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UNIQUENESS OF SOLUTIONS TO BOUNDARY-VALUE
PROBLEMS FOR THE BIHARMONIC EQUATION IN A BALL

VALERY V. KARACHIK, MAKHMUD A. SADYBEKOV, BERIKBOL T. TOREBEK

Abstract. In this article we study a generalized third boundary-value prob-
lem for homogeneous biharmonic equation in a unit ball with general bound-

ary operators up to third order inclusively, containing normal derivatives and

Laplacian. A uniqueness theorem for the solution is proved, and some exam-
ples are given.

1. Introduction

Mathematical modeling of deformation problems of the plane theory of elasticity
is reduced in many cases to problems for the biharmonic equation under the corre-
sponding boundary conditions. Numerous scientific researches [1, 2, 3, 6, 7, 8, 23]
are devoted to the application of the biharmonic problems in mechanics and physics.
The necessity of modeling of complex processes leads to problems with more gen-
eral, than classical, boundary conditions.

The Dirichlet boundary-value problem is more well-researched problem for the
biharmonic equation. Despite this fact many such problems have not been investi-
gated until the last time. For example, the Green’s function of the Dirichlet problem
for the polyharmonic equation in the unit ball has been constructed rather recently
in [11, 12].

In recent years such boundary-value problems as the problems by Riquier, Neu-
mann, Robin for the biharmonic equation are actively studied. The questions of
spectral geometry are investigated both for classical Dirichlet and Neumann prob-
lems and for the boundary-value problems of Steklov’s type. Due to this fact the
questions of well-posedness of the boundary-value problems with more general than
classical, boundary conditions acquire relevance.

In this article a boundary-value problem with general boundary conditions for
the biharmonic equation in the unit ball is considered. Let S = {x ∈ Rn : |x| < 1}
be n-dimensional unit ball in Rn and ∂S = {x ∈ Rn : |x| = 1} be the unit sphere.
Hereinafter |x| =

√
x2

1 + x2
2 + . . .+ x2

n.
In the unit ball S we consider the following boundary-value problem for the

biharmonic equation

∆2u = f(x), x ∈ S, (1.1)

2010 Mathematics Subject Classification. 35J05, 35J25, 26A33.

Key words and phrases. Biharmonic equation; boundary value problem; Laplace operator.
c©2015 Texas State University - San Marcos.

Submitted August 27, 2015. Published September 22, 2015.

1



2 V. V. KARACHIK, M. A. SADYBEKOV, B. T. TOREBEK EJDE-2015/244

a00u+ a01
∂

∂ν
u+ a02∆u = ϕ1(s), s ∈ ∂S,

a10u+ a11
∂

∂ν
u+ a12∆u+ a13

∂

∂ν
∆u = ϕ2(s), s ∈ ∂S

(1.2)

where ∂
∂ν is the exterior normal derivative. Here the coefficients a0j and a1j at

j = 1, 2, 3 are real constants, and f(x), ϕ1(x), ϕ2(x) are given sufficiently smooth
functions.

As a solution of the problem (1.1)-(1.2) we call a function from the class u ∈
C4 (S) ∩ C3(S) turning equation (1.1) and the boundary conditions (1.2) into the
identity.

Note that this problem generalizes the classical Dirichlet problem [19, 20] (a00 =
1, a11 = 1, and all other coefficients are zero), the Riquier’s problem [14] (a00 = 1,
a12 = 1, and all other coefficients are zero), but does not generalizes the Neumann
problem [16, 17, 18]

∆2u(x) = f(x), x ∈ S,
∂u

∂ν
= ϕ1(s),

∂2u

∂ν2
= ϕ2(s), s ∈ ∂S.

When a00 = 1, a12 > 0, a11 < 0, and all other coefficients are zero, the conditions
(1.2) are called the Steklov’s conditions [9].

Problem (1.1)-(1.2) was considered in [22]. The necessary conditions of the
solution’s uniqueness are found. In particular it was shown that if∣∣∣∣a00 a01 + na02

a10 a11 + na12

∣∣∣∣ 6= 0, (1.3)

then u =Const is not a solution of the homogeneous problem (1.1)-(1.2). In this
article a criterion of the uniqueness of asolution to (1.1)-(1.2) is established.

Note that for various values of the coefficients a0j and a1j problem (1.1)-(1.2)
coincides with the problems considered in [6, 10, 24, 5]. In [28, 4, 25, 29, 21] the
existence of solutions to the Neumann problem and other boundary-value problems
for the biharmonic equation with an operator of the fractional order in boundary
conditions are investigated. Also note that [27, 26, 15, 13] are devoted to the study
of various boundary-value problems for elliptic equations in a ball.

2. Main result

Theorem 2.1. A solution to (1.1)-(1.2) is unique if and only if the polynomial

∆(t) =
∣∣∣∣a00 + ta01 2a01 + (2n+ 4t)a02

a10 + ta11 2a11 + (2n+ 4t)a12 + t(2n+ 4t)a13

∣∣∣∣ (2.1)

has no integer roots in N0 = N ∪ {0}. If ∆(m) = 0 for some integer nonnegative
m ∈ N0, then the homogeneous problem (1.1)-(1.2) has solution

u(x) =
(
C2|x|2 + C1 − C2

)
Hm(x),

where Hm(x) are homogeneous harmonic polynomials of degree m, and the constants
C1, C2 are found from the system of algebraic equations(

a00 +ma01 2a01 + (2n+ 4m)a02

a10 +ma11 2a11 + (2n+ 4m)a12 +m(2n+ 4m)a13

)(
C1

C2

)
= 0. (2.2)
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Proof. Suppose that there exist two functions u1(x) and u2(x) which are solutions
to (1.1)-(1.2). We show that the function u(x) = u1(x) − u2(x) should equal to
zero.

It is obvious that the function u(x) is biharmonic and satisfies the homogeneous
conditions (1.2):

∆2u = 0, x ∈ S, (2.3)

a00u+ a01
∂

∂ν
u+ a02∆u = 0, s ∈ ∂S,

a10u+ a11
∂

∂ν
u+ a12∆u+ a13

∂

∂ν
∆u = 0, s ∈ ∂S.

(2.4)

Any biharmonic in S function from the class u(x) ∈ C3(S) can be represented by
the Almansi formula in the form (see [15]):

u(x) = u0(x) + |x|2v0(x) =
∞∑
m=0

hn∑
i=1

(
u(i)
m + |x|2v(i)

m

)
H(i)
m (x), x ∈ S, (2.5)

where hm = 2m+n−2
n−2

(
m+n−3
n−3

)
, and {H(i)

m (x),m ∈ N0, i = 1, hk} is a complete
orthogonal on ∂S system of homogeneous harmonic polynomials [15]. Herewith a
series in (2.5) is uniformly converges for |x| ≤ ε < 1, this series allows termwise
differentiation of any order and the obtained series also converge uniformly.

Consider the two operators

L1 = a00 + a01Λ + a02∆,
L2 = a10 + a11Λ + a12∆ + a13Λ∆,

where

Λ =
n∑
i=1

xi
∂

∂xi
.

Since u ∈ C3(S), then from the properties of the operator Λ (see. [15]) it follows
that

L1u(x) ⇒
s∈∂S

a00u+ a01
∂

∂ν
u+ a02∆u = 0,

L2u(x) ⇒
s∈∂S

a10u+ a11
∂

∂ν
u+ a12∆u+ a13

∂

∂ν
∆u = 0,

x→ s ∈ ∂S. (2.6)

It is easy to notice that for every fixed j = 1, 2 the polynomials

Lj

(
u(i)
m + |x|2v(i)

m

)
H(i)
m (x)

∣∣∣
x=s

are orthogonal on ∂S for all m ∈ N0 and i = 1, hm.
We fix arbitrary m ∈ N0 and i = 1, hm. By virtue of the uniform convergence of

the series (2.5) at |x| ≤ ε < 1, we have∫
|x|=ε

H(i)
m (x)Lju(x)dsx

=
∫
|x|=ε

H(i)
m (x)Lj

∞∑
p=0

hp∑
k=1

(
u(k)
p + |x|2v(k)

p

)
H(k)
p (x)dsx
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=
∫
|x|=ε

H(i)
m (x)Lj

(
u(i)
m + |x|2v(i)

m

)
H(i)
m (x)dsx.

Taking the limit ε→ 1 in this equality and using (2.6), we obtain∫
|x|=1

H(i)
m (x)Lj

(
u(i)
m + |x|2v(i)

m

)
H(i)
m (x)dsx = 0, j = 1, 2. (2.7)

We separately calculate the integrand. For this we note that

Λ(uw) = wΛu+ uΛw,

∆(|x|2Hm(x)) = 2nHm(x) + 4mHm(x) = (2n+ 4m)Hm(x).

Then on ∂S we have

L1

(
u(i)
m + |x|2v(i)

m

)
H(i)
m (x)

= (a00 + a01Λ + a02∆)
(
u(i)
m + |x|2v(i)

m

)
H(i)
m (x)

= (a00

(
u(i)
m + |x|2v(i)

m

)
H(i)
m (x) + a01

(
2|x|2v(i)

m +mu(i)
m +m|x|2v(i)

m

)
+ a02v

(i)
m (2n+ 4m))H(i)

m (x)

=
(
u(i)
m (a00 +ma01) + v(i)

m (a00 + (m+ 2)a01 + (2n+ 4m)a02)
)
H(i)
m (x)

and

L2

(
u(i)
m + |x|2v(i)

m

)
H(i)
m (x)

= (a10 + a11Λ + a12∆ + a13Λ∆)
(
u(i)
m + |x|2v(i)

m

)
H(i)
m (x)

=
(
a10

(
u(i)
m + |x|2v(i)

m

)
+ a11

(
mu(i)

m + (m+ 2)|x|2v(i)
m

))
H(i)
m (x)

+
(
a12v

(i)
m (2n+ 4m) + a13v

(i)
m m(2n+ 4m)

)
H(i)
m (x)

=
(
u(i)
m (a10 +ma11) + v(i)

m

(
a10 + (m+ 2)a11

+ (2n+ 4m)a12 +m(2n+ 4m)a13

))
H(i)
m (x).

Therefore equation (2.7) can be rewritten in the form(
u(i)
m (a00 +ma01) + v(i)

m (a00 + (m+ 2)a01 + (2n+ 4m)a02)
)
‖H(i)

m (x)‖2L2(∂S) = 0,(
u(i)
m (a10 +ma11) + v(i)

m

(
a10 + (m+ 2)a11 + (2n+ 4m)a12

+m(2n+ 4m)a13

))
‖H(i)

m (x)‖2L2(∂S) = 0.

Since ‖H(i)
m (x)‖2L2(∂S) 6= 0, then we obtain

u(i)
m (a00 +ma01) + v(i)

m (a00 + (m+ 2)a01 + (2n+ 4m)a02) = 0,

u(i)
m (a10 +ma11) + v(i)

m (a10 + (m+ 2)a11 + (2n+ 4m)a12 +m(2n+ 4m)a13) = 0,

or in the matrix form(
a00 +ma01 a00 + (m+ 2)a01 + (2n+ 4m)a02

a10 +ma11 a10 + (m+ 2)a11 + (2n+ 4m)(a12 +ma13)

)(
u

(i)
m

v
(i)
m

)
= 0. (2.8)
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It is easy to see that the determinant of this system is equal to ∆(m). Therefore

because ∆(m) 6= 0 the system (2.8) has the only trivial solution

(
u

(i)
m

v
(i)
m

)
= 0. By

virtue of arbitrary choice of indexes m ∈ N0 and i = 1, hm, we obtain that the
problem (2.3)-(2.4) has the only trivial solution.

If ∆(m) = 0 for some m ∈ N0, then the algebraic system (2.2) has a nontrivial

solution
(
C1

C2

)
6= 0 and hence(

a00 +ma01 a00 + (m+ 2)a01 + (2n+ 4m)a02

a10 +ma11 a10 + (m+ 2)a11 + (2n+ 4m)(a12 +ma13)

)(
C1 − C2

C2

)
= 0.

Consequently, on ∂S the equalities

L1

(
C1 − C2 + |x|2C2

)
Hm(x) = 0,

L2

(
C1 − C2 + |x|2C2

)
Hm(x) = 0

are true and therefore u(x) = C1Hm(x)+C2(|x|2−1)Hm(x) is a nontrivial solution
of the homogeneous problem (2.3)-(2.4). �

Corollary 2.2. If a00 = a10 = 0, then solution of the problem (1.1)-(1.2) is not
unique for all values of all other coefficients in the boundary conditions.

Proof. As it easily follows from the representation (2.1), in this case ∆(0) = 0

and therefore the system (2.2) has nontrivial solutions of the form
(
C1

0

)
6= 0.

Consequently, the homogeneous problem (1.1)-(1.2) has a nontrivial solution of the
form u =Const. �

Remark 2.3. If t = 0 from (2.1) we have

∆(0) = 2
∣∣∣∣a00 a01 + na02

a10 a11 + na12

∣∣∣∣ .
Therefore the necessary condition (1.3) from [22] of uniqueness of the solution of
the problem (1.1)-(1.2) in our terms can be written in the form

∆(0) 6= 0

and this condition is a particular case of our Theorem 2.1.

3. Particular cases of the problem

1. The Dirichlet problem: let a00 = 1, a11 = 1, and all other coefficients are
equal to zero, then we have

∆(t) =
∣∣∣∣1 0
t 2

∣∣∣∣ = 2 6= 0.

The uniqueness conditions of the solution of the Dirichlet problem (well-known
result) follows from the proved Theorem 2.1.

2. The Riquier’s problem [14]: let a00 = 1, a12 = 1, and all other coefficients are
equal to zero, then the determinant ∆(t) has the form

∆(m) =
∣∣∣∣1 0
0 (2n+ 4m)

∣∣∣∣ = (2n+ 4m) 6= 0.
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From Theorem 2.1 proved by us follows the well-known result on the uniqueness of
the solution of the Riquier’s problem.

3. The Riquier-Neumann problem: let a01 = 1, a13 = 1, and all other coefficients
are equal to zero

∆2u = 0, x ∈ S;
∂

∂ν
u = ϕ1(x),

∂

∂ν
∆u = ϕ2(x), x ∈ ∂S.

(3.1)

The corresponding determinant of this problem has the form

∆(t) =
∣∣∣∣t 2
0 t(2n+ 4t)

∣∣∣∣ = t2(2n+ 4t).

It is easy to see that ∆(0) = 0. The corresponding system (2.2) has the form(
0 2
0 0

)(
C1

C2

)
= 0,

and its solution can be written in the form C2 = 0, C1 – is an arbitrary constant.
By the proved Theorem 2.1 a solution of the problem (3.1) is not unique up to a
constant u(x) = C1H0(x) ≡ C1.

4. Consider the problem (1.1)-(1.2) in a particular case when a02 = 0, a10 =
a11 = 0:

∆2u = 0, x ∈ S;

a00u+ a01
∂

∂ν
u = ϕ1(s), a12∆u+ a13

∂

∂ν
∆u = ϕ2(s), s ∈ ∂S.

(3.2)

The determinant ∆(t) has the form

∆(t) =
∣∣∣∣a00 + ta01 2a01

0 (2n+ 4t)a12 + t(2n+ 4t)a13

∣∣∣∣
= (2n+ 4t)(a00 + ta01)(a12 + ta13).

Consequently, the solution of the problem (3.2) is unique if and only if the equation
(a00 + ta01)(a12 + ta13) = 0 has no integer non-negative solutions.

Let a00 = −2, a01 = 1, a12 = −3, a13 = 1 in (3.2), i.e. consider the homogeneous
problem

∆2u = 0, x ∈ S;

−2u+
∂u

∂ν
= 0, −3∆u+

∂∆u
∂ν

= 0, x ∈ ∂S.
(3.3)

For this problem ∆(t) = (2n+ 4t)(t− 2)(t− 3) and hence ∆(2) = 0 and ∆(3) = 0.
If m = 2 the system (2.2) has the form(

0 1
0 n+ 4)

)(
C1

C2

)
= 0.

Solutions of this system have the form C2 = 0, C1 – is an arbitrary constant. Thus
the polynomial u2(x) = C1H2(x) is a solution of problem (3.3).

If m = 3, then the system of (2.2) takes the form(
1 2
0 0

)(
C3

C4

)
= 0.
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Solutions of this system have the form C3 = −2C4, C4 – is an arbitrary constant.
Hence the functions u3(x) = C4(|x|2 − 3)H3(x) are solutions of the homogeneous
problem (3.3) according to the proved Theorem 2.1.

Indeed, it is evident that u2(x) and u3(x) are biharmonic polynomials. Further,
it is easy to calculate that

L1u2 = −2u2 + Λu2 = C1(−2H2 + ΛH2) = 0,
L2u2 = −3∆u2 + Λ∆u2 = 0,

L1u3 = −2u3 + Λu3 = C4

(
−2(|x|2 − 3) + (5|x|2 − 9)

)
H3(x)

= C4

(
3|x|2 − 3

)
H3(x)|∂S = 0,

L2u3 = −3∆u2 + Λ∆u2 = C4 (−3(2n+ 12) + 3(2n+ 12))H3(x) = 0,

i.e., the boundary conditions of the problem (3.3) hold.
So, if solution of the problem (3.3) exists, then it is unique up to polynomials of

the form
u(x) = C1H2(x) + C4(|x|2 − 3)H3(x)

with arbitrary constants C1 and C4.
5. The Robin problem [10]: let a02 = a10 = a11 = 0, and all other coefficients

are positive:

∆2u = 0, x ∈ S;

a00u+ a01
∂

∂ν
u = ϕ1(s), s ∈ ∂S,

a12∆u+ a13
∂

∂ν
∆u = ϕ2(s), s ∈ ∂S.

In this case we have

∆(t) =
∣∣∣∣a00 + ta01 2a01

0 (2n+ 4t) a12 + t (2n+ 4t) a13

∣∣∣∣
= (2n+ 4t) (a00 + ta01) (a12 + ta13) 6= 0.

Hence the Robin problem is unconditionally solvable.
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article.
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