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UNIFICATION OF INTEGRABLE q-DIFFERENCE EQUATIONS

BURCU SİLİNDİR, DUYGU SOYOĞLU

Abstract. This article presents a unifying framework for q-discrete equa-

tions. We introduce a generalized q-difference equation in Hirota bilinear form

and develop the associated three-q-soliton solutions which are described in
polynomials of power functions by utilizing Hirota direct method. Further-

more, we present that the generalized q-difference soliton equation reduces

to q-analogues of Toda, KdV and sine-Gordon equations equipped with their
three-q-soliton solutions by appropriate transformations.

1. Introduction

The concept of integrability possesses a key position in the field of theoretical and
mathematical physics. In the landmark article [12], Hirota introduced a very essen-
tial method, the so-called Hirota direct method which allows not only to construct
multi-soliton solutions or some special type of solutions, but also to investigate the
integrability criteria of a given nonlinear evolution equation [6, 8, 9, 10, 11]. An-
other important hallmark of Hirota’s method over other methods; such as inverse
scattering transform [5], or Bäcklund transformation [27], is the fact that it is al-
gebraic rather than analytic. The intrinsic feature of the method is to convert a
nonlinear partial differential or difference equation to Hirota bilinear form which
is expressed by means of a polynomial in Hirota-D derivative operator. In the lit-
erature, it is conjectured that all integrable nonlinear evolution equations can be
revealed in Hirota bilinear forms while the converse is not true. As an aside, notice
that the equations in Hirota bilinear form equipped with three soliton solutions
are defined to be Hirota integrable and they are widely considered to be integrable.
[21, 22]. In the present paper, we stick to Hirota integrability definition.

B laszak et al. [2] accomplished that all discrete systems that are generated
by distinct vector fields are not globally equivalent. Besides, it is concluded that
q-difference systems on R−, are not isomorphic to lattice systems on R. This in-
equivalence beget a deeper analysis on the q-discretization of Toda lattice system
of equations. In the literature, Hirota direct method was applied to a vast va-
riety of differential or difference type of equations. In [26], the method was also
shown to be applicable to q-difference equations such as q-difference-q-difference
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and differential-q-difference Toda equations to obtain multi-soliton solutions. We
observed that the constructed solutions obey classical soliton attitudes as well as
they have power counterparts for q-discrete variables. We defined such solutions as
q-soliton solutions.

In this same vein, one can present q-analogues of several soliton equations. In-
stead, it is of great interest to intensify on a single soliton equation that gathers
various q-discrete type of equations under one roof. The aim of this paper is to
create a unifying framework for q-discrete equations and analyze the applicability
of Hirota direct method to develop their multi-soliton solutions. This formalism is
based on the q-discretization of equations determined by q-forward jump operator.
The fundamental feature of the framework is to introduce appropriate q-deformed
Hirota bilinear forms in a way that they recover continuous Hirota bilinear forms.
Significantly, q-deformed Hirota bilinear forms enjoy a key position as they pro-
vide not only q-analogues of corresponding equations but also their multi-soliton
solutions. For this purpose, we present a generalized q-difference soliton equation
which comprises q-analogues of various soliton equations such as Toda, KdV and
sine-Gordon equations. We develop its three soliton solutions by the use of Hirota
direct method and we stress that the constructed solutions appear to be q-solitons.
Unlike the discrete generalized Toda equation [15] whose solutions are of exponen-
tial type, this generalized q-difference equation admits soliton solutions that are
expressed in terms of a polynomial in power functions. This is a consequence of
non-commutativity between q-forward shift and exponential transformation.

It is possible to present q-discretization of a continuous equation in several ap-
proaches. They can be derived by the frame of q-derivative operator, or analogously
as in the present article, they can be constructed by the use of q-forward jump op-
erator. In [26], a counter-example to Hirota’s theorem [14] is revealed by examining
q-differential-q-difference version of Toda equation which is expressed in terms of
q-derivative operator. Although it can be presented in Hirota bilinear form and
satisfies the sufficient conditions to admit at least two-soliton solutions, it pos-
sesses only solitary wave like a solution determined by q-exponential function. The
nonexistence of further q-exponential type of soliton solutions is a consequence of
the lack of additive property of q-exponentials [25] and lack of time-independency on
interaction terms. Even though Hirota direct method is applicable to q-difference
equations, it fails to produce q-exponential type of multi-soliton solutions for q-
differential equations governed by q-derivative operator. Accordingly, in Section 4,
we introduce ∆-Hirota D-operator to analyze ∆-differential equations on arbitrary
time scales. In this more general case, classical Hirota perturbation does not pro-
vide multi-soliton solutions for any difference equation studied on discrete intervals
with non-constant graininess (e.g. q-differential equations) or on such time scales.
To be more precise, here we conjecture that other than the unifying framework
proposed in the present article, it is not possible to acquire another unifying ap-
proach via classical Hirota perturbation for integrable ∆-differential equations on
time scales with non-constant graininess.

The current article is organized as follows: In Section 2, we present the pre-
liminary notions regarding Hirota D-operator, q-forward jump operator and q-
exponential identity which allows to convert q-discrete equations into Hirota bilinear
forms. Section 3 is devoted to derive three-q-soliton solutions of the generalized q-
difference soliton equation as existence of three-soliton solutions is a benchmark
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for integrability. In Section 4, we introduce the proper reductions on this general-
ized equation yielding to the q-difference-q-difference Toda, q-difference-q-difference
KdV and q-difference sine-Gordon equations. We intimately demonstrate the no-
tion of continuous limit arising in association between q-deformed and classical
Hirota bilinear forms. Furthermore, we present q-soliton solutions of the consid-
ered equations explicitly, resulting from the reductions on the findings of Section
3.

2. Preliminaries

In this section, to declare the source of Hirota bilinear forms of q-discrete equa-
tions, we intend to review q-exponential identity, stated in [26]. For this purpose,
we first present Hirota D-derivative (operator)D : S × S → S

[Dm1
x Dm2

t . . . ]{f · g}
= [(∂x − ∂x′)m1(∂t − ∂t′)m2 . . . ]f(x, t, . . . ) · g(x′, t′, . . . )|x′=x,t′=t,...,

(2.1)

where S is a space of differentiable functions f : Cn → C, x, t, . . . are independent
variables and mi ∈ Z+, for i ≥ 1. Indeed, such differential operator (2.1) represents
a novel calculus obeying the following properties:

Proposition 2.1 ([17]). Let f(x, t, . . . ) and g(x, t, . . . ) be differentiable functions
and P (D) be any polynomial in D, then

(i) P (D){f · 1} = P (∂)f , P (D){1 · f} = P (−∂)f ;
(ii) P (D){f · g} = P (−D){g · f},

hold, where ∂ denotes the ordinary differential operator.

Notice that, Hirota D-derivative (2.1) can also be introduced by the frame of
the exponential identity

exp(hDx)f(x)g(x) = f(x+ h)g(x− h), (2.2)

which is very beneficial in deriving Hirota bilinear forms of differential-difference
type of equations and Bäcklund transformations [17]. Here f, g are smooth functions
of x and h is a parameter.

Suppose that we have continuous one-parameter group of diffeomorphisms R 3
h 7→ σh, acting as forward jump operators. There is one-to-one correspondence be-
tween one-parameter group of transformations and their infinitesimal generators.
Moreover, such diffeomorphisms are determined by exponentiation of the infini-
tesimal generator as they appear to be the solutions of the ordinary differential
equations [23]. Accordingly, for such σh we have [2]

σh(x) = ehχ(x)∂xx (2.3)

if and only if
ehχ(x)∂xf(x) = f(ehχ(x)∂x .x) = f(σh(x)). (2.4)

Here h is a positive deformation parameter, f(x) is a smooth function and the
vector field χ(x)∂x is infinitesimal generator.

It is possible to suggest the infinitesimal generators of the form χ(x)∂x = x1−n∂x
on R. The choice n = 1 yields the forward jump operator of lattice type

σh(x) = eh∂xx = x+ h ⇔ eh∂xf(x) = f(x+ h). (2.5)
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In addition, the choice n = 0 gives rise to the q-forward jump operator

σh(x) = ehx∂xx = ehx = qx (q ≡ eh) ⇔ ehx∂xf(x) = f(qx). (2.6)

Definition 2.2. We define the q-forward jump operator Eq acting on any smooth
function f(x) as

Eq(f(x)) := ehx∂xf(x) = f(qx), (2.7)

where x ∈ R and h is a deformation parameter. Similarly, q-backward jump oper-
ator is introduced to act as

E−1
q f(x) := e−hx∂xf(x) = f(

x

q
). (2.8)

Proposition 2.3. The continuous limit of q-forward jump operator Eq is

lim
q→1

Eq(x) = lim
h→0

σh(x) = x. (2.9)

Proof. The limit process can be presented by the expansion into Taylor series with
respect to h near zero. That is

lim
q→1

Eq(x) = lim
h→0

[x+ hx∂x(x) +
h2

2
(x∂x)2(x) +O(h3)] = x.

As well as

lim
q→1

Eq(x) = lim
q→1

qx = x.

�

We emphasize that all discrete systems generated by infinitesimal generators
χ(x)∂x are not equivalent. To be more precise, if we consider χ(x) = x1−n(discrete
case) where n 6= 0 is odd, and χ′(x′) = 1, it is possible to find a local transformation
x′ = 1

nx
n which is a bijection on R − {0}. Thus, the discrete systems given by

χ(x) = x1−n with odd n, turns out to be Toda lattice type of equations. On the
other hand, if we consider χ(x) = x (q-difference case) and χ′(x′) = 1, we have the
transformation x = ex

′
and it is not a bijection if x ∈ R−.

Therefore, there does not exist an isomorphism between lattice systems on R
and q-difference systems on R− obtained by q-forward jump operators Eq given by
(2.7).

Inspired by this in-equivalence, throughout this work we present q-difference
equations that are determined by q-forward jump operators Eq. In order to con-
struct Hirota bilinear forms of q-difference type of equations, it is worthwhile to
state the q-analogue of exponential identity which is given in terms of q-forward
and q-backward jump operators.

Theorem 2.4 ([26]). Let f(x), g(x) be continuously differentiable functions, then
the q-exponential identity

ehxDxf(x)g(x) = f(qx)g(
x

q
) = Eqf(x)E−1

q g(x), x ∈ R, (2.10)

holds where h and q are quantum parameters related as q = eh.

For the proof of the above theorem we refer [26].



EJDE-2015/255 UNIFICATION OF q-DIFFERENCE EQUATIONS 5

3. q-soliton solutions

In this section, we propose a generalized q-difference soliton equation, namely a
q-discrete analogue of Hirota-Miwa equation

P (D1, D2, D3){f · f} =
3∑
i=1

λi cosh (Di){f · f} = 0, (3.1)

where λi’ s are arbitrary parameters, Di’ s are linear combinations of the operators
xDx, yDy, tDt, i.e.,

Di = aitDt + bixDx + ciyDy, ai, bi, ci ∈ R, i = 1, 2, 3. (3.2)

Note that (3.1) reproduces various q-discretized soliton equations, by utilizing
proper identifications and reductions of parameters. The associated transforma-
tions from (3.1) into several q-difference equations are intimately demonstrated in
Section 4.

Corollary 3.1. The q-exponential identity in three variables t, x, y ∈ R

exp(aitDt + bixDx + ciyDy)f(t, x, y)g(t, x, y) = f(qit, pix, riy)g(
t

qi
,
x

pi
,
y

ri
) (3.3)

holds, for any continuously differentiable functions f and g, equipped with the rela-
tions between quantum parameters eai = qi, ebi = pi and eci = ri, for all i = 1, 2, 3,
respectively.

To acquire multi-q-soliton solutions of the equation (3.1), we utilize the so-called
Hirota perturbation. Upon substituting the finite perturbation expansions of the
dependent variable f(t, x, y) around a formal perturbation parameter ε

f(t, x, y) = 1 + εf (1)(t, x, y) + ε2f (2)(t, x, y) + . . . . (3.4)

into the Hirota bilinear form (3.1), we derive

P (D1, D2, D3){f(t, x, y) · f(t, x, y)}

= P (D1, D2, D3)[{1.1}+ ε{1 · f (1) + f (1).1}+ ε2{1 · f (2) + f (2).1 + f (1) · f (1)}

+ ε3{1 · f (3) + f (3) · 1 + f (1) · f (2) + f (2) · f (1)}

+ ε4{1 · f (4) + f (4) · 1 + f (1) · f (3) + f (3) · f (1) + f (2) · f (2)}+ . . . ].
(3.5)

The last step towards the method is to analyze the conditions on the coefficients of
εi, for all i ≥ 0 for multi-q-soliton solutions. From the coefficient of the first term
ε0, we have

P (D1, D2, D3){1 · 1} = λ1 + λ2 + λ3.

Theorem 3.2 ([14]). Any equation in Hirota bilinear form P (Dt, Dx, Dy)f ·f = 0,
satisfying the sufficient conditions

P (0, 0, 0) = 0, (3.6)

P (Dt, Dx, Dy) = P (−Dt,−Dx,−Dy), (3.7)

admits at least two-soliton solutions.

To satisfy the conditions of Theorem (3.2), hereafter we need to have the con-
straint

P (0, 0, 0) = λ1 + λ2 + λ3 = 0. (3.8)
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The coefficient of ε1 implies

P (D1, D2, D3){1 · f (1) + f (1).1}

= 2P (∂1, ∂2, ∂3)f (1)

= 2[
3∑
i=1

λi
2

(exp (ait∂t + bix∂x + ciy∂y) exp (−ait∂t − bix∂x − ciy∂y))]f (1)

= 0.

(3.9)

In the literature, soliton solutions of both differential [12] or difference [15] type of
equations tend to be of the exponential form. However, q-difference equations have
an exclusive nature. We remark that the q-difference equation (3.9) does not admit
exponential type of solutions and its solution needs to include power counterparts
for the q-discrete variables, which is indeed a consequence of change of variables.
Therefore, as all variables are q-discrete, the q-difference equation (3.9) admits a
starting solution of the power form

f (1)(t, x, y) = ηtαxβyγ , (3.10)

where α, η, β are arbitrary constants. The solutions of the form (3.10) provide
q-soliton solutions. The notion of q-solitons are introduced in [26] as follows.

Definition 3.3. A solution possessing usual soliton behaviors and having power
counterparts for q-discrete variables are called as q-soliton solution.

Substituting such solution (3.10) in (3.9), we obtain the so-called dispersion
relation which determines the relation among the parameters as

P (v) =
3∑
i=1

λi
2

(qαi p
β
i r
γ
i + q−αi p−βi r−γi ) = 0, (3.11)

where we denote the vector v = (α, β, γ). The coefficient of ε2 resulted from (3.5)
can be written as

P (D1, D2, D3){f (1) · f (1)} = −2P (∂1, ∂2, ∂3)f (2). (3.12)

Substituting f (1) given in (3.10) on the left hand side of (3.12), yields as

P (D1, D2, D3){f (1) · f (1)} = (λ1 + λ2 + λ3)η2t2αx2βy2γ ,

which vanishes by the ansatz (3.8). Therefore, for all j ≥ 2, we assume that
f (j) = 0. As a generalization, for i-q-soliton solution, we assume f (j) = 0 for all
j ≥ i+ 1. Setting ε = 1, we express the solution describing one-q-soliton as

f(t, x, y) = 1 + ηtαxβyγ . (3.13)

To obtain two-q-soliton solutions, we start with the following solution of (3.9)

f (1) =
2∑
i=1

ηit
αixβiyγi ,

where ηi, αi, βi’ s are constants for all i = 1, 2. By the constraint (3.8), the coeffi-
cient of ε0 vanishes and the coefficient of ε1 implies the dispersion relation

P (vj) = P (αj , βj , γj) =
3∑
i=1

λi
2

(qαji p
βj
i r

γj
i +q−αji p

−βj
i r

−γj
i ) = 0, ∀j = 1, 2. (3.14)
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Subsequently, from the coefficient of ε2 we derive

−P (∂)f (2) = η1η2t
α1+α2xβ1+β2yγ1+γ2

3∑
i=1

λi
2

[qα1−α2
i pβ1−β2

i rγ1−γ2i

+ qα2−α1
i pβ2−β1

i rγ2−γ1i ],

(3.15)

which implies that f (2) is of the form

f (2) = A(1, 2)η1η2t
α1+α2xβ1+β2yγ1+γ2 . (3.16)

Substituting such f (2), given in (3.16) into (3.15), we find the phase shift among
two-q-solitons as

A(1, 2) = −P (v1 − v2)
P (v1 + v2)

,

where the vector notation stands for

P (v1 ± v2) =
3∑
i=1

λi
2

[qα1±α2
i pβ1±β2

i rγ1±γ2i + q
−(α1±α2)
i p

−(β1±β2)
i r

−(γ1±γ2)
i ].

Because of the fact that all higher order terms of f (i), i ≥ 3 vanishes and the
dispersion relation (3.14) holds, the coefficient of εj = 0 for all j ≥ 3. Therefore,
two-q-solitons are given by

f(t, x, y) = 1+η1t
α1xβ1yγ1 +η2t

α2xβ2yγ2 +A(1, 2)η1η2t
α1+α2xβ1+β2yγ1+γ2 . (3.17)

For three-q-soliton solutions, we begin with

f (1) =
3∑
i=1

ηit
αixβiyγi ,

where αi, ηi, βi are constants for i = 1, 2, 3. The coefficient of ε1 enables to have a
similar dispersion relation

P (vj) =
3∑
i=1

λi
2

(qαji p
βj
i r

γj
i + q

−αj
i p

−βj
i r

−γj
i ) = 0, ∀j = 1, 2, 3. (3.18)

Further, f (2) follows

f (2) =
(3)∑
i<j

A(i, j)ηiηjtαi+αjxβi+βjyηi+ηj ,

from the coefficient of ε2

−P (∂)f (2) =
(3)∑
i<j

ηiηjt
αi+αjxβi+βjyγi+γj

[ 3∑
k=1

λk
2

(qαi−αjk p
βi−βj
k r

γi−γj
k

+ q
αj−αi
k p

βj−βi
k r

γj−γi
k )

]
,

where
∑(3)
i<j denotes the summation over all elements such that i < j and i, j =

1, 2, 3. Here one can derive the associated interaction terms

A(j, k) = −P (vj − vk)
P (vj + vk)

, j < k, j, k = 1, 2, 3, (3.19)



8 B. SİLİNDİR, D. SOYOĞLU EJDE-2015/255

among three-q-soliton solutions. The coefficient of ε3 yields f (3) as

f (3) = A(1, 2, 3)η1η2η3t
α1+α2+α3xβ1+β2+β3yγ1+γ2+γ3 ,

where

A(1, 2, 3) = −
(
A(1, 2)P (v3 − v1 − v2) +A(1, 3)P (v2 − v1 − v3)

+A(2, 3)P (v1 − v2 − v3)
)/
P (v1 + v2 + v3).

(3.20)

If the coefficient of ε4 is under consideration, having f (4) = 0, we encounter another
expression for A(1, 2, 3)

A(1, 2, 3) = A(1, 2)A(1, 3)A(2, 3). (3.21)

Both expressions (3.20) and (3.21) for A(1, 2, 3) are equivalent provided that the
three-soliton solution condition∑

σi=±1

P (
3∑
i=1

σivi)
(3)∏
i<j

P (σivi − σjvj) = 0, i, j = 1, 2, 3, (3.22)

is satisfied (see [17]). To sum up, to guarantee the existence of three-soliton solu-
tions, we end up with the condition (3.22) arising as a constraint on P . Thus, we
present the three-q-soliton solutions

f(x, t) = 1 +
3∑
i=1

ηit
αixβiyγi +

(3)∑
i<j

A(i, j)ηiηjtαi+αjxβi+βjyγi+γj

+A(1, 2)A(1, 3)A(2, 3)η1η2η3t
α1+α2+α3xβ1+β2+β3yγ1+γ2+γ3 ,

(3.23)

which are expressed in terms of a polynomial in power functions.

4. Special cases

In the literature, the concept of a dependent variable transformation that con-
verts a given nonlinear partial differential or difference equation into the bilinear
form is one of the significant tools. The transformed new variables, that are ex-
pressed as Wronski or Casorati type of determinants, are said to be τ -functions and
they solve equations in bilinear forms [24, 16]. In [19], two-dimensional q-discrete
Toda lattice equation is presented and the τ functions are determined by means
of Wronski determinant. Two different q-deformations of KdV hierarchies are in-
troduced in [4] and in [20] on which the notion of integrability is discussed via
bi-Hamiltonian structures. In [1], it is stated that any KdV τ -function provides
a q-KdV τ -function. However, to our knowledge no research has been addressed
to q-discretization of sine-Gordon equation. In this section, we intend to present
other q-discretized versions of Toda, KdV equations and introduce q-difference sine-
Gordon equation resulted by proper reductions of parameters on the generalized
q-difference soliton equation (3.1). Such reductions on the three q-soliton solutions,
presented in Section 3, provide three q-soliton solutions of the considered equations
in one move.

Before embarking to the details we explain the source of q-discretization as fol-
lows.
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There are several approaches to q-discretize continuous equations. The q-deformed
equations can be constructed by the frame of q-forward jump operator Eq given by
(2.7) or they can be obtained by means of q-derivative operator ∂q [18],

∂q,xf(x) =
f(qx)− f(x)

qx− x
. (4.1)

Here f is a q-differentiable function. However, classical Hirota method fails to pro-
duce q-exponential type of multi-soliton solutions for q-differential equations with
respect to ∂q. In [26], q-analogue of Hirota D-operator acting on q-differentiable
functions f, g

Dm
q,x{f.g} := (∂q,x − ∂q,x′ )

mf(x)g(x
′
)|x′=x, m ∈ Z+, (4.2)

was introduced and developed where q-deformed Hirota bilinear forms were ex-
pressed in terms of such q-Hirota D-operator. q-differential-q-difference version of
Toda equation was analyzed. We note that even though it is in q-deformed Hirota
bilinear form

P (Dq,t, Dx){f(x, t) · f(x, t)}
= [D2

q,t − (exp(hxDx) + exp(−hxDx)− 2)]{f(x, t) · f(x, t)} = 0,

and satisfies the sufficient conditions

P (Dq,t, Dx) = P (−Dq,t,−Dx), P (0, 0) = 0,

it admits only solitary wave like a solution determined by q-exponential function
as f (1)(x, t) = ηxαeβtq . Indeed, classical Hirota perturbation (3.4) does not provide
further q-exponential type of solutions. The restrictive condition

wz = qzw, z, w ∈ qZ,

to satisfy additive property of q-exponentials

ezqe
w
q = ez+wq , z, w ∈ qZ,

causes to detract one of the summands in two-q-soliton solutions and the solution re-
duces to one-q-soliton solution. Rather than the choice f (2) = A(1, 2)xα1+α2eβ1t+β2t

q ,
one can analyze the function f (2) = A(1, 2)xα1+α2eβ1t

q eβ2t
q . But in this case such

a choice yields to have time dependency on the interaction constant A(1, 2). Note
that, all other admissible choices for the function f (2) lead similar dead-ends.

To be more general, we can analyze Hirota approach on an arbitrary time scale.
For this purpose, we introduce the notion of ∆-Hirota D-operator.

Definition 4.1. Let T be an arbitrary time scale. Let Tκ denote Hilger’s above
truncated set consisting of T except for a possible left scattered maximal point.
Let f(x), g(x) : T 7→ R be arbitrary functions and x ∈ Tκ. We introduce ∆-Hirota
D-operator as

Dmx {f.g} := (∆x −∆x′ )
mf(x).g(x

′
)|x′=x, m ∈ Z+. (4.3)

Here delta derivative of f is defined in [3], to act as

∆xf(x) = lim
s→x

f(σ(x))− f(s)
σ(x)− s

, x ∈ Tκ, s ∈ T, (4.4)

where σ : T 7→ T is forward jump operator given by

σ(x) = inf{y ∈ T : y > x}, x ∈ T. (4.5)
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We note that when T = R, then σ(x) = x, ∆x = d
dx and ∆-Hirota D-operator

(4.3) turns out to be usual Hirota D-operator (2.1). If T = Kq := qZ⋃{0}, q 6= 1
then σ(x) = qx, ∆x = ∂q,x and ∆-Hirota D-operator (4.3) reduces to q-analogue of
Hirota D-operator (4.2).

One can make use of the ∆-Hirota D-operator (4.3) to write ∆-differential equa-
tions [7] on arbitrary time scales in Hirota bilinear form. By utilizing classical
Hirota pertubation (3.4) developed on such ∆-Hirota D-operator, one can produce
multi soliton solutions only when the graininess function µ : T→ [0,∞)

µ(x) := σ(x)− x, x ∈ T, (4.6)

is constant (e.g. difference equations on hZ or q-difference equations). To be more
precise, in order to derive multi soliton solutions on arbitrary time scales with
arbitrary non-constant graininess µ, one should construct a deformed perturbation
different than the classical Hirota perturbation (3.4). However, such an approach
will be no more classical Hirota direct method.

To sum up, we conjecture that other than the unifying framework proposed in the
present article, it is not possible to create another unifying approach via classical
Hirota perturbation (3.4) for integrable equations on discrete intervals with non-
constant graininess µ, or on arbitrary such time scales.

In this work, we present q-discretization of equations that are expressed by q-
forward jump operator Eq as it recovers the continuous case. Our framework is
based on the inverse procedure. The core of the procedure is to introduce appro-
priate q-deformed Hirota bilinear forms (resulted from proper reductions on (3.1))
in a way that they reduce to continuous Hirota bilinear forms as q → 1 (equiva-
lently in the small limit of h). In addition, from such q-deformed Hirota bilinear
forms, we develop not only q-analogues of corresponding equations but also their
multi-q-soliton solutions.

4.1. The q-difference-q-difference Toda equation. It is proposed in [26] that
q-difference-q-difference Toda equation admits the Hirota bilinear form

[h−1(exp(hτDτ ) + exp(−hτDτ )− 2)− (exp(h̄yDy)

+ exp(−h̄yDy)− 2)]{f(τ, y) · f(τ, y)} = 0.
(4.7)

In the present work, we determine (4.7) by the reductions

D1 = hτDτ , D2 = h̄yDy, D3 = 0, λ1 = 2h−1, λ2 = −2, λ3 = 2− 2h−1

(4.8)
on the generalized q-difference equation (3.1). Note that λ1 +λ2 +λ3 = 0 to satisfy
the condition (3.8). In order to construct the standard form of the q-difference-q-
difference Toda equation, we need to introduce the following operator.

Definition 4.2. [26] The central q-difference operator Λ2
τ acting on a function

f(τ), is defined as

Λ2
τf(τ) = f(qτ) + f(

τ

q
)− 2f(τ), q 6= 1, τ ∈ R. (4.9)

Using the inverse procedure, the standard form of the q-difference-q-difference
Toda equation is proposed written by the language of (4.9)

Λ2
τ log(1 + V (τ, y)) = Λ2

y log(1 + hV (τ, y)), (4.10)
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which follows from the transformation

V (τ, y) := h−1
[f(qτ, y)f( τq , y)

f2(τ, y)
− 1
]

=
f(τ, q̄y)f(τ, yq̄ )

f2(τ, y)
− 1, (4.11)

on the bilinear form (4.7). Here eh = q, eh̄ = q̄.

Proposition 4.3. One-q-soliton solution of q-difference-q-difference Toda equation
(4.10) is

V (τ, y) =
ηταyβ [q̄β + q̄−β − 2]

(1 + ηταyβ)2
, (4.12)

provided that the dispersion relation

h−1(qα + q−α − 2) = q̄β + q̄−β − 2, (4.13)

is satisfied.

Proof. The identifications

t = τ, γ = 0, a1 = h, b2 = h̄, a2 = a3 = b1 = b3 = c1 = c2 = c3 = 0 (4.14)

resulting from the reductions (4.8) allows to obtain f (1) = ηταyβ . One-q-soliton
solution follows from straightforward calculation of using f = 1 + ηταyβ on the
dependent variable transformation (4.11). The identifications (4.14) on the disper-
sion relation (3.11) lead to derive the dispersion relation (4.13) which determines
the relation among the parameters in (4.12). �

If τ , y ∈ qZ, namely τ = qn and y = q̄m, n,m ∈ Z, then q-difference-q-difference
Toda equation (4.10) can be rewritten

(1 + V (qn+1, (q̄)m))(1 + V (qn−1, (q̄)m))
(1 + V (qn, (q̄)m))2

=
(1 + hV (qn, (q̄)m+1))(1 + hV (qn, (q̄)m−1))

(1 + hV (qn, (q̄)m))2
,

(4.15)

whose one-q soliton solution is explicitly deduced as

V (τ, y) =
ηqnα(q̄)mβ [(q̄)β + (q̄)−β − 2]

(1 + ηqnα(q̄)mβ)2
. (4.16)

Subsequently, it is possible to rewrite two-q-soliton (3.17) and three-q-soliton solu-
tions (3.23) using the above reductions and identifications. Therefore, by the frame
of the reductions (4.8) on (3.1) we recover the results found in the Ref.[26] for
q-difference-q-difference Toda equation. Moreover, it is observed that the plotted
waves associated to two-q-soliton and three-q-soliton solutions of q-difference-q-
difference Toda equation obey the classical soliton behaviors. Additionally, since
solutions are presented by means of power functions, the lengths of waves increase
as space variable increases (We refer [26] for the graphs). Therefore the solutions
presented in Section 3, appear to satisfy q-soliton conditions.

Proposition 4.4. Hirota bilinear form of the q-difference-q-difference Toda equa-
tion (4.7) reduces to Hirota bilinear form of the differential-q-difference Toda equa-
tion

[Dt
2 − (exp(h̄yDy) + exp(−h̄yDy)− 2)]{f(t, y) · f(t, y)} = 0, (4.17)

in the small limit of h.
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Indeed, if we replace h by h2 and let τ = exp(ht), then the expression on (4.7)

4h−2 sinh2(
h2τDτ

2
) = h−2(exp(hDt) + exp(−hDt)− 2), (4.18)

tends to D2
t as h → 0. To be more precise, Hirota bilinear form (4.7), is a gener-

alization of Hirota bilinear form (4.17), from which we establish the standard form
of the q-discretized Toda equation (4.10).

4.2. The q-difference-q-difference KdV equation. We propose the q-difference-
q-difference KdV equation in Hirota bilinear form

sinh(
h2τDτ + h̄2yDy

2
)[h−1 sinh(h2τDτ ) + 2 sinh(h̄2yDy)]{f(τ, y) · f(τ, y)} = 0,

(4.19)
that can be identified by the below reductions

D1 =
1
2

(3h2τDτ + h̄2yDy), D2 =
1
2

(h2τDτ +3h̄2yDy), D3 =
1
2

(h2τDτ − h̄2yDy),

(4.20)
λ1 = 1, λ2 = 2h, λ3 = −1− 2h, (4.21)

on (3.1).

Proposition 4.5. Hirota bilinear form of q-difference-q-difference KdV equation
(4.19) reduces to Hirota bilinear form of the continuous KdV equation [12]

[Dx(Dt +D3
x)]{f(t, x) · f(t, x)} = 0, (4.22)

as h, h̄ tends to zero.

Proof. Setting τ = exp(ht), Hirota bilinear form of q-difference-q-difference KdV
equation (4.19) turns out to be

sinh(
hDt + h̄2yDy

2
)[h−1 sinh(hDt) + 2 sinh(h̄2yDy)]{f · f} = 0. (4.23)

One can verify that as h→ 0, the equation (4.23) reduces to

sinh(
h̄2yDy

2
)[Dt + 2 sinh(h̄2yDy)]{f(t, y) · f(t, y)} = 0. (4.24)

By a similar fashion, we set y = exp(h̄x) which implies (4.24) as

sinh(
h̄Dx

2
)[Dt + 2 sinh(h̄Dx)]{f(t, x) · f(t, x)} = 0. (4.25)

As a final step, we fix Dt = h̄3Dt
3 − 2h̄Dx in (4.25) and we derive

sinh(
h̄Dx

2
)[
h̄3Dt

3
− 2h̄Dx + 2 sinh(h̄Dx)]{f · f} = 0. (4.26)

Dividing (4.26) with h̄4 and taking the small limit of h̄, we end up with the con-
tinuous KdV equation in Hirota bilinear form (4.22). �

To be more precise, q-deformed Hirota bilinear form (4.19) is a generalization of
Hirota bilinear form (4.22) of usual KdV equation.
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4.3. The standard form of q-difference-q-difference KdV equation. In this
section, we intend to introduce the standard form of the q-difference-q-difference
KdV equation. Before embarking to the details we list some useful identities for
hyperbolic functions.

Properties: [17] For continuously differentiable functions f , g, the following iden-
tities hold

sinh
1
2

(D2 −D3){sinh
1
2

(D2 +D3) · 2 sinhD1f · f}

.{cosh(
1
2

(D2 +D3)−D1)f · f}

= sinhD1{coshD2f · f} · {coshD3f · f},

(4.27)

coshD1{coshD2f · f} · {coshD2f · f} = coshD2{coshD1f · f}.{coshD1f · f},
(4.28)

exp(α∂1)(
f

g
) = exp(αD1){f}.{ g

cosh(αD1)g.g
}, (4.29)

where the operators Di are of the form (3.2) and α is an arbitrary constant.

Definition 4.6. The q-difference operator δτ , operating on an arbitrary function
u(τ), is defined as follows

δτu(τ) := u(qτ)− u(
τ

q
), τ ∈ R, q 6= 1. (4.30)

We stress that the operators Λ2, defined by (4.9) and δ2 and are equivalent.

Proposition 4.7. The standard form of the q-difference-q-difference KdV equation
is given as

δτ (
1

V (τ, y)
) = −2h1/2δyV (τ, y), (4.31)

provided that the dependent variable transformation

V (τ, y) := −
f(τ, q̄y)f(τ, yq̄ )

f(qτ, y)f( τq , y)
, (4.32)

holds, where eh = q and eh̄ = q̄.

Proof. We first adopt an equivalent version of Hirota bilinear form (4.19) of q-
difference-q-difference KdV equation

sinh(
hτDτ − h̄yDy

2
){sinh(

hτDτ + h̄yDy

2
)[h−1/2 sinh(hτDτ )

+ 2 sinh(h̄yDy)]f · f} · {cosh(
hτDτ − h̄yDy

2
)f · f} = 0,

(4.33)

where for convenience we interchange h2 and h̄2 by h and h̄, respectively. Using
the identity (4.27), the bilinear form (4.33) can be rewritten in the form

h−1/2 sinh(hτDτ ){cosh(hτDτ )f · f}.{cosh(h̄yDy)f · f}
= −2 sinh(h̄yDy){cosh(hτDτ )f · f}.{cosh(h̄yDy)f · f}.

(4.34)
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Upon dividing the form (4.34) by (4.28) equipped with D1 = hτDτ , D2 = h̄yDy,
we obtain

h−1/2 sinh(hτDτ )(cosh(hτDτ )f · f).(cosh(h̄yDy)f · f)
cosh(hτDτ )(cosh(h̄yDy)f · f) · (cosh(h̄yDy)f · f)

=
−2 sinh(h̄yDy)(cosh(hτDτ )f · f).(cosh(h̄yDy)f · f)
cosh(h̄yDy)(cosh(hτDτf · f)) · (cosh(hτDτ )f · f)

,

which takes the form

h−1/2 sinh(hτ∂τ )(
cosh(hτDτ )f · f
cosh(h̄yDy)f · f

) = −2 sinh(h̄y∂y)(
cosh(h̄yDy)f · f
cosh(hτDτ )f · f

), (4.35)

Here we make use of the identity (4.29). Armed with the q-exponential identity
(3.3), by the frame of eh = q and eh̄ = q̄, then (4.35) boils down to

[
f(q2τ, y)f(τ, y)

f(qτ, q̄y) · f(qτ, yq̄ )
−

f(τ, y)f( τq2 , y)

f( τq , q̄y) · f( τq ,
y
q̄ )

]

= 2h1/2[
f(τ, y)f(τ, yq̄2 )

f(qτ, yq̄ ) · f( τq ,
y
q̄ )
− f(τ, q̄2y)f(τ, y)
f(qτ, q̄y) · f( τq , q̄y)

].

(4.36)

Utilizing the dependent variable transformation (4.32), we rewrite the equation
(4.36) as (4.31) in the language of q-difference operator (4.30). �

Proposition 4.8. The q-difference-q-difference KdV equation (4.31) admits one-
q-soliton solution

V (τ, y) = − [1 + ητα(q̄y)β + ητα(q̄)−βyβ + η2τ2αy2β ]
(1 + η(qτ)αyβ)(1 + ητα(q)−αyβ)

, (4.37)

where the dispersion relation is

(q̄)
β
2 [q

3α
2 −q−α2 ]+(q̄)

−β
2 [q

−3α
2 −q α2 ]+2h{q α2 [(q̄)

3β
2 −(q̄)−

β
2 ]+q

−α
2 [(q̄)

−3β
2 −(q̄)

β
2 ]} = 0.

(4.38)

Proof. Using the identifications

t = τ, γ = 0, a1 =
3h
2
, b1 =

h̄

2
, (4.39)

a2 = a3 =
h

2
, b2 =

3h̄
2
, b3 = − h̄

2
, c1 = c2 = c3 = 0, (4.40)

resulting from the reductions (4.20), (4.21) we obtain f (1) = ηταyβ . One can find
one-q-soliton solution (4.37) using f = 1 + ηταyβ on the transformation (4.32).
Similarly, using (4.39), (4.40) on the dispersion relation (3.11) yields the dispersion
relation (4.38). �

If τ , y ∈ qZ, i.e., τ = qn and y = q̄m, n,m ∈ Z, then one-q-soliton solution (4.37)
turns out to be

V = − [1 + ηqnα(q̄)β(m+1) + ηqnα(q̄)β(m−1) + η2τ2nα(q̄)2mβ ]
(1 + η(q)α(n+1)(q̄)mβ)(1 + ηqα(n−1)(q̄)mβ)

. (4.41)

Furthermore, one can explicitly present two and three-q-soliton solutions using the
reductions on (3.17) and (3.23), respectively.



EJDE-2015/255 UNIFICATION OF q-DIFFERENCE EQUATIONS 15

4.4. The q-difference sine-Gordon Equation. We propose Hirota bilinear form
of q-difference sine-Gordon equation

[2 sinh(h̄2yDy) sinh(h2τDτ )hh̄ cosh(h2τDτ + h̄2yDy + kzDz)

− hh̄ cosh(h2τDτ − h̄2yDy)]{f(τ, y, z) · f(τ, y, z)} = 0,
(4.42)

which follows from the reductions below on the equation (3.1),

D1 = h2τDτ + h̄2yDy,

D2 = h2τDτ + h̄2yDy + kzDz,

D3 = h2τDτ − h̄2yDy,

(4.43)

λ1 = 1, λ2 = hh̄, λ3 = −1− hh̄. (4.44)

To present the source of the limits which reveals Hirota Bilinear form of classical
sine-Gordon equation [13], we need to rewrite (4.42) in a proper decomposition.
For this purpose, we adopt the periodicity definition on q-numbers.

Definition 4.9. A function f(x) is said to be qn-periodic if

f(qnx) = f(x), q > 1, n ∈ Z, x ∈ Kq. (4.45)

Proposition 4.10. Hirota bilinear form of q-difference sine-Gordon equation (4.42)
reduces to Hirota bilinear form of the continuous sine-Gordon equation [13]

DxDt{ḡ.f̄} = ḡ.f̄ , (4.46)

DxDt{f̄ .f̄ − ḡ.ḡ} = 0, (4.47)

in the small limit of h and h̄.

Proof. Assume that f in (4.42) is q̄2-periodic function equipped with

f(q̄z) = f(
z

q̄
),

then the discussion includes the function f and its q-shifted version, say f̃ , i.e.
ekz∂zf(z) = f(q̄z) := f̃(z), provided that ek = q̄. Such periodicity condition on
(4.42) implies that

[(hh̄)−1 sinh(h̄2yDy) sinh(h2τDτ )− 1
2

cosh(h2τDτ − h̄2yDy)]{f(τ, y, z) · f(τ, y, z)}

= −1
2

cosh(h2τDτ + h̄2yDy){f̃(τ, y, z).f̃(τ, y, z)},

provided that hh̄ 6= 0. Equivalently one can encounter the bilinear form

[(hh̄)−1 sinh(h̄2yDy) sinh(h2τDτ )]{f · f}

=
1
2

cosh(h̄2yDy) cosh(h2τDτ )]{f · f − f̃ .f̃},
(4.48)

whose continuous limit is intimately related to classical sine-Gordon equation. Set-
ting

f = f̄ + iḡ f̃ = f̄ − iḡ, (4.49)
on (4.48), we have

[(hh̄)−1 sinh(h̄2yDy) sinh(h2τDτ )]{ḡ · f̄}
= cosh(h̄2yDy) cosh(h2τDτ )]{ḡ · f̄}

(4.50)
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and
sinh(h̄2yDy) sinh(h2τDτ ){f̄ .f̄ − ḡ.ḡ} = 0. (4.51)

Let y = eh̄x and τ = eht, then Hirota bilinear form (4.50), (4.51) turns out to be
Hirota bilinear form of sine-Gordon equation (4.46), (4.47) respectively, in the limit
h, h̄→ 0. �

4.5. Standard form of q-difference sine-Gordon equation. To establish the
ordinary form of q-difference sine-Gordon equation, we make use of its decomposed
bilinear form (4.50), (4.51) on which for the sake of convenience we interchange h2

and h̄2 by h and h̄, respectively as

[(hh̄)−1/2 sinh(h̄yDy) sinh(hτDτ )]{ḡ.f̄} = cosh(h̄yDy) cosh(hτDτ )]{ḡ.f̄}, (4.52)

sinh(h̄yDy) sinh(hτDτ ){f̄ .f̄ − ḡ.ḡ} = 0. (4.53)

The restrictions (4.49) imply to assume f̄ := exp(ρ). cos(φ), ḡ := exp(ρ). sin(φ).
Then we rewrite (4.52) as

(1− (hh̄)1/2) exp(ρ(qτ, py) + ρ(
τ

q
,
y

p
)). sin(φ(qτ, py) + φ(

τ

q
,
y

p
))

= (1 + (hh̄)1/2) exp(ρ(qτ,
y

p
) + ρ(

τ

q
, py)). sin(φ(qτ,

y

p
) + φ(

τ

q
, py)),

and (4.53) as

exp(ρ(qτ, py) + ρ(
τ

q
,
y

p
)). cos(φ(qτ, py) + φ(

τ

q
,
y

p
))

= exp(ρ(qτ,
y

p
) + ρ(

τ

q
, py)). cos(φ(qτ,

y

p
) + φ(

τ

q
, py)),

respectively by the frame of eh = q and eh̄ = p. Solving the resulting equation for
φ, we derive

sin(φ(qτ, py) + φ(
τ

q
,
y

p
)− φ(qτ,

y

p
)− φ(

τ

q
, py))

= (hh̄)1/2 sin(φ(qτ, py) + φ(
τ

q
,
y

p
) + φ(qτ,

y

p
) + φ(

τ

q
, py)).

(4.54)

Definition 4.11. The q-sum operator Γτ , operating on any function u(τ) is defined
as

Γτu(τ) := u(qτ) + u(
τ

q
), τ ∈ R, q 6= 1. (4.55)

We introduce the standard form of the q-difference sine-Gordon equation as

sin[δyδτφ(τ, y)] = (hh̄)1/2 sin[ΓyΓτφ(τ, y)], (4.56)

by rewriting (4.54) in the frame of q-sum operator (4.55) and q-difference operator
(4.30).

Proposition 4.12. The q-difference sine-Gordon equation (4.56) admits one-q-
soliton solution

φ = 4 tan−1(ηταyβzγ), (4.57)
provided that the dispersion relation

(qα − q−α)(pβ − p−β) + hh̄[qα(pβ(q̄)γ − p−β) + q−α(p−β(q̄)−γ − pβ)] = 0, (4.58)

is satisfied.
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Proof. The identifications

t = τ, a1 = a2 = a3 = h, b1 = b2 = h̄, (4.59)

c2 = k b3 = −h̄, c1 = c3 = 0, (4.60)

resulting from the reductions (4.43), (4.44) leads the starting solution of f (1) =
ηταyβzγ . If we expand f̄ and ḡ in series of ε,

f̄ = 1 + ε2f (2) + ε4f (4) + . . .

ḡ = εf (1) + ε3f (3) + . . .

it is possible to write ḡ/f̄ = f (1), equipped with ε = 1. To be more intense, we
derive one-q-soliton solution

φ = 4 arctan(
ḡ

f̄
) = 4 arctan(ηταyβzγ).

Further, the dispersion relation (4.58) results from the reductions (4.59), (4.60) on
the dispersion relation (3.11). �

In the same way, it is possible to rewrite two-q-soliton (3.17) and three-q-soliton
solutions (3.23) using the above reductions and identifications.

Conclusion. In the present article, we have introduced a general unifying frame-
work for integrable q-discrete equations and their multi-soliton solutions. We pre-
sented a generalized q-difference equation, which reproduces q-discretized soliton
equations such as Toda, KdV and sine-Gordon equations by proper transforma-
tions. We showed that Hirota direct method produces three-q-soliton solutions of
this generalized q-difference equation. However, the classical method fails to con-
struct multi-soliton solutions for ∆-differential equations on arbitrary time scales
with non-constant graininess. We plan to devote our next investigation to concern-
ing Wronskian technique to construct soliton and other special (e.g. complexiton)
solutions of bilinear equations on arbitrary time scales. Such a work is in progress
and will be communicated in a separate paper.
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Painlevé approach, J. Math. Phys. 31 (1990), 2572-2578.
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