr.
0 dr 0 dr 0

Hence, noting that the assumption implies « + § > 1, one deduces

t
e — ullx = | / e Addr|x
0

t
<y / 75D/ 6| xdr
0

t(B=1)/a+1
= C’om||¢||x~
This implies
ety — ul|x < COMHUHD _ (2.6)
=B a 1P
For u € X,
le=4u — ullx < e~ 4ulx + lullx < Cot®Ve ullx + Jullx.  (27)

Interpolating (2.6) and (2.7 yields that there exists a constant C such that for
u € (X,D(A))s,c0,

|‘67tAu —ux < Ct(ﬁ*l)/a+9||u||(X,D(A))9,oo’ 0<t<l (2.8)
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Since 1 9-2 (1-0)1
-1, atBr0-2 (1-0(1-a)
(07 Q «
one has ) 99
ol gsatBro-2
Q

e
Hence the first assertion follows. Suppose v € D(A) and ¢ € AvN (X, D(A))s,c0-
Then by the first assertion

d _ia d 4441 —tA
ad - A - _ _
dte v dte 10) e g — —0¢
ast — 0. O

Lemma 2.4. Foru € X, t > 0, the following equality holds,
/ e e A udr = (A+t)" .
0

Proof. With the aid of (2.3) and integration by parts one deduces

oo oo d
e e T udr = — et —e TAA \ydr
0 0 dT

oo
= A1y — t/ e e A A \udr
0

=A"! (u — t/ooo e_tTe_TAudT).

Hence [; e~ '"e " 4udr € D(A) and
o0 oo
A/ e e T udr 3 u — t/ e e T Audr.
0 0

The assertion of the lemma readily follows. O

Lemma 2.5. Suppose a+ (3 +60 > 2. Ifue )N(f‘, then e 4 converges as t — 0.
If the limit is equal to w: limy_o e "Au = u, then u € Xﬁla+ﬁ_2+9)/a and

[ul y oro-201/0 < T((@+ 6 =2+ 0)/a)|ul g

Proof. For 0 < s < t, one has

t t
d
et — e *Au||x = ||/ deefTAudTHX S/ T(B72+0)/a|u\)}f‘d7
S

S

Ha+B=2+0)/a _ g(at+p—2+0)/a

@rp-210)ja Mg
tA

tA

Hence e™*“u converges as t — 0. If e7**u — u, then with the aid of integration by

parts and Lemma [2.4] one gets for ¢ > 0
oo d oo
/ e " —e T udr = —u + t/ e e A udr = —u+t(t + A) "l
0 dr 0
Hence

oy
|W—W+AY%M:H—/ e
0 dT

o0
< / e_tTT(’B_2+9)/a|u\ o dT
0 Xa
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= tCm 0T (0 + 6 — 2+ 60)/a)|ul o -
O

Lemma 2.6. Let a+5+6 > 2. Ifv € D(A) and Avﬂf(z # 0, then lim;_,o 4 e~y
exists.

Proof. Let ¢ € AvN )?g. Then

od o ya o a a
fim e~ =l e A = — i e
exists by Lemma [2.5 O

Remark 2.7. The limit lim;_,oe " u is not necessarily equal to u if A is multi-
valued. If 0 # u € A0, then
d d
—tA —tA 4—1 —tA
= —— A =—— 0=0.
e " u i U T

Therefore u € )N(% for any 6 € (0,1) and lim; .ge *4u = 0 # u. If A is single
valued, then

A1 liH(l) ety = liH(l) e A = A7,
t— t—

tA

Hence lim;_.g e **u = v whenever the limit of the left hand side exists.

3. MAIN RESULT CONCERNING PROBLEM (|1.1)

Theorem 3.1. Suppose that 2a+ 3 +0 > 3, yo € D(A), AyoN (X, D(A))g,00 # 0
and f € C([0,T]; X)NB([0,T]; (X, D(A))o,00). Then problem (L.1)) admits a unique
solution y such that
y € CH((0,T}; X),
y — f € CRA=s0/a((0, ), X) 0 B([0, T); X G020/,

Here B([0,T];Y) stands for the set of all bounded (not necessarily measurable)
functions with values in'Y defined in [0,T].

(3.1)

Proof. Note that a +3—-24+0>2a+3—3+60 > 0. Set

s =t [ e A (),
0 (3.2)

t
vi(t) = e yo,  yalt) = / e~ (=94 f(s)ds.
0

In view of Lemma Ayo N (X, D(A))g.o consists of a single element ¢ =

—limy_ %e_“‘yo. Hence

yi(t) = %e‘“yo = %e‘“‘A‘laﬁ = —e 0. (3.3)
In view of

e 46llx < Coto* /8 x,payy o (3.4
By of and Lemma

lim 41 () = —¢- (3.5)
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With the aid of (3.4)), for 0 < s < ¢ < T one obtains
¢
_ _ d _
I510) = v (6)lx = | = 46+ e Aollx = || [ e Aodol]x
S

t
<Gy / B0/ 6]l 4y, do
(t _ S)(a+6—2+0)/a
@if-210)/a [6llx, D)0,

Therefore y; € Ce+A=2+0)/2([0, T]; X) and

<Gy

ol
a+ﬂ_2+0)/a (XvD(A))Q,oo'

For s > 0, in view of (3.3)), (3.4) and 0 < (2 — 8 — 0)/a < 1, one deduces

[Y1|ctars—2+0)/a (0,7, x) < (

—B—=0)/a d -5
SO S Ay (1)
d
_ S(Q_ﬁ_e)/a”£6_SA6_tA¢”X
= ge=p=0)/ay L —rnagy
0s

< Cps2=A=0(5 ¢ t)(ﬁ_2+0)/a||¢||(X,D(A))9,m

.\ @800
a2 1611k, pae . < Collgllcx,payn-

Hence 3/} (t) € X9 and
i)l gq < Colldllx, D)0,
Using one observes that
eTAY (1) = —e~TAeTtAG = _e~(HTIAG L o—tAG 1 (4
as 7 — 0. Hence in view of Lemma [2.5| ] (¢) € X 7720/ ang

91| g @rs-2r0r/0 ST((@+ B =2+ 0)/a)|y1 ()] 54

This inequality, (3.7)) and (3.3]) yield

(3.8)

1 (t)||X;a+572+9>/a < Col((a+ B =2+0) /)8l (x, () + el x-

Hence y; € B([0,T7; Xga+ﬁ—2+9)/a) and
”yiHB([O,T];XE‘O“*'B_Q‘H’)/O‘)
< Col((a+ 8 —2+0)/a) |19l (x.p(a)) . + sup e ¢]x.
0<t<T

(3.9)

The second term of the right hand side of (3.9) is finite by (3.3]) and (3.5). In view

of @3)

a e —
I, f(s)lx < Colt = )P (5)l| .y o

ot
< Colt = 8) P20/ £l 507X, D ()00 -

(3.10)
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Hence

t t
9 . _248)/a
”/o gt (sl SCO/O (t = )2 £l g0, 715x, (40,00 48

c t(a+ﬁ*2+0)/a
0 (O[ ¥ ﬂ 92+ 9)/& Hf||B([07T];(X,D(A))gvoo)~

(3.11)
For 0 <t <t <T one has with the aid of the change of the order of integration

/ / (=9)A f(5)dsdr
- —e_(T_S)Af(s)des + tr ge‘(T‘s)Af(S)deS.
/0 /t or /t /s or

It is obvious that if s < ¢t < ¢/, then

tl
a —(7—s —(t'—s —(t—s
/ 5o T (s)dr =TT f(s) — eI f(s).
t

Since f(s) € (X, D(A))s,00, in view of Lemma e~ (T=9Af(s) — f(s) as T — s.
Hence

t/
/ %e_(T_s)Af(s)dT =e WA r(5) = f(s). (3.12)
Therefore

t T (r—s)A
/t /0 7.6 f(s)dsdr

= [ - e (s as + / [ =94 f(s) — f(s)]ds

0

- /0 WA f(s)ds / ~4=4 () / 7(s
= yo(t') — yalt /f

This means that y2(t) is differentiable and
t
0
+/ —e =4 1(5) do. (3.13)
o Ot
With the aid of (3.13)), for 0 < s < ¢ < T, one has
(y2(t) = £(1)) = (ya(s) — f(5))

_/t gef(tfo')Af( )d 7/8 gef(sfa)Af( )d
a 0 at 7 g 0 88 g 7

fro 0 Lo
— —(t o)A _ —(s—o0)A Y —(t—0)A
/0 G 9s° }f@d"*/s ot flo)do
= Fl(sat) + FQ(Sﬂt)'
Write F (s, t) as

(3.14)

1(s,t) //3T2 ("= A4r f(0) do (3.15)
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Similarl to (2.5)) it can be shown that for u € (X, D(A4))s,c0,

2 o
||ﬁ€ Mullx < Cot P30l (x by, -
Hence
82 A 346
I52¢” "4 @)llx < Colr = ) O £(0) | 0x,piay
< Co(r = o) =307 £l g j0,135x,D(A))o. ) -
Therefore

1E3 (s, )]l x

s t
= CO/ / (7 = )T Fl 50 11:0x, D (40, )T d
0 s
Co(t — 5)(2at8-3+6)/a
< . .
“B-—a-p-0)/a-(2a+5-3+0)/a I£110.71:0x. 00470 )
In view of (3.10) one obtains

t
| Fals,8)lx < Co / (t— &) B2/ Fll 0 m1sx. DA ) 0

o (t — s)(ath=240)/a
< : :
SO GTi—2+0/a I 50,71 (x,D(4))0,0)

From (3.14), (3.17) and (3.18]) it follows that
ys — f € CCTB=3+0/a ([0, 7], X).

This and (3.6) yield
Y — | e O30/ (0, T); X).
From ([3.13)) one deduces that for 7 > 0,
d—A/ d—A/ta—(t—)A
—eTTAL) — f(1) = —e A [ e ls d
TR0 — ) = e [ LA sy

t
_ / ief'rAgef(tfs)Af(S)dS
0

dr ot
t 82 4
:/0 ﬁe_(t_s'”) f(s)ds.

With the aid of (3.16]) one obtains
d -7
l=—e ™ wa () = FO)llx

PO mstna
-1 [ e F(s)ds] x

t
< Co/o (t =5+ 7) 30 £l po,rx.D(A4))0 ) 45

rlat+B-3+0)/a _ (t + T)(a+,[3—3+0)/a ||f||
B—a-p4+6)/a B([0,T);(X,D(A))0,c0)

Sy

CyrlatB-3+0)/a
“B-a—p+0)/a I £l B(0.71:(x,D(A4))5. 00)-

(3.16)

(3.17)

(3.18)

(3.19)
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This means that y5(¢) — f(t) € )?2-5-9—1 and

C
Y5 (t) = f(t)] garor < Ga- ; s 111 B(10,73:(X,D(4))6,00)- (3.20)

For 7 > 0,
A0~ £0] = [ S (o) do

t (3.21)
0
:/0 aef(tngrT)Af(U) do.
Ast—=0for0< o <t,
0 —(t—o+T1 0 —(t—0o
Igpe™ A (0) = g T @)lx 0, (3.22)
in view of ([3.10)),
0
Y —(t—o+1)A < Cn(t — (B—240)/« )
Hat@ f@)lx <Colt —o+7) £l B(0,77:(x,D(A))6.0) (3.23)
< Co(t — ) B72F0 £l 510,13 (x.D(A) )00
and . (045240
t o — «
t— o) P20/ o — . 3.24
/0( %) T lavp-2+0)ja = (3.24)

It follows from (3.21)), (3.22)), (3.23) and (3.24) that as 7 — 0,

¢
. 0 _-0
A0 — 0] — [ e I @ de =0 - 10, (329)
0
Therefore, noting a + 5+ (a+60—1)=2a++0—-1>2,0<a+6—-1<1we
can apply Lemma [2.5| and (3.20) to obtain that y5(t) — f(t) € X22a+673+9)/a and
[92(8) = F(D)] g @ats-asnsa ST((2a+ 8 =3+ 0)/a)lys(t) = f(1)| gqro—

< Gol(2a+5-3+0)/a) I/
= B-—a-p-0)/a B([0,T];(X,D(A))p,00)

From this inequality and the boundedness of ||y} (¢) — f(¢)||x, which follows from
(3.11), and (3.13) one concludes that y5 — f € B([0,T]; Xfa+ﬁ_3+0)/a). This and
(3.9) imply v/ — f € B([O,T];Xfaﬁ@fﬂe)/a). Finally we show that y defined by
(3.2)) satisfies (1.1). By virtue of (3.13]) one has
d _ YO,
V(0 =10+ 0300 = e Mo+ 1)+ [ S I f(s)ds,
0

Hence

t
A7y (1) = ATV Loty 1 AT () + / 4712 =94 ()
dt 0 ot

= —e My + ATHf(E) — / A (o) ds.
0

Therefore, one obtains

AT Y () — F(1) = —e Mlyo — / eI (s)ds = —y(t).
0

From this the assertion (1.1)) readily follows. Thus the proof complete. (]
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Theorem 3.2. Suppose that a+5 > 3/2, 0 > 2(2—a—p3), yo € D(4), Ayoﬁ)N(f1 #*
0, feC(0,T); X)NB([0,T]; X4) and lim,_qe ™A f(t) = f(t) for everyt € [0,T].
Then problem (1.1)) admits a unique solution y such that y € C*([0,T]; X) and

Y — f € CPo2B=140) /([0 T); X) 0 B((0, T); X Fot20=40/e), (3.26)

Proof. Define functions y; and ys by (3.2). Let ¢ € Ayg N Xfr Since
a+ﬁ—2+9>a+ﬂ—2+2(2—a—ﬁ):2—a—ﬁ20,
we can show as for and ( . ) that
" S——
Prloteds=240/a(0.11X) = (T3~ 2 + §)/a’ (3.27)
|yi(t)|)zz < |¢|)ZZ,
and furthermore ([3.8) holds. Consequently the following statements are obtained

as was

yh € B([0,T]; X720/, (3.28)
! arpzroye, <D((a+B—=2+0)/a)|d|we + sup |le ¢|x. (3.29
1911l 5 0,7y, x o247y S T((a+ B )/ )|l 5 Ogngl ollx. (3.29)

The second term in the right-hand side of (3.29) is finite since lim; .o e~*4¢ exists
by Lemma
In the present case the following inequality holds instead of (3.10)),

0

e (s)x < (= 5) P20 () g

)
< (o2 (3.30)
) —

”fHB([O T); Xﬁ)

Noting that (3.12) holds since e~ (r=9)A f(s f(s) as 7 — s by assumption, it is
possible to show that ys(t f e~ (1=9)Af(s)ds is differentiable and (3.13) holds.
Let Fl(s t) and Fy(s,t) be functions defined by (13.14). We have for u € )?z,

, .
el x = 4] (e /24 )u||X<4|| T POt P Y

<4C’0( )w 2)/al G 2+9)/“ s
=9\ 2 2 X4

= Clt(2ﬁ_4+9)/a|u|)}g
A

” a2

where Cy = Cy2(4=28=0)/>_ Hence

d2 —(7—0o — @
| (o) lx < Culr = )P0 f (o)

(3.31)
< Cy(r— U)(25_4+9)/a||fHB([o,T];)?g)
With the aid of (3.15)) and (3.31) we obtain
[ F1(s, )] x
(25 440)/ -
e / / 113 0,175 do (3.32)

Cro? (t — 5)20+28-4+0) /o
S U—a-23-0)2at+25-410)

11 50,724
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Using ({3.30)), one obtains

t
IFals0llx < [ (6= )OO fl 150, do
(t _ S)(aJrB 240)/c
= @t 521 0)ja 1 lB0nxs
Inequalities (3.32) and (3.33) imply that y} — f € C(2a+26=44+0)/a([0, T]; X). This

and (3.27) yield 3/ — f € C®Ra+28-4460)/a ([0, T); X). With the aid of (3.31)) one
observes that

d t H2
e A a0 = F@)x = | / e A f(5)ds

(3.33)

t
< Cl/ (t— s+ 7)2F~4H0) /a||f||3([o 11:%9)45
0
T(a+2ﬁ—4+9)/a _ (t + T)(a+2[3—4+9)/o¢
=G @—a—2310)a 11l 0,71:%5)
Cl,r(a+2ﬁ 440)/a

This means that y5(t) — f(t) € )N(j+ﬂ+9_2 and

C
|yl2(t) - f(t)‘)?jﬁﬁ“’* < d—a- 21,3 10)/a Hf”B([o’T];)?g)- (3.34)

From (3.21)), (3.22), (3.24) and the inequality

0 _(1—oir a
Hae (t=ot )Af( )”X (t_a"'T)(B 2+0)/ ”fHB ([0,T1;X4)

< Cl(t - U)(/B 2+6) /allf”B([o TJ; X9)

which follows from (3.30). Then (3.25)) holds. Therefore noting o + S+ (o + 8 +
0 —2)=2a+26+6—2>2 we may apply Lemma and ([3.34) to obtain that

yh(t) — () € XG0 ang
[0 (8) = ()] g asan-sorse < T((20+ 28— 4+ 0)/@)lys(t) = ()| ggroso—s

< Clr((2a+25—4+9)/a)uf” B
=T 4-—a-2010)/a B(0T):X%)"

From this inequality, (3.13)) and (3.30)) one concludes that

This and 1mply y' —f € B([0,T); X(2a+2’8 4+9)/0‘) The proof that y defined
by (3.2 satlsﬁes is the same as that in the proof of Theorem O

Remark 3.3. Suppose that the assumptions of Theorem are satisfied, and let
k € R. Consider the problem

y(t) + Ay(t) + ky(t) > f(t), 0<t<T,
y(O)Zyo.

at? (3.35)
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The operator —(A + k) generates a differentiable semigroup e H(A+k) = g=kte—tA

Then define C}) = C’oemax{k’o}T, so that for 0 < t < T one gets
12

dt

The unique solution to (|3.35)) is given by

t
y(t) _ e—t(A—Hc)yO n / e_(t_s)(A+k)f(8)d8.
0

e AT £y < OGP0/ = 0,1, 2.

Since ek'y(t) is a solution to (1.1)) with f(t) replaced by e**f(t), y satisfies y €
C1([0,T]; X) and

Y+ ky — f € OR300, T); X) 0 B0, T); X FH7340/),
Furthermore, the following results hold just as (3.13)) and (3.11)):

t t
G [ e ssas = s+ 8 =000+ f(5)as,
dt J, | ot

t b C/t(a+ﬁ—2+0)/a
Y —(t—s)(A+k) d < 0 . ]
||/O 5.° f(s)ds||lx < (a+ﬁ_2+9)/a||f|\B([O,T],(X,D(A))gm)

An analogous remark holds also for Theorem

4. AN IDENTIFICATION PROBLEM FOR THE DIFFERENTIAL EQUATION

In this section we consider problem (1.4]):

%y(t) + Ay(t) > f(t)z+ h(t), te]0,T], (4.1)

y(0) = wo, (4.2)

Ply(t)] =g(t), tel0,T], (4.3)

Theorem 4.1. Suppose that 2a+ 46 > 3, yo € D(A), AyoN (X, D(A))g,00 # 0,
z € (X,D(A))o,0, h € C([0,T); X) N B([0,TT; (X, D(A))g,0), 9 € C([0,T];C),

® € X*, Olyo] = ¢(0), ®[z] # 0. Then problem (4.1)-(4.3) admits a unique solution
(y, f) such that

ye CY([0,T];X), feC(0,T];C),

) (1.4)
y/ o f()z —he O(2a+573+0)/a([0’T];X) ﬂB([O,T},X‘(AQOH_B 3+9)/a).
Proof. Supposing that f € C(]0,T];C) is known, define a function y by
t t
y(t) = e “yo + / f(s)e =) 2ds + / e~ =94 n(s)ds. (4.5)
0 0

Sincea++60—-22>2a+0+60—3 >0, by Lemma and (2.5) the following
statements hold:

A

d
ey = zast—0, Hae_mzﬂx < C’ot(g_“g)/o‘||z||(X,D(A))9m. (4.6)

Hence fot f(s)e=(t=9)42ds is differentiable and

jt/ot f(s)e_(t—s)Azds = f(t)z i At f(s)%e_(t_S)Ast' (47)
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According to the proof of Theorem (cf. and (B11) [ e~ 4h(s)ds is

differentiable and

d t

_ —(t—s)A — —(t—s)A 4

i) h(s)ds = / 5 h(s)ds, (4.8)
tla+pB—2+0)/c

t
0 __
||/0 ¢ =)D (s)ds|| x SCO(OHLﬂiQ+9)/aHh||B([o,T];(X,D(A))my (4.9)

Hence y is differentiable and

d d d [* ,
ay( )= 7€ g+ f(t z+/ f(s —(t=9)4 zds+£/0 e~ t=94n(s)ds. (4.10)
Assuming that y(t) satisfies one deduces from (4.10]) the following identity
d — s
)= o[ ] + 50l + [ fop0[ e as
(4.11)

+ & [jt /t e*(t*S)Ah(s)ds] .

Rewriting (4.11)) one obtains the following integral equation to be satisfied by f:
+X/ f(s —e~(t=5)A }ds

. 4t (4.12)
=xg'(t) - x<1>[@€*m140} - Xq){@/o 67(t75)Ah(5)d,s},
where y = ®[2]71. Set
k(t) = xP [%efmz],
0lt) = xg'(0) = x® [ e ] 3@ [ [ e n(s)as].
Then is rewritten as
t
£+ [l = )7 (s)ds = 00,
or briefly
Farxf=uv. (4.14)

By (4.6) one has
[5(8)] < Colx 1N~ 120l (x, DAY
In view of (3.5)), (4.8) and (4.9) one observes that ¢ € C([0,7];C). Let r be the

solution to the integral equation
K+r+rxx=0.
This equation is solved by successive approximations, and the solution r satisfies
Etr+rsxr=0, |rt)<CotP240/a > 0.
The integral equation admits a unique solution f € C([0,T];C) given by
f=v+r=qy,or

ft)=v@) + /0 r(t — s)Y(s)ds. (4.15)
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It is easy to Verify that if we deﬁne y by ([@.5) with f given by (4.15)), the pair (y, f)

satisfies ) and ([£.2). From ) and (4.11)) it follows that

g(t) = @[%ya)} L ly(0)]

From this equality and the compatibility condition ®[yo] = ¢(0) (4.3) follows. Since
f()z+heC(0,T); X) N B([0,T); (X, D(A))s,00), the assertion (4.4) follows from
Theorem [B.11 (Il
Theorem 4.2. Suppose that o+ 8 > 3/2, 22 —a— ) < 0 < 1, yo € D(A),
Ayo N X4 # 0, z € X4, limy_ge 42 = 2, g € CY([0,T];C), ® € X*, Dlyy] =
g(0), ®[z] #0, h € C([0,T]; X) N B([0,T]; X4), lim, .o e "h(t) = h(t) for every
t € [0,T7]. Then problem (4.1)-(4.3) admits a unique solution y such that y €
CL([0,T); X) and
y — f € L0400 ([0, T); X) 0 B([0, T); X G070/,

Proof. Supposmg that f € C([0,T]; X) is known, define the function y by (4.5)).
Let ¢ € Ayg N XA Then in view of Lemma [2

%e_tAyO ie—tAA ¢ e—tA¢

dt
converges as t — 0. Hence
d
the function ¢ — ﬁe_myo belongs to C(]0,T7; X). (4.16)
By the definition of )A(:f1 one has

e Az x §t(5’2+0)/a|z|)~(9. (4.17)

Hence using the assumption lim;_.g e~ *“2z = z one observes that f f(s)e —(t=5)A (s
is differentiable and . holds. According to the proof of Theorem- cf. -

fo e (- é)Ah( )ds is differentiable, and equality (4.8) and the inequality
t _
b t(a+ﬂ 240)/
—e (=94 (5)ds||x < h % 4.1
1 g e < ety @19
holds. Hence y is differentiable and (4.10) holds. Assuming that y(t) satisfies (4.3)

one deduces (4.14)) from (4.10)) as in the proof of Theorem where k and ¢ are
functions defined by (4.13). By virtue of (4.17)) one has

[6(8)] < D@t O30 2] ¢4

In view of (4.16), (4.8) and (4.18) one observes ¢ € C([0,T];C). The remaining
part of the proof is the same as that of Theorem [£.1] O

—tA

5. EQUATIONS WITH SEVERAL UNKNOWN SCALAR FUNCTIONS

In this section we consider the problem consisting of recovering several unknown

scalar functions fi,..., f, and a vector function y such that
() + Ay(t) > Y05+ b0, e 0T (5.1)
Jj=1

y(0) = o, (5.2)
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(I)J[y(t)] = gj(t)’ j=1...,n, te€ [O7T} (53)

Theorem 5.1. Suppose 2a+ 8+ 60 > 3, yo € D(A), Ayo N (X, D(A))g.00 # 0,
€ (X,D(A))g,00; j=1,...,n, h € C([0,T]; X) N B([0,TT]; (X, D(A))g,00), 95 €
CY([0,T);C), ®; € X*, ®;[yo) = 9;(0), j =1,...,n, and

(@1[21] I (I)l[Zn])
det [ ... .. | #o. (5.4)
Dplz1] .0 DPylza]

Then, problem (5.1)—(5.3) admits a unique solution (y, f1,..., fn) such that
y € CH0.T}: X), fi,---, fa € C(0,T};C),

n wibsior/e. (55
y/ . Zf]()zj _he C(2a+ﬁ_3+9)/a([0,T];X) OB([O,T];X‘,&Q +3—-3+0)/ ) ( )

The proof is performed in parallel to the proof of Theorem If fi,....fn €
C([0,T]; C) are known, y is given by

y(t) =e” yo+/
0

Just as the proof of (4.10)) one deduces from this equality

t
—(t=s)4, ds+/ e~ =) 4An(s)ds.
0

y'(t) = *e My +ng

(5.6)
+/ ny )Dye~ (=) z]ds—i-—/ e~ =) An(s)ds.
It follows from (5.3)) and (5.6) that
g:(t) = @iy’ (1)]
i [Dre™yo] + ij il%5] +/ ij ®;[Dye” =942 ]ds
; tef(tfs)A s)ds]|.
+au[p [ h(s)ds]
This is rewritten as
Ozl oo Dulzal) \ )
gy (t) — ®1[Die M yo] — <1>1[th e~ (t=9)4n(s)ds]
= ( ) (5.7)
gl (t) — @, [Die " Hy] — [th e~ (=3)An(s)ds ]

[ ®1[Dee= =942 ] . @[Dem (194, ] fi(s)
. - - ds.
/0 O, [Die= =42 ... P, [Die” )4 ] In(s)
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Set
(1)1[21] e (I)l[zn]
A= o ...
D,(z1] ... Dplzn]
Then by assumption (5.4), A~ exists. Set
g (t) — ®1[Die Hyo] — @y [Dt [y em (=) 4n(s)ds)
d(t)=A""1 ,
g (t) — @, [Die " y] — [th e~ (=) An(s )ds]
O [Die=t 2] ... @[Dietz,] f1(t)
K(t)=A"" , Fy=1| ...
@n[DteftAzl] . @H[Dte’mzn] fn(?)

Tt follows from (5.7) that

—/tK(t—s)F(s)ds.
0

1K ()] c(eny < CHO-2HO/e,
the remaining part of the proof is the same as that of Theorem Analogously
the following theorem is established.

Since

z; € X4, limy_ge ™z = 2, j = 1,...,n, h € C([0,T]; X) mB([o T]; X
lim,_q e "Ah(t) = h(t) for every t € [0,T], g; € C1([0,T];C), ®; € X*, ®;[yo]
g;(0),j=1,...,n, and

Theorem 5.2. Suppose 2(2 —a — ) < 0 < 1, yo € D(A), Ay ﬁXA ;é 0,
] A);

@1[31] - @1[2’”]
det | ... e # 0.
D,[z1] ... DPnlzn]

Then, problem (5.1)-(5.3)) admits a unique solution (y, f1,..., fn) such that
y € CH0,T;X),  fi,-.es fu € C([0,T];C),

y - ij()zj —he C(2a+25—4+9)/a([0’ 1, X) N B([0, T7; X1(42a+2ﬂ74+9)/a).

6. PROBLEMS (1.6) AND (|1.7))

Let L and M be two linear closed operators satisfying (1.8) and . Set
A= LM~!. Namely

D(A)=MD(L) ={Mu:u € D(L)},
Ay ={Lu:y= Mu,uw e D(L)} for y € D(A).

It is shown in Favini and Yagi [6] that A satisfies (1.2)) and (1.3)). The graph-norm
of D(A) is defined by

Hy||D(A) = inf{||Lu||x : y = Mu, w € D(L)} for ye& D(A).
Consider the problem

(6.1)

%Mu(t) + Lu(t) = f(t), te[0,T], (6.2)
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Mu(0) = Muy. (6.3)
Theorem 6.1. Suppose that 2a+ + 6 > 3, ugp € D(L), Luy € (X,D(A))g,00,
f e C(0,T]; X) N B([0,T]; (X, D(A))s,00). Then problem (6.2)—(6.3) admits a

unique solution u such that
Mu € C([0,T]; X),
Lu € CotA=3+0/e ([0, T]; X) 0 B([0, T); X Fo+A-310)/y,

Proof. Set yo = Mug. Then yo € D(A), and Ayo N (X, D(A))s,00 is not empty,
since it contains Lug. In view of Theorem [3.1] there exists a solution y to (L.1), A
being defined by (6.1). Set u(t) = L='(f(t) — y'(t)). Then

Lu(t) = f(t) =y (t) € Ay(t) = LM "y(t). (6.5)
Since L is bijective, it follows from that u(t) € M~1y(t), or y(t) = Mu(t).
From the first equation of equation follows. It is obvious that u satisfies
(63). 0

Analogously, using Theorem instead of Theorem the following theorem
is obtained.

Theorem 6.2. Suppose that 0 > 2(2 — o — ), ug € D(L), Lug € )?fl, f e
C([0,T]; X) N B([0,T]; X4), lim, _oe ™A f(t) = f(t) for every t € [0,T]. Then
problem (6.2)—(6.3) admits a unique solution u such that

Mu € CL(0,T]; X),

(6.4)

Lu € C2a+26=4+0)/a ([0, T); X) B([O,T];X22a+2ﬁ_4+0)/a). (6.6)

Next, consider the problem
%MU £) + Lu(t ij ), +h(t), tel0,T], (6.7)
Mu(O) = Muy, (6.8)
Q;[Mu(t)] =g;(t), j=1,...,n, te[0,T]. (6.9)
Theorem 6.3. Suppose 2ac+ [+ 0 > 3, ug € D(L), Lug € (X,D(A))p,00, 2j €
(X, D(A))omr G = L., b € C(O,T]; X) 01 B0, T (X, D(A))oc), &, € X,

g; € CH([0,T;C), ®;[Mug] = g;(0), j = 1,...,n, and . holds. Then problem
(6.7) 7 admits a unique solution (u, f1,..., fn) such that
Mu e CH[0,T}; X), fi,.--, fa € C(10,T];C),
Lu € C@at8=3+0/a((0, T]; X) N B([0, T); X {720/,
Proof. Let (y, f1,..., fa) be a solution to problem (5.I)-(5.3) with A defined by
(6.1) and define a function u by

L0z R0~y @], te0.T]

(6.10)

Then in view of

Z t)z; + h(t) — 9/ (t) € Ay(t) = LM 1y(t). (6.11)
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Since L is injective, one gets u(t) e M1 (t) This implies

= y(t). (6.12)
The first equation in (6.11]) and (6.12] j 1mply . It is obvious that (6.8)) and
hold. From the first equatlon in (6.11) and the second equation in 1-) it follows

that

Lu=" f;()2 +h—y € CC O30/ ((0, 7] X) 0 B([0, T); X770/,
j=1
Thus the regularity property (6.10) is proved. |

The following theorem is analogously established.

Theorem 6.4. Suppose 8 > 2(2 — a — 3), up € D(L), Lug € )?f‘, zj € )?fl,
lim, ge ™z =z, j=1,...,n, he C([0,T]; X)NB([0,T]; X4), lim, o e~ "4h(t)
= h(t) for every t € [0,T], g; € C*0,T);C), ®; € X*, ®;[Mug] = g;(0),
j=1....n, and holds. Then, problem 7 admits a unique solu-
tion (u, f1,..., fn) such that

Mu e CH[0,T); X), fi,--., fn € C([0,T);C),

Lue C(2a+2B74+0)/a([0’T]; )N B([0,T]; X (2a+26 4+9)/Oé)

Remark 6.5. When L is the realization in L?(£2) of a second order strongly elliptic
linear differential operator £ with the Dirichlet boundary condition in a bounded
domain © and M is the multiplication operator by a function belonging to L (2)
one has a« = 1, § = 1/2. Hence the assumption 2a + 8 + 6 > 3 of Theorems
and is not satisfied for § = 1/2, and the assumption 6 > 2(2 — a — 3) of
Theorems and is not satisfied for 0 € (0,1). A treatment of this case is

given in [7]. Furthermore, owing to the inclusion relations D(A) C LZ(Q)X ’c

(L*(9), D(A))1/2,00 the assumptions are described by using a clearer space D(A)

than L2 (Q)A/ , (L2(22), D(A))1/2,00 in [7], where A= LM~ and L is the realization

of £Lin H-Y(Q) = H}(Q)*.

7. PROBLEMS FOR SYSTEMS

Let us consider the following inverse problem: Recover y;, fi;, ¢ = 1,...,n,
j=1,...,N, such that

Yy = Ary1 + Briyr + -+ + Binyn + f1(t)z1 + - + fin(t)zy + ha(t),

y;’b = Anyn + Bpiy1 + - + Bupyn + fnl(t)zl + -+ an(t)ZN + hn(t),
yl(o) :ylov"'ayn(o) = Yno, (72)
Q;lyi(t)] =g;i(t), i=1,...,n;5=1,...,N.

Assume 0 < 8 < a < 1and 2a+3+60 > 3. It is also assumed that fori,j = 1,...,n,
A; and B;; satisty

C
A— Ayt <
10 =407 e < e

B, € L(D(4;), X5.).

for A € 34 = {A\inC;Re A > —c(1 + | Im A|)*},
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Also assume that y;0 € D(A;), Aiyio € (X, D(4:))o,00s 25 € NP_1 (X, D(Ak)),005
hi € C([0,T): X) N B(0, T: (X, D(A))o.00, 951 € CM((0.T]:C), @5 € X7, @;[yo] =
9ji(0),i=1,...,n,j=1,...,N. Set

Y1 Al 0 ... 0 B11 Bln
y=[...], A=1... |, B=|..
Yn 0o 0 ... A, Bni ... Bpn

Then A and A+ B generate infinitely differentiable semigroups in X™. The system

(7.1) is written as

z1 22 ZN
= (A+ By + fu(t) 0 + f1a(t) 0 ot i) |
0 0 0
0 0 0
+ far() | T L) | T o) | TV
0 0

=)

o

. >
. Ll

—

~

= =

z1 R ZN b (1)
Theorem applies provided that
@1[2'1] @1[2’]\[]
det e . # 0.
(I)N[Zl] (I)N[ZN]

Indeed, the further information reduces to the N linear systems in the unknowns
fits - fin,i = 1 , 1, whose determinant is just the indicated above. Identifica-

tion problem [7.3) admits a unique solution y = (y1,...,yn)", fij;i=1,...,n
j=1...,N such that

yecl([o,T}-X") fij €CY([0,T);C), i=1,...,n,j=1,....,N
(A+ B)y € Co+0=30/2([o, T); X™) 1 B([0, TY; Xfffgﬁ 3*")/“)
C CPatB=3t0/ ([0, T); X™) N [B((0,T; (X, D(A1))(20-4 8—510) /c,00)

- X B([OvTL (X’D(An))(2a+ﬁ—3+9)/a,oo)]'

Example. Let us consider the inverse problem

)

%(A + Dy + Ay = /t k(t — s)Ay(s)ds + f(t)z+ h(t), 0<t<T, (7.4)
0

(A+1)y(0) = (A+ o, (7.5)

B((A+ )y(t)] = Bg(t)], 0<t<T. (7.6)

We suppose that —1 is a simple pole for the resolvent of A4, i.e. (A+1+\)~! exists
for 0 < |A\| < e and

_ C
[(A+1+X) " gx) < o
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A change of variable y(t) = e*z(t) transforms equation (7.4)) into
d
dt

= / t k(t — s)e ") Ax(s)ds + f1(t)z + e "*h(t),
0

(A+Dx(t) + k(A + Da(t) + Az(t)

where f1(t) = e "t f(t). Now
AMA+ D) +r(A+1)+A=N+r+1D)A+A+k
A+ K 1
7)\—#&4—1) —()\+/£+1)<A+1—7)\+H+1).

Hence if 0 < A+ x+1|"t <eg ie. A+r+1>e L N(A+1)+K(A+1)+Ahasa
bounded inverse. Take x so large that k+1 > e~!. Then (A+1— )L e L(X)
exists for A € C\ S(—1— k,e"1) and

(A+1DNA+1) +r(A+1)+4)7 T

= +rt1)(a+
i
A+r+1

1

)71
A+r+1
1

-1
e b

=A+D)A+r+1)7"(A+1-

=A+r+1) {1+ (A+1-

A+ k+1
so that

[(A+ DA+ +w(A+1)+A) e SCA+r+17!
for [\ + K + 1] > 7. Hence the previous results (See also Favini and Tanabe [f])
apply for a = 3 = 1.

However, this pole case allows a better treatment. First of all the change of
variable y = e~ 'x transforms the given problem ([7.4)—(7.6) into

%(A F1)a(t) — a(t) = /0 Fa(t— 8)Az(s)ds + fi()z + (1),  (7.7)
(A+1)z(0) = (A + 1)yo, (7.8)

O[(A+ 1)x(t)] = g1(D). (7.9)

where ki (t) = etk(t), f1(t) = et f(t), hi(t) = eth(t), g1(t) = etg(t). If —1 is a simple

pole for (A — X\)~!, so that
X=NA+1)®R(A+1),
and P denotes the projection onto N(A + 1), problem (7.7)—(7.9)) reduces to

%(A 1)1 = P)a(t) — (1— Pa(t)
¢ (7.10)
- /0 kit — $)A(L = P)a(s)ds + f1(1)(1 — P)z + (1 — P)hy(0),
(A+1)(1 = P)2(0) = (A+1)(1 — P)yo, (7.11)
P[(A+1)(1 - P)z(t)] = g1 (t), (7.12)
—Px(t) = /t ki(t —s)P(A+1—1)a(s)ds + f1(t)Pz + Phy(t)
0 (7.13)

=— /t ki (t — s)Px(s)ds + f1(t)Pz + Phy(t).
0
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Since the restriction of A + 1 to R(A 4 1) is boundedly invertible, the change of

variable (A 4+ 1)(1 — P)xz(t) = £(¢) transforms ([7.10)—(7.12) into

G0 = Re0) = [ k(= s)[1 = Riel)ds + A0~ P2+ (1= Po),
0
(7.14)
£0) = (A+1)(1 - Py, (7.15)
D[E(H)] = g1(t), (7.16)

where R indicates the inverse of the restriction of A+ 1 to R(A + 1). Therefore,
if k& is continuous in [0,T], ®[(1 — P)z] # 0, h € C([0,T); X), (1 — P)yo € D(A),
g € C([0,T];C), problem 7 admits a unique strict solution (&, f1).
Hence, we have a unique strict solution ((1 — P)z, f1) to . Since f;

is now known, we only remain to solve integral equation ([7.13)), that is uniquely
solvable. Notice that this improves the preceding result, since condition ®[z] # 0
is replaced by the weaker condition ®[(1 — P)z] # 0.
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