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Abstract. In this article we find an explicit formula for solutions of a noncon-

servative system when the initial data lies in the level set of one of the Riemann
invariants. Also for nonconservative shock waves in the sense of Volpert we

derive an explicit formula for the viscous shock profile.

1. Introduction

One of the systems of equations that comes in modelling propagation of elastic
waves, is the nonconservative system

ut + uux − σx = 0,

σt + uσx − k2ux = 0,
(1.1)

which was introduced in [4]. Here u is the velocity, σ is the stress and k > 0 is the
speed of propagation of the elastic waves. The system (1.1) is strictly hyperbolic
with characteristic speeds

λ1(u, σ) = u− k, λ2(u, σ) = u+ k (1.2)

and corresponding Riemann invariants

w1 (u, σ) = σ − ku, w2 (u, σ) = σ + ku. (1.3)

It is well known that smooth global in time solutions do not exist even if the initial
data is smooth, then the term uσx appearing in equations, does not make sense in
the theory of distributions, and classical theory of Lax [11] does not work. There
are many approaches starting with Volpert [14], and subsequently by Colombeau
[1, 3, 4], Dal Maso, LeFloch and Murat [5] and LeFloch and Tzavaras [12] to define
such products. They are not equivalent but are related and have some common
features.

They consider systems of N equations of the form

Ut +A(U)Ux = 0, (1.4)
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where A(U)Ux, is not in conservative form F (U)x. Here A(U) an N × N matrix,
depending smoothly on U ∈ Ω, and Ω is an open connected set in RN . Assume
that U has a discontinuity along x = st and of the form

U(x, t) =

{
U−, if x < st,

U+, if x > st.
(1.5)

where U− and U+ are constant vectors in Ω. Volpert [14] defined A(U)Ux as a
measure

A(U)Ux =
1
2

(A(U+ +A(U−)(U+ − U−)δx=st. (1.6)

As this definition is inadequate for many applications, Dal Maso,LeFloch, Murat
[5] generalized this definition by

A(U(x, t))Ux(x, t) =
(∫ 1

0

A(φ(s, U−, U+))∂sφ(s;U−, U+)
)
δx=st (1.7)

where φ is a family of Lipschitz paths, φ : [0, 1]×RN×RN → RN , with φ(0, U−, U+)
= U− and φ(1, U−, U+) = U+, with some natural conditions. Volpert product
corresponds to taking φ the straight line path connecting U− and U+. Further they
solved Riemann problem for (1.4) with Riemann data

U(x, t) =

{
U−, if x < 0,
U+, , if x > 0.

(1.8)

when the system is strictly hyperbolic and |U+ − U−| is small. Choudhury [2] has
recently shown that Riemann problem for (1.1) with k = 0, in which case the sys-
tem is not strictly hyperbolic, do have a solution in the class of shock waves and
rarefaction waves if one uses the product in [5], with special choice of paths but not
for straight line paths. This example shows advantages of the product in [5] over
the Volpert product. Different paths give different solutions. So as pointed out in
[5, 12, 13] any discussion of well-posedness of solution for nonconservative systems,
should be based on a given nonconservative product in addition to admissibility
criterion for shock discontinuities. As the system of the type (1.4), is an approxi-
mation and is obtained when one ignores higher order derivative terms, which give
smoothing effects with small parameters as coefficients . So a natural way to con-
struct the physical solution is, by the limit of a given regularization as these small
parameters goes to zero. Different regularizations correspond to different noncon-
servative product and admissibility condition, see [5, 12] and the references there
more details.

Another method to handle the nonconservative product is using Colombeau alge-
bra. Initial value problem for the system (1.1) was solved in this space first in [1, 4]
using numerical approximation for a restricted class of initial data. More general
class of initial data including the L∞ space was treated in [7] by parabolic approxi-
mations with out any conditions on the smallness of data. Dafermos regularization
and the approach of [12] was used [9, 10] to study Riemann problem.

In this paper we take a parabolic regularization and explain its connection with
the Volpert nonconservative product and Lax admissibility conditions. Also we give
explicit formula for the solution when the initial data lie in the level set of one of
the Riemann invariants of the system (1.1).
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2. Viscous shocks profile for Volpert shock

First we recall some known facts about the Riemann problem for (1.1). Here the
initial data takes the form

(u(x, 0), σ(x, 0)) =

{
(u−, σ−), if x < 0,
(u+, σ+), if x > 0.

(2.1)

A shock wave is a weak solution of (1.1), with speed s is of the form

(u(x, t), σ(x, 0)) =

{
(u−, σ−), if x < st,

(u+, σ+), if x > st.
(2.2)

When Volpert product is used the Rankine Hugoniot condition takes the form

−s(u+ − u−) +
u2

+ − u2
−

2
− (σ+ − σ−) = 0

−s(σ+ − σ−) +
u+ + u−

2
(σ+ − σ−)− k2(u+ − u−)

(2.3)

In [8], it was shown that the Riemann problem can be solved without any smallness
assumptions on the Riemann data when the nonconservative product is understood
in the sense of Volpert [14] with Lax’s admissibility conditions for shock speed.
Indeed, corresponding to each characteristic family λj , j = 1, 2 we can define shock
waves and rarefaction waves. Fix a state (u−, σ−) the set of states (u+, σ+) which
can be connected by a single j-shock wave is a straight line called j-shock curve and
is denoted by Sj and the states which can be connected by a single j-rarefaction
wave is a straight line is called j-rarefaction curve and is denoted by Rj . These
wave curves are given by

R1(u−, σ−) : σ = σ− + k(u− u−), u > u−

S1(u−, σ−) : σ = σ− + k(u− u−), u < u−

R2(u−, σ−) : σ = σ− − k(u− u−), u > u−

S2(u−, σ−) : σ = σ− − k(u− u−), u < u−.

(2.4)

Further j-shock speed sj is given by

sj =
u+ + u−

2
+ (−1)jk, j = 1, 2 (2.5)

and the Lax entropy condition requires that the j- shock speed satisfies inequality

λj(u+, σ+) ≤ sj ≤ λj(u−, σ−). (2.6)

This curves fill in the u−σ plane and the Riemann problem can be solved uniquely
for arbitrary initial states (u−, σ−) and (u+ , σ+) in the class of self similar functions
consisting of solutions of shock waves and rarefaction waves separated by constant
states. These constant states are obtained from the shock curves and rarefaction
curves corresponding to the two families of the characteristic fields.

The nonconservative product and the selection criteria is associated with a reg-
ularization. In this paper we analyze shock wave solution of (1.1) with respect
to the Volpert product and Lax’s shock inequalities and its relation to parabolic
approximation. To analyze this connection, first we ask the question, does there
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exists a traveling wave profile solution (u(ξ), σ(ξ)) with ξ = x−sjt
ε , of the system

the corresponding parabolic approximation

ut + uux − σx = εuxx,

σt + uσx − k2ux = εσxx.
(2.7)

connecting (u−, σ−) to (u+, σ+) when (u+, σ+) lies on the shock curve Sj , j = 1, 2
passing through (u−, σ−).

This amounts to solving the boundary-value problem, for a system of nonlinear
ordinary differential equations,

−sj
du

dξ
+ u

du

dξ
− dσ

dξ
=
d2u

dξ2
, −sj

dσ

dξ
+ u

dσ

dξ
− k2 du

dξ
=
d2σ

dξ2
(2.8)

for ξ ∈ (−∞,∞) with boundary conditions

u(−∞) = u−, u(∞) = u+, σ(−∞) = σ−, σ(∞) = σ+. (2.9)

Theorem 2.1. If (u+, σ+) ∈ Sj(u−, σ−), then the viscous shock profile (u(ξ), σ(ξ)
of (2.8)-(2.9) with speed sj = u++u−

2 + (−1)jk is given by

(u(ξ), σ(ξ)) = (φ(ξ), (−1)j+1kφ(ξ) + σ− + (−1)jku−), (2.10)

where

φ(ξ) = u+ +
(u− − u+)

1 + exp(u−−u+
2 ξ − ξ0)

, (2.11)

where ξ0 is a constant.

Proof. Writing (2.8) in Riemann invariants

d2w1

dξ2
= (λ1(r, s)− s)dw1

dξ
,

d2w2

dξ2
= (λ2(r, s)− s)dw2

dξ
.

(2.12)

It follows from the uniqueness of solutions of ODE, any solution wj of (2.12) with
first derivative is zero at a point ξ0 must be a constant equal to wj(ξ0). So ei-
ther solutions wj are constants or strictly monotone. Suppose u+ ∈ S1(u−), then
w1(u−, σ−) = w1(u+, σ+) and so w1(u(ξ), σ(ξ)) is a constant. Thus u and σ are
related by

σ(ξ) = ku+ (σ− − ku−). (2.13)

Substituting this relation in any one of the equations in (2.8), we get the same
single equation for u. Indeed for 1-shock, u is given by the equation

−s1u′ + uu′ − ku′ = u”, u(−∞) = u−, u(∞) = u+.

Once u is known, σ is obtained from (2.13). In terms of the new variable v = u−k,
this problem reduces to

−s1v′ + vv′ = v”, v(−∞) = u− − k, u(∞) = u+ − k,

whose solution is

v(ξ) = u+ +
(u− − u+)

1 + exp(u−−u+
2 ξ − ξ0)

− k.
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Since u = v+k, and σ(ξ) = ku+(σ−−ku−), we have traveling wave corresponding
to 1-shock wave is given by

u(ξ) = u+ +
(u− − u+)

1 + exp(u−−u+
2 ξ − ξ0)

, σ(ξ) = ku(ξ) + (σ− − ku−)

where ξ = x−s1t
ε , and the formula (2.10)-(2.11) follows for the case j = 1. The

analysis for the case j = 2 is similar and is omitted. �

3. Explicit formula for initial data lying on level sets of Riemann
invariants

Now we consider initial value problem for the viscous system
ut + uux − σx = εuxx,

σt + uσx − k2ux = εσxx.
(3.1)

with initial data
u(x, 0) = u0(x), σ0(x, 0) = σ0(x) (3.2)

When u0(x) and σ0(x) are functions of bounded variation and continuously dif-
ferentiable, existence of classical solution satisfying initial data was shown in [7].
Additionally if we assume (u0(x), σ0(x)) lies on the level set on one of the j-Riemann
invariants, wj(u, σ) = σ+(−1)jku, j = 1, 2, the system can be reduced to the Burg-
ers equation and an explicit formula can be derived for the corresponding initial
value problem.

Theorem 3.1. Assume that the initial data (u0, σ0) is function of bounded varia-
tion and there exists c a constant such that wj(u0(x), σ0(x)) = c for all x, for fixed
j = 1 or j = 2.
(a). Then the viscous system (3.1)-(3.2), has a solution of the form

uε(x, t) =

∫∞
−∞

x−y
t e−

1
2ε θ(x,y,t)dy∫∞

−∞ e−
1
2ε θ(x,y,t)dy

+ (−1)j+1k

σε(x, t) = (−1)j+1k[

∫∞
−∞

x−y
t e−

1
2ε θ(x,y,t)∫∞

−∞ eθ(x,y,t)
+ (−1)jk] + c,

(3.3)

where

θ(x, y, t) =
(x− y − (−1)jkt)2

2t
+
∫ y

0

u0(z)dz. (3.4)

(b). For each fixed t > 0, except on a countable points x ∈ R1, there exits a unique
minimizer y(x, t) for

min
y∈R1

[
(x− y − (−1)jkt)2

2t
+
∫ y

0

u0(z)dz]. (3.5)

At these points the point wise limit limε→0(uε(x, t), σε(x, t)) = (u(x, t), σ(x, t)) exits
and is given by

u(x, t) = (−1)j+1k +
(x− y(x, t))

t
,

σ(x, t) = (−1)j+1k[(−1)jk +
(x− y(x, t))

t
] + c.

(3.6)

Further (u, σ) given by (3.6) is a weak solution to (1.1) with initial condition (3.2).
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Proof. Since the initial data in the level set of j-Riemann invariant, we seek a
solution lying in the same invariant set. So we seek (u, σ) satisfying

σ = (−1)j+1ku+ c. (3.7)

The an easy computation shows that the system become a single Burgers equation
for u,

ut + uux − (−1)j+1kux = εuxx

Once u, is known then formula for σ follows. To find u we make a substitution

v = u− (−1)j+k (3.8)

and then the equation for v can be written as

vt + vvx = εvxx

with initial conditions
v(x, 0) = u0(x)− (−1)j+1k.

Applying Hopf-Cole transformation [6]

v = −2ε
wx
w

(3.9)

the problem is reduced to
wt = εwxx

with initial conditions

w(x, 0) = e
−1
2ε (

R x
0 u0(z)dz−(−1)j+1kx).

Solving this system, we get

w(x, t) =
1

(4πtε)1/2

∫ ∞
−∞

e
−1
2ε [

(x−y)2
2t +

R y
0 u0(z)dz−(−1)j+1ky]dy. (3.10)

An easy computation shows that

wx(x, t) =
−1
2ε
.

1
(4πtε)1/2

∫ ∞
−∞

(x− y)
t

e
−1
2ε [

(x−y)2
2t +

R y
0 u0(z)dz−(−1)j+1ky]dy. (3.11)

Notice that

(x− y)2 − (−1)j+12tky = (x− y − (−1)jkt)2 + (−1)j2tkx− t2k2. (3.12)

Using (3.12) in (3.10) and (3.11), substituting the resulting expressions in (3.9),
and using u = v+ (−1)j+1k, from (3.8) we get the formula for u in (3.3). Then the
formula for σ is obtained from the relation (3.7).

The formula for vanishing viscosity limit follows from analysis of Hopf [6] and
Lax [11]. Indeed for each fixed (x, t), there is at least one minimizer for (3.5).
There may be many minimizers, take y(x, t)− is the smallest such minimizer and
y(x, t)+ is the largest one. Hopf has proved that, for each fixed t > 0, y(x, t)± is a
nondecreasing function of x and so has at most countable points of discontinuities
and except these points, these minimizer is unique and y(x, t) = y(x, t)− = y(x, t)+.
Then formula (3.6) holds at these points (x, t).

Now to show that the limit satisfies (1.1), we just notice that

ut + uux − σx − εuxx = ut +
(u2)x

2
− (−1)j+1kux − εuxx

σt + uσx − k2ux − εσxx = (−1)j+1k[ut +
(u2)x

2
− (−1)j+1kux − εuxx].

(3.13)
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which is conservative, and by standard theory of conservation laws works [6, 11],
and we can pass to the limit in the equation in the weak sense. Also from [6, 11] it
follows that the solution satisfies the initial data in weak sense. �

In the above theorem the solution of the inviscid system (1.1), that we have
constructed lie in the level set of a Riemann invariant. Assume that the solution
is on the j-Riemann invariant. Then σ and u are related by (3.7) and then uσx =
(−1)j+1k(u

2

2 )x, a conservative product. A computation as in (3.13) show that the
system (1.1) becomes a single equation in conservation form for u, namely

ut + (
(u2)

2
− (−1)j+1ku)x = 0.

Then all paths give the same Rankine- Hugoniot conditions for the shocks, see [5].
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