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MULTIPLE SOLUTIONS FOR P-LAPLACIAN
BOUNDARY-VALUE PROBLEMS WITH IMPULSIVE EFFECTS

HONGXIA SHI, HAIBO CHEN

Abstract. In this article we study a class of boundary value problems with

impulsive effects. First by using Morse theory in combination with local linking

arguments, the existence result of at least two nontrivial solutions are obtained.
Next we prove that the problems have k distinct pairs of solutions by using the

Clark theorem. Recent results from the literature are improved and extended.

1. Introduction and statement of main results

In this article, we consider the impulsive boundary value problem

−(ρ(x)Φp(u′(x)))′ + s(t)Φp(u(x)) = f(x, u(x)), a.e. x ∈ (a, b),

∆(ρ(xj)Φp(u′(xj))) = ιj(u(xj)), j = 1, 2, . . . ,m,

α1u
′(a+)− α2u(a) = 0, β1u

′(b−) + β2u(b) = 0,

(1.1)

where Φp(u) = |u|p−2u, p > 1, ρ, s ∈ L∞[a, b] with ess inf [a,b] ρ > 0, ess inf [a,b] s > 0,
0 < ρ(a), ρ(b) < ∞, α1, α2, β1, β2 > 0, a = x0 < x1 < x2 < · · · < xm < xm+1 = b,
u′(x+

j )) and u′(x−j )) denotes the right and left limit of u′(xj) at x = xj , respectively,
ιj ∈ C(R,R), j = 1, 2, . . . ,m, f ∈ C([a, b]× R,R).

Since many evolution processes exhibit impulsive effects in the real world, the
theory of impulsive differential equations has developed rapidly in recent years.
For the significance, it is important to study the solvability of impulsive differential
equations. We refer some recent works on the theory of impulsive differential equa-
tions that developed by a large number of mathematicians [2, 8, 14, 18, 20, 21, 33,
34]. Classical approaches to such problems include fixed point theory, topological
degree theory and comparison method and so on. More recently, variational method
is one of the most promising techniques for differential equations, especially for the
boundary value problems of impulsive differential equations, and the literature on
this technique has grown extensively, see [4, 5, 6, 17, 19, 25, 27, 30, 31, 35, 36] and
the references therein.

Morse theory and local linking arguments are powerful tools in modern nonlinear
analysis [7, 11, 12, 23, 28], especially for the problems with resonance [13, 24].
However, to the best of our knowledge, there are few papers dealing with the
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existence of solutions for impulsive boundary value problems by using Morse theory.
Recently, in [1], the authors considered the following problem

−u′′ = f(x, u), x ∈ (0, 1) \ {x1, x2, . . . xm},
∆u′(xj) = ιj(u(xj)), j = 1, 2, . . . ,m,

u(0) = u(1) = 0.

(1.2)

They obtained the existence of one nontrivial solution for (1.2) when the impulses
are asymptotically linear near zero via computing the critical groups at zero.

Inspired by the above facts, the goal of this paper is to consider the multiplicity
of nontrivial solutions for (1.1). Under some suitable assumptions, by using Morse
theory in combination with local linking arguments, the existence result of at least
two nontrivial solutions are obtained. Next we prove that the problems have k
distinct pairs of solutions by using the Clark theorem.

Before stating our main results, we present the following assumptions on ιj
(j = 1, 2, . . . ,m):

(I1) ιj(t)t ≥ 0 and there exist aj > 0 and 0 ≤ γj < p− 1 such that

|ιj(t)| ≤ aj |t|γj , j = 1, 2, . . . ,m;

(I2) ιj(−t) = −ιj(t), j = 1, 2, . . . ,m.

Remark 1.1. From condition (I1), we can see that

|Ij(t)| ≤ aj |t|γj+1 and Ij(t) ≥ 0 (j = 1, 2, . . . ,m),

here and in the sequel Ij(t) =
∫ t

0
ιj(s)ds.

Furthermore, we assume that the nonlinearity f(x, u) satisfies the conditions:
(F1) there exist c1 > 0 and 0 ≤ α < p− 1 such that

|f(x, u)| ≤ c1|u|α, ∀(x, u) ∈ [a, b]× R;

(F2) there exist small constants 0 < r < r0, c2 > 0, 0 < c3 <
1
pSp

p
, 1 < γ <

max{γj + 1} such that

c3|u|p > F (x, u) ≥ c2|u|γ , r ≤ |u| ≤ r0 a.e. x ∈ [a, b],

here and in the sequel F (x, u) =
∫ u

0
f(x, s)ds, furthermore, Sp is the

Sobolev constant from W 1,p([a, b]) to Lp([a, b]);
(F3) f(x,−u) = −f(x, u).

Now, we are ready to state the main results of this article.

Theorem 1.2. Assume that (I1), (F1), (F2) hold. Then (1.1) has at least two
nontrivial solutions.

Theorem 1.3. Assume that (I1), (I2), (F1)–(F3) hold. Then (1.1) has at least k
distinct pairs of solutions.

The remainder of this article is organized as follows. In Section 2, some pre-
liminary results are presented. In Section 3, we give the proof of our main result.
Finally, an example is given to demonstrate the applicability of our main results in
Section 4. Furthermore, we want to point out that a similar approach can be used
to study different elliptic problems, such as in the paper [10].
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2. Preliminaries and variational setting

Throughout this article, C, Ci denotes positive constants which may vary; →
denotes the strong and ⇀ the weak convergence; Br denotes the ball of radius r
and E∗ denotes the dual space of E.

The Sobolev space E = W 1,p([a, b]) is equipped with the norm

‖u‖ =
(∫ b

a

ρ(x)|u′(x)|p + s(x)|u(x)|p
)1/p

,

which is equivalent to the usual one.
As usual, for 1 ≤ p < +∞, we let

‖u‖p =
(∫ b

a

|u(x)|pdx
)1/p

, u ∈ Lp([a, b]),

‖u‖∞ = maxx∈[a,b]|u(x)|, u ∈ C([a, b]).

Lemma 2.1 ([30, Lemma 2.6]). For u ∈ E, then we have ‖u‖∞ ≤ C1‖u‖, where

C1 = 21/q max
{ 1

(b− a)1/p(ess inf [a,b] s)1/p
,

(b− a)1/q

(ess inf [a,b] ρ)1/p

}
,

1
p

+
1
q

= 1.

Now we begin describing the variational formulation of problem (1.1). Consider
the functional ϕ : E → R defined by

ϕ(u) =
‖u‖p

p
+

m∑
j=1

Ij(u(xj)) +
ρ(a)αp−1

2

pαp−1
1

|u(a)|p +
ρ(b)βp−1

2

pβp−1
1

|u(b)|p

−
∫ b

a

F (x, u)dx.

(2.1)

Since f and ιj(j = 1, 2, . . . ,m) are continuous, we deduce that ϕ is of class C1 and
its derivative is given by

ϕ′(u)v =
∫ b

a

ρ(x)Φp(u′(x))v′(x)dx+
∫ b

a

s(x)Φp(u(x))v(x)dx

+ ρ(a)Φp(
α2u(a)
α1

)v(a) + ρ(b)Φp(
β2u(b)
β1

)v(b) +
m∑
j=1

ιj(u(xj))v(xj)

−
∫ b

a

f(x, u(x))v(x)dx,

(2.2)

for all u, v ∈ E. Then we can infer that u ∈ E is a critical point of ϕ if and only if
it is a solution of (1.1).

We will use Morse theory in combination with local linking arguments to obtain
the critical points of ϕ. Now, it is necessary to recall the following definitions and
results.

Definition 2.2. Let E be a real reflexive Banach space. We say that ϕ satisfies
the (PS)-condition, i.e. every sequence {un} ⊂ E satisfying ϕ(un) bounded and
limn→∞ ϕ′(un) = 0 contains a convergent subsequence.

Let E be a real Banach space and ϕ ∈ C1(E,R). K = {u ∈ E : ϕ′(u) = 0},
then the q-th critical group of ϕ at an isolated critical point u ∈ K with ϕ(u) = c
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is defined by

Cq(ϕ, u) := Hq(ϕc ∩ U,ϕc ∩ U \ {u}), q ∈ N := {0, 1, 2, . . . },

where ϕc = {u ∈ E : ϕ(u) ≤ c}, U is a neighborhood of u, containing the unique
critical point, H∗ is the singular relative homology with coefficient in an Abelian
group G.

We say that u ∈ E is a homological nontrivial critical point of ϕ if at least one of
its critical groups is nontrivial. Now, we present the following propositions which
will be used later.

Proposition 2.3 ([15, Proposition 2.1]). Assume that ϕ has a critical point u = 0
with ϕ(0) = 0. Suppose that ϕ has a local linking at 0 with respect to E = V ⊕W ,
k = dimV <∞; that is, there exists ρ > 0 small such that

ϕ(u) ≤ 0, u ∈ V, ‖u‖ ≤ ρ;

ϕ(u) > 0, u ∈W, 0 < ‖u‖ ≤ ρ.

Then Ck(ϕ, 0) � 0, hence 0 is a homological nontrivial critical point of ϕ.

Proposition 2.4 ([15, Theorem 2.1]). Let E be a real Banach space and let ϕ ∈
C1(E,R) satisfy the (PS)-condition and is bounded from below. If ϕ has a critical
point that is homological nontrivial and is not a minimizer of ϕ, then ϕ has at least
three critical points.

Proposition 2.5 ([22, Theorem 9.1]). Let E be a real Banach space, ϕ ∈ C1(E,R)
with ϕ even, bounded from below, and satisfying (PS)-condition. Suppose ϕ(0) = 0,
there is a set K ⊂ E such that K is homeomorphic to Sj−1 by an odd map, and
supK ϕ < 0. Then ϕ possesses at least j distinct pairs of critical points.

3. Proof of main results

In this section, we prove Theorems 1.2 and 1.3. To complete the proof, we need
the following lemmas.

Lemma 3.1. Suppose that ϕ satisfies (I1), (F1), then ϕ satisfies the (PS)-condi-
tion.

Proof. We first prove that ϕ is coercive. It follows from (I1) and (F1) that

ϕ(u) =
‖u‖p

p
+

m∑
j=1

Ij(u(xj)) +
ρ(a)αp−1

2

pαp−1
1

|u(a)|p +
ρ(b)βp−1

2

pβp−1
1

|u(b)|p −
∫ b

a

F (x, u)dx

≥ ‖u‖
p

p
+
ρ(a)αp−1

2

pαp−1
1

|u(a)|p +
ρ(b)βp−1

2

pβp−1
1

|u(b)|p −
∫ b

a

c1|u|α+1dx

≥ ‖u‖
p

p
+
ρ(a)αp−1

2

pαp−1
1

|u(a)|p +
ρ(b)βp−1

2

pβp−1
1

|u(b)|p − C2‖u‖α+1

Since α+ 1 < p, it follows that ϕ(u)→ +∞ as ‖u‖ → ∞.
Suppose that {un} is a (PS) sequence, then {un} is bounded, there exists a

constant M > 0 such that

‖un‖ ≤M, ∀n ∈ N. (3.1)
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Going to a subsequence, if necessary, we can assume that un ⇀ u0 in E. Hence, by
compact embedding theorem of Sobolev space, we have

un → u0 in Lp([a, b]), un → u0 a.e. x ∈ [a, b].

By (2.2), we have

(ϕ′(un)− ϕ′(u0), un − u0)

=
∫ b

a

ρ(x)(Φp(u′n(x))− Φp(u′0(x)))(u′n(x)− u′0(x))dx

+
∫ b

a

s(x)(Φp(un(x))− Φp(u0(x)))(un(x)− u0(x))dx

+ ρ(a)(Φp(
α2un(a)
α1

)− Φp(
α2u0(a)
α1

))(un(a)− u0(a))

+ ρ(b)(Φp(
β2un(b)
β1

)− Φp(
β2u0(b)
β1

))(un(b)− u0(b))

+
m∑
j=1

(ιj(un(xj))− ιj(u0(xj)))(un(xj)− u0(xj))

−
∫ b

a

(f(t, un(x))− f(t, u0(x)))(un(x)− u0(x))dx.

(3.2)

If p ≥ 2, it is easy to show that for any x, y ∈ R, there exists cp > 0 such that

(|x|p−2x− |y|p−2y)(x− y) ≥ cp|x− y|p, p ≥ 2.

Combining this inequality with (3.2), we have

cp‖un − u0‖p ≤ ‖ϕ′(un)− ϕ′(u0)‖‖un − u0‖

− ρ(a)(Φp(
α2un(a)
α1

)− Φp(
α2u0(a)
α1

))(un(a)− u0(a))

− ρ(b)(Φp(
β2un(b)
β1

)− Φp(
β2u0(b)
β1

))(un(b)− u0(b))

−
l∑

j=1

(ιj(un(xj))− ιj(u0(xj)))(un(xj)− u0(xj))

+
∫ b

a

(f(x, un(x))− f(x, u0(x)))(un(x)− u0(x))dx.

It follows directly that un → u0 in E.
If 1 < p < 2, by the results of [4], there exists dp > 0 such that∫ b

a

ρ(x)(Φp(u′n(x))− Φp(u′0(x)))(u′n(x)− u′0(x))dx

+
∫ b

a

s(x)(Φp(un(x))− Φp(u0(x)))

≥ dp2p−2‖un − u0‖2

(‖un‖+ ‖u0‖)2−p

Similarly, we can obtain that un → u0 in E, i.e. ϕ satisfies the (PS)-condition. �
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We choose an orthogonal basis {ej} of E and define Xj := span{ej}, j = 1, 2, . . . ,
Yk := ⊕kj=1Xj , Zk = ⊕∞j=k+1Xj , then E = Yk ⊕ Zk.

Lemma 3.2. Suppose that Φ satisfies (I1), (F2), then there exists k0 ∈ N such that
Ck0(ϕ, 0) � 0.

Proof. Since F (x, 0) = 0 and Ij(0) = 0(j = 1, 2, . . . ,m), then the zero function is
a critical point of ϕ. So we only need to prove that ϕ has a local linking at 0 with
respect to E = Yk ⊕ Zk.
Step 1. Take u ∈ Yk, since Yk is finite dimensional, we have that for given r0,
there exists 0 < ρ < 1 small such that

u ∈ Yk, ‖u‖ ≤ ρ⇒ |u| < r0, x ∈ [a, b]

For 0 < r < r0, let Ω1 = {x ∈ [a, b] : |u(x)| < r}, Ω2 = {x ∈ [a, b] : r ≤ |u(x)| ≤ r0},
Ω3 = {x ∈ [a, b] : |u(x)| > r0}, then [a, b] =

⋃3
i=1 Ωi. For the sake of simplicity, let

G(x, u) = F (x, u)− c2|u|γ . Therefore, it follows form (I1) and (F2) that

ϕ(u) ≤ 1
p
‖u‖p +

m∑
j=1

aj |u|γj+1 +
ρ(a)αp−1

2

pαp−1
1

|u(a)|p +
ρ(b)βp−1

2

pβp−1
1

|u(b)|p

−
∫ b

a

c2|u|γdx−
(∫

Ω1

+
∫

Ω2

+
∫

Ω3

)
G(x, u)dx

≤ 1
p
‖u‖p +

m∑
j=1

aj‖u‖γj+1 +
ρ(a)αp−1

2

pαp−1
1

|u(a)|p +
ρ(b)βp−1

2

pβp−1
1

|u(b)|p

−
∫ b

a

c2|u|γdx−
∫

Ω1

G(x, u)dx.

Note that the norms on Yk are equivalent to each other, ‖u‖p is equivalent to ‖u‖
and

∫
Ω1
G(x, u)dx→ 0 as r → 0. Since 0 < γ < max{γj + 1} < p, then Φ(u) ≤ 0,

for all u ∈ Yk with ‖u‖ ≤ ρ.
Step 2. Take u ∈ Zk, Since the embedding E ↪→ Lp([a, b]) is compact. We have
that for given ε > 0, there exists 0 < ρ < 1 small such that

u ∈ Zk, ‖u‖ ≤ ρ⇒ |u| < ε, x ∈ [a, b].

Therefore, it follows from (I1) and (F2) that

ϕ(u) ≥ 1
p
‖u‖p −

∫ b

a

c3|u|pdx ≥
1
p
‖u‖p − 1

p
‖u‖p > 0.

The proof is complete. �

Proof of Theorem 1.2. By Lemma 3.1, ϕ satisfies the (PS)-condition and is bounded
from below. By Lemma 3.2 and Proposition 2.3, the trivial solution u = 0 is ho-
mological nontrivial and is not a minimizer. Then it follows immediately from
Proposition 2.4 that (1.1) has at least two nontrivial solutions. �

Proof of Theorem 1.3. By (I2) and (F3), we can easily check the functional ϕ is
even. Lemma 3.1 shows that ϕ satisfies the (PS)-condition and is bounded from
below. For ρ > 0, let K = Sρ = {u ∈ Yk : ‖u‖ = ρ}. Thus, just as shown in the
proof of Lemma 3.2, if ρ > 0 is small enough, we have that

sup
K
ϕ(u) ≤ 0.
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By the definition of Yk, we have dimYk = k, then by Proposition 2.5, we have that
ϕ has at least k distinct pairs of critical points. Therefore, (1.1) has at least k
distinct pairs of solutions. �

4. An example

In this section, we illustrate our main results with an example. In problem (1.1),
let p = 2, ρ(x) = s(x) = 1,

f(x, u) =
1 + sin2 x

1 + e|x|
· 2n− 2

n
|u|− 2

nu,

ιj(u) =
2n− 1
n
|u|− 1

nu(j = 1, 2, . . . ,m),

then

F (x, u) =
1 + sin2 x

1 + e|x|
|u|

2n−2
n , Ij(u) = |u|

2n−1
n .

When n is an integer (large enough), we know that f satisfies the conditions (F1)
and (F2) and impulses ιj (j = 1, 2, . . . ,m) fulfill (I1). By Theorem 1.2, the problem
has at least two nontrivial solutions. Furthermore, we can show that the nonlin-
earity f and the impulses ιj (j = 1, 2, . . . ,m) are all even. Thus by Theorem 1.3,
the problem has k distinct pairs of solutions.
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