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DYNAMICS OF STOCHASTIC NONCLASSICAL DIFFUSION
EQUATIONS ON UNBOUNDED DOMAINS

WENQIANG ZHAO, SHUZHI SONG

Abstract. This article concerns the dynamics of stochastic nonclassical dif-

fusion equation on RN perturbed by a ε-random term, where ε ∈ (0, 1] is the
intension of noise. By using an energy approach, we prove the asymptotic com-

pactness of the associated random dynamical system, and then the existence of

random attractors in H1(RN ). Finally, we show the upper semi-continuity of
random attractors at ε = 0 in the sense of Hausdorff semi-metric in H1(RN ),

which implies that the obtained family of random attractors indexed by ε

converge to a deterministic attractor as ε vanishes.

1. Introduction

In this article, we consider the dynamics of solutions to the following stochastic
nonclassical diffusion equation driven by an additive noise with intension ε:

ut −∆ut −∆u+ u+ f(x, u) = g(x) + εhẆ , x ∈ RN ,

u(x, τ) = u0(x), x ∈ RN ,
(1.1)

where the initial data u0 ∈ H1(RN ); ε ∈ (0, 1]; u = u(x, t) is a real valued function of
x ∈ RN and t > τ ; Ẇ (t) is the generalized time derivative of an infinite dimensional
Wiener process W (t) defined on a probability space (Ω,F ,P), where Ω = {ω ∈
C(R,R) : ω(0) = 0}, F is the σ-algebra of Borel sets induced by the compact-
open topology of Ω, P is the corresponding Wiener measure on F for which the
canonical Wiener process W (t) satisfies that both W (t)t≥0 and W (t)t≤0 are usual
one dimensional Brownian motions. We may identify W (t) with ω(t), that is,
W (t) = W (t, ω) = ω(t) for all t ∈ R.

To study system (1.1), we assume that g ∈ L2(RN ) and f(x, u) = f1(x, u) +
a(x)f2(u) such that

a(.) ∈ L1(RN ) ∩ L∞(RN ), (1.2)
and for every fixed x ∈ RN , f1(x, ·) ∈ C(R,R) satisfying

f1(x, s)s ≥ α1|s|p − ψ1(x), ψ1 ∈ L1(RN ) ∩ L∞(RN ), (1.3)

|f1(x, s)| ≤ β1|s|p−1 + ψ2(x), ψ2 ∈ L2(RN ) ∩ Lq(RN ), (1.4)
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(f1(x, s)− f1(x, r))(s− r) ≥ −l(s− r)2, (1.5)

and f2(·) ∈ C(R,R) satisfying

f2(s)s ≥ α2|s|p − γ, (1.6)

|f2(s)| ≤ β2|s|p−1 + δ, (1.7)

(f2(s)− f2(r))(s− r) ≥ −l(s− r)2, (1.8)

where αi, βi(i = 1, 2), γ, δ and l are positive constants. The function h in (1.1)
satisfies

h ∈ H1(RN ). (1.9)

The nonclassical diffusion equation is an important mathematical model which
depicts such physical phenomena as non-Newtonian flows, solid mechanics, and
heat conduction, where the viscidity, the elasticity and the pressure of medium are
taken into account, see e.g.[1, 2, 20]. In the deterministic case; that is, ε = 0 in
(1.1), the dynamics of nonclassical diffusion equation on bounded domains have
been extensively studied by several authors in [3, 28, 29, 37]. The same model with
fading memory is considered in [38, 39]. By means of the omega-limit-compactness
argument, [18] obtained the pullback attractors for the nonclassical diffusion equa-
tions with variable delay on any bounded domain, where the nonlinearity is at most
two orders growth.

As far as the unbounded case for the system (1.1) is concerned, most recently,
by the tail estimate technique and some omega-limit-compactness argument, [23]
proved the existence of global attractors in the entire space H1(RN ), where the
nonlinearity satisfies a similar growth as (1.2)-(1.8) but possesses certain differ-
entiability assumptions. By a similar technique, Zhang et al [43] obtained the
pullback attractors for the non-autonomous case in H1(RN ), where the growth or-
der of the nonlinearity is assumed to be controlled by the space dimension N , such
that the Sobolev embedding H1 ↪→ L2p−2 is continuous. However, it is regretted
that some terms in the proof of [43, Lemma 3.4] are lost, besides the inequality
(3.45) in that paper is not correct. Some similar errors can also be found in [23].
Recently, Anh et al. [4] established the existence of pullback attractor in the space
H1(RN )∩Lp(RN ), where the nonlinearity satisfies an arbitrary polynomial growth,
but some additional assumptions on the primitive function of the nonlinearity are
required. To the best of our knowledge, the dynamics of system (1.1) involving
random white noises has not been attacked by predecessors, even for the bounded
case.

The analysis of the dynamics of stochastic partial differential equations (SPDEs)
is one important topic in modern mathematical and physical fields. The notion of
random attractor, developed in [14, 15, 16, 17, 27], is a suitable tool to attack this
problem. The existences of random attractors for some concrete SPDEs have been
extensively studied by many authors, see [11, 14, 21, 22] and references cited there.
These have been involved in different spaces with different approaches, such as L2

space [11, 14, 47] by the compact embedding, L$($ > 2) space [21, 22, 40, 46]
by asymptotic a priori estimate, H1

0 space [44, 45] by omega-limit-compactness
argument. We may also find a large volume of literature on this topic for other
SPDEs on bounded or unbounded domains.
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However, it is a very interesting and challenging work to consider the existence
of random attractors for the SPDEs defined on unbounded domains. This is be-
cause the asymptotic compactness of solutions cannot be obtained by a standard
priori estimate technique as the bounded case. For the deterministic equations, this
difficulty can be overcome by Ball’ energy equation approach [7, 8], a tail estimate
method [35, 42] and using other Banach spaces, such as the weighted space [24, 41]
and etc.

Recently, Bates and his coworkers [9] generalized the tail estimates method to
the random case, where the asymptotic compactness in L2(RN ) for solutions of
stochastic reaction-diffusion equations with additive noises is successfully proved.
For the applications of this related method we may refer to [31, 32, 33, 36] and
references therein. It is also worth pointing out that most recently, by using energy
equation approach, Brzeźniak et al [10] obtained the asymptotic compactness of
solution of stochastic 2D-Navier-Stokes equations on some unbounded domains,
then the existence of random attractor for this equation is established.

In this article, the first purpose is to prove the existence of random attractor Aε
of the initial problem (1.1) defined on RN . There are some problems encountered.
On the one hand, it is worth noticing that for this equation, because of the term
∆ut, if the initial value u0 belongs to H1(RN ), then the solution is always in
H1(RN ) and has no higher regularity, which is similar to the hyperbolic case. On
the other hand, the scheme in [4], which heavily relied on the assumption on the
primitive function of the nonlinearity, can not be generalized to the random cases.
This is because the Wiener process W (t) is only continuous but not differentiable
in time t and thus it is difficult to obtain the estimate of the time derivative ut
in randomly perturbed case. Thirdly, although the articles [23, 43] considered the
same equations as (1.1), on account of the errors mentioned above we do not know
whether or not the method developed there is applicable.

To overcome these obstacles, in this article we turn to the energy equation ap-
proach. We first prove that the weak solution of the transformed nonclassical
diffusion equation is weakly continuous in H1(RN ). Then the existence of a ran-
dom bounded absorbing set is sufficient to show that the random dynamical system
related to equations (1.1) is asymptotically compact in H1(RN ). Furthermore, this
asymptotic compactness is uniform in ε ∈ (0, 1], see Lemma 5.2. Some technical
problems about this method in random cases are surmounted. Then the existence
of random attractor in H1(RN ) is proved, see Theorem 5.3.

The second goal of this article is to attack the upper semi-continuity of the
random attractors Aε at ε = 0 in the topology of H1(RN ). Note that in the case
ε = 0, the system (1.1) is a deterministic equation and admits a global attractor
A0 in H1(RN ). It is therefore of great interest to understand both the dynamics of
the stochastic equations itself and the influence of the small white noises as ε varies
in (0, 1], in particular, as ε↘ 0. The result on this aspect is Theorem 6.2.

The framework of this article is as follows. In section 2, we present some asso-
ciated theory and notions on random dynamical systems (RDSs). In section 3, we
show the existence and uniqueness of weak solution for the transformed equation
with random coefficients. In section 4, we prove that the weak solutions is weakly
continuous in H1(RN ). In section 5, the asymptotic compactness is proved by using
energy equation approach and then we establish the existence of random attractors
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for system (1.1) in H1(RN ). In the final section, we study the convergence of the
random attractors Aε as ε↘ 0.

In this article, we will use some usual notations. Denote by (·, ·) the inner
product in L2 and by ‖.‖p the norm in Lp, 1 ≤ p ≤ ∞. In particular, if p = 2, we
omit the subscript ‖ · ‖2 = ‖ · ‖. H1 is the usual Sobolev space with norm ‖ · ‖H1

and H−1 its dual space with norm ‖ · ‖H−1 . Lp(RN , a) is the space with norm
‖ · ‖a,p = (

∫
RN a(x)| · |pdx)1/p. Lp(τ, T ;X) is the space of Lp functions from (τ, T )

to X with norm ‖ · ‖Lp(τ,T ;X) = (
∫ T
τ
‖ · ‖pXdt)1/p.

2. Preliminaries on random dynamical systems

In this section, we recall some basic concepts and results related to existence
and upper semi-continuity of random attractors of the RDSs. For a comprehensive
exposition on this topic, there are a large volume of literature, see [5, 13, 14, 15,
16, 17, 19, 34, 12].

The basic notion in random dynamical systems is a metric dynamical system
(MDS) ϑ ≡ (Ω,F ,P, {ϑt}t∈R), which is a probability space (Ω,F ,P) with a group
ϑt, t ∈ R, of measure preserving transformations of (Ω,F ,P).

A MDS ϑ is said to be ergodic under P if for any ϑ-invariant set F ∈ F , we
have either P(F ) = 0 or P(F ) = 1, where the ϑ-invariant set is in the sense that
P(ϑtF ) = P(F ) for F ∈ F and all t ∈ R.

Let X be a separable Banach space with norm ‖.‖X and Borel sigma-algebra
B(X); i.e., the smallest σ-algebra on X which contains all open subsets. Let R+ =
{x ∈ R;x ≥ 0} and 2X be the collection of all subsets of X.

Definition 2.1. A RDS on X over a MDS ϑ is a family of (B(R+)×F×B(X)), X)-
measurable mappings

ϕ : R+ × Ω×X → X, (t, ω, x) 7→ ϕ(t, ω)x

such that for P-a.e.ω ∈ Ω, the mappings ϕ(t, ω) satisfy the cocycle property:

ϕ(0, ω) = id, ϕ(t+ s, ω) = ϕ(t, ϑsω) ◦ ϕ(s, ω)

for all s, t ∈ R+. A RDS over a MDS ϑ is briefly denoted by (ϕ, ϑ).

A RDS ϕ is said to be continuous if the mappings ϕ(t, ω) : x 7→ ϕ(t, ω)x are
continuous in X for all t ∈ R+ and ω ∈ Ω, that is, norm-to-norm continuity.

For the nonempty sets A,B ∈ 2X , we define the Hausdorff semi-metric by

d(A,B) = sup
x∈A

inf
y∈B
‖x− y‖X .

In particular, d(x,B) = d({x}, B). Note that d(A,B) = 0 if and only if A ⊆ B.
Let D ⊆ 2X be given. D is called a sets universe if D satisfies the inclusion closed

properties: if D ∈ D and D̂ ⊆ D, then D̂ ∈ D.

Definition 2.2. (i) A random set D = {D(ω);ω ∈ Ω} is a family of nonempty
subsets of X indexed by ω such that for every x ∈ X, the mapping ω 7→ d(x,D(ω))
is (F ,B(R))-measurable.

(ii) A random variable r(ω) is tempered with respect to ϑ if

lim
|t|→∞

e−λ|t|r(ϑtω) = 0, for P-a.e. ω ∈ Ω and any λ > 0.

In the following, we give related concepts, where for convenience of our discus-
sions in the sequel, the time variable is stated in the negative direction.



EJDE-2015/282 STOCHASTIC NONCLASSICAL DIFFUSION EQUATION 5

Definition 2.3. Let D be a universe of sets. A set K = {K(ω);ω ∈ Ω} ∈ D is
said to be D-pullback absorbing for RDS (ϕ, ϑ) in X if for P-a.e.ω ∈ Ω and every
D ∈ D, there exists an absorbing time T = T (D,ω) < 0 such that for all τ ≤ T ,

ϕ(−τ, ϑτω)D(ϑτω) ⊂ K(ω),

where ϕ(−τ, ϑτω)D(ϑτω) = ∪x∈D(ϑτω){ϕ(−τ, ϑτω)x}.

Note that K in Definition 2.3 is merely a subset of X (possessing the absorbing
property), on which the random property in the sense of Definition 2.2(i) has not
been imposed there. We also should point out that for a continuous RDS, the
existence of a compact random absorbing set ensures completely the existence of a
random attractor, see [14, 15, 11]. However, for our problem, we need the following
generalized version of existence criterion, see [9, 19] and etc. For the random
attractors of non-autonomous RDSs, we see [31] and the references therein.

Definition 2.4. Let D be a universe of sets. The RDS (ϕ, ϑ) is said to be D-
pullback asymptotically compact in X if for P-a.e.ω ∈ Ω and every D ∈ D, the
sequence {ϕ(−τn, ϑ−τnω, xn)}∞n=1 has a convergent subsequence in X whenever
τn → −∞ and xn ∈ D(ϑτnω).

Theorem 2.5. Let D be a universe of sets, and (ϕ, ϑ) a continuous RDS on X.
Suppose that there exists a closed and D-pullback random bounded absorbing set
K = {K(ω);ω ∈ Ω} for (ϕ, ϑ) in X and (ϕ, ϑ) is D-pullback asymptotically compact
in X. Then the omega-limit set of K, A = {A(ω);ω ∈ Ω} defined by

A(ω) = ∩s≤0∪τ≤sϕ(−τ, ϑτω)K(ϑτω) ⊂ K(ω), ω ∈ Ω,

is a D-random attractor for (ϕ, ϑ) in X, in the sense that A ∈ D, and further for
P-a.e. ω ∈ Ω, there hold:

(i) A(ω) is compact random set in X;
(ii) the invariance property

ϕ(−τ, ω)A(ω) = A(ϑ−τω)

is satisfied for all τ ≤ 0;
(iii) in addition, the pullback convergence

lim
τ→−∞

d(ϕ(−τ, ϑτω,D(ϑτω)),K(ω)) = 0

holds for every D ∈ D.

In the following, we recall some notions on the upper semi-continuity of the
RDS. Given ε > 0, let (ϕε, ϑ) be an RDS generated by an SPDE depending on the
coefficient ε, and ϕ0 the corresponding deterministic dynamical system, i.e. ϕ0 is
independent of the random parameter ω. Then we reformulate the result on the
upper semi-continuity of random attractors in X, which can be found in [12, 31, 34].

Theorem 2.6. Suppose that (ϕε, ϑ) has a random attractor Aε = {Aε(ω);ω ∈ Ω}
and ϕ0 has a global attractor A0 in X, respectively. Assume that for all τ ≤ t ≤ 0
and P-a.e. ω ∈ Ω, there hold

(i) for every εn → 0+, and xn, x ∈ X with xn → x, we have

lim
n→∞

ϕεn(t− τ, ϑτω)xn = ϕ0(t, τ)x;
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(ii) (ϕε, ϑ) admits a random absorbing set Eε = {Eε(ω);ω ∈ Ω} ∈ D such that
for some deterministic positive constant M

lim sup
ε→0+

‖Eε‖X ≤M,

where ‖Eε‖X = supx∈Eε ‖x‖X ;
(iii) there exists ε0 > 0 such that

∪0<ε≤ε0 {Aε} is precompact in X. (2.1)

Then for P-a.e. ω ∈ Ω, we have d(Aε(ω),A0)→ 0, as ε↘ 0.

3. Existence and uniqueness of weak solutions

To model the white noise in the equations (1.1), based on the probability space
(Ω,F ,P) defined in the introduction, we need to define a time shift on Ω by

ϑtω(s) = ω(s+ t)− ω(t), ω ∈ Ω, t, s ∈ R. (3.1)

This shift ϑ is a group on Ω which leaves the Wiener measure P invariant. Specifi-
cally, P is ergodic with respect to ϑ. Then ϑ = {Ω,F ,P, (ϑt)t∈R} forms an ergodic
MDS, see [13].

We now convert system (1.1) with a random perturbation term into a determin-
istic one with a random parameter ω. For this purpose, we introduce the notation
z(t) = z(ϑtω) = (I−∆)−1hy(ϑtω), where ∆ is the Laplacian and y(t) the Ornstein-
Uhlenbeck(O-U) process taking the form

y(t) = y(ϑtω) = −
∫ 0

−∞
es(ϑtω)(s)ds, t ∈ R,

where ω(t) = W (t) is one dimensional Wiener process defined in the introduction.
Furthermore, y(t) satisfies the stochastic differential equations

dy + ydt = dω(t) for all t ∈ R.

Remark 3.1. Since y(ω) is tempered, in view of [9] or [5], there exists a tempered
variable r(ω) > 0 such that

|y(ω)|2 + |y(ω)|p ≤ r(ω), (3.2)

with
r(ϑtω) ≤ e

µ
2 |t|r(ω), t ∈ R, (3.3)

where we choose 0 < µ < 2. Note that since the inverse of I−∆ is a bounded linear
operator on H1(RN ), then by the Hölder inequality and using (3.2)-(3.3) and the
assumption (1.9), we can deduce that

‖z(ϑtω)‖2H1 + ‖z(ϑtω)‖pp ≤ ‖z(ϑtω)‖2H1 + cp1‖z(ϑtω)‖pH1
≤ c2e

µ
2 |t|r(ω), (3.4)

for t ∈ R, where c1 > 0 is the embedding constant of H1 ↪→ Lp and c2 a determin-
istic positive constant depending only on ‖h‖H1 , p, c1.

It is easy to show that

(I −∆)ztdt+ (I −∆)zdt = hdW (t).

Let u(t) satisfy (1.1). Using the change of variable v(t) = u(t) − εz(ϑtω) (where
ε ∈ (0, 1]), v(t) satisfies the equation (which depends on the random parameter ω)

vt −∆vt −∆v + v + f(x, v + εz(ϑtω)) = g, (3.5)
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with initial value condition

v(x, τ) = v0(x) = u0(x)− εz(ϑτω). (3.6)

In addition, we assume that p ≥ 2 for N ≤ 2 and 2 ≤ p ≤ N
N−2 + 1 for N ≥ 3,

where the condition on growth exponent p ensures that some Sobolev embeddings
hold.

Concerning the existence and uniqueness of solutions of (3.5)-(3.6), we can prove
them by using the Faedo-Galerkin method and some approximation arguments, see
a similar argument as [25, 6, 4]. Here, we only formulate this result and omit the
proof. Before giving this, we state the definition of weak solutions.

Definition 3.2. For any τ ∈ R, a stochastic process v(x, t), t ∈ [τ, T ], x ∈ RN is
called a weak solution of (3.5) if and only if

v ∈ C(τ, T ;H1(RN )) ∩ L∞(τ, T ;H1(RN )) ∩ Lp(τ, T ;Lp(RN )),
dv

dt
∈ L2(τ, T ;H1(RN )), v|t=τ = v0, a.e. in RN ,

and∫ T

τ

(
(vt, φ) + (∇vt,∇φ) + (∇v,∇φ) + (v, φ) + (f(x, v + εz(ϑtω)), φ)

)
dt

=
∫ T

τ

(g, φ)dt

(3.7)

for all test functions φ ∈ C∞0 ([τ, T ]× RN ) and P-a.e.ω ∈ Ω.

Lemma 3.3. Assume that (1.2)–(1.9) hold, g ∈ L2(RN ) and v0 ∈ H1(RN ). Then
for any τ ∈ R, τ < T ,

(i) the initial problem (3.5)-(3.6) possesses a unique weak v(t, ω; τ, v0) with the
initial value v0 = v(τ, ω; τ, v0), and

(ii) the mapping v0 7→ v(t, ω; τ, v0) is continuous and ω 7→ v(t, ω; τ, v0) is
(F ,B(H1(RN )× R)-measurable in H1(RN ) for all t > τ .

Remark 3.4. By (3.5), it follows that the weak solution v satisfies the energy
equation: for any τ ∈ R with τ ≤ t,

‖v(t)‖2H1 = e−µ(t−τ)‖v(τ)‖2H1 − (2− µ)
∫ t

τ

e−µ(t−s)‖v(s)‖2H1ds

− 2
∫ t

τ

e−µ(t−s)(f(x, v(s) + εz(ϑsω)), v(s))ds

+ 2
∫ t

τ

e−µ(t−s)(g, v(s))ds

(3.8)

where µ ∈ (0, 2).

Note that by Lemma 3.3 we have the measurability of solutions as mappings
from R+×Ω×H1(RN ) into H1(RN ). Now, we are in the position to define a RDS
(ϕ, ϑ) corresponding to the stochastic nonclassical diffusion equation (1.1). Put

ϕ(t− τ, ϑτω)u0 = u(t, ω; τ, u0) = v(t, ω; τ, u0 − εz(ϑτω)) + εz(ϑtω), (3.9)

for ω ∈ Ω, where u0 = u(τ, ω; τ, u0). Then from Lemma 3.3, (ϕ, ϑ) is a continuous
RDS on H1(RN ), where the MDS ϑ is defined in (3.1).
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4. Weak-to-weak continuity of solutions in H1(RN )

Although Lemma 3.3 implies that the weak solutions to (3.5)-(3.6) is norm-to-
norm continuous in H1(RN ), it will not be helpful for us to show the asymptotic
compactness which is indispensable to the existence of a random attractor for RDS
(ϕ, ϑ) defined by (3.9). Here, we will prove the weak continuous dependence of the
solutions with respect to the initial value conditions in H1(RN ). This result will be
one crucial condition for us to prove the asymptotic compactness of the associated
RDS (ϕ, ϑ).

Lemma 4.1. Assume that (1.2)-(1.9) are satisfied and g ∈ L2(RN ). Let the se-
quence {v(n)

0 }n≥1 ⊂ H1(RN ) such that

v
(n)
0 ⇀ v0 weakly in H1(RN ), (4.1)

and v(n)(t), v(t) the corresponding weak solutions. Then there exists a subsequence
(we will label again {v(n)(t)}n≥1) such that

v(n)(t) ⇀ v(t) weakly in H1(RN ) for all t > τ, (4.2)

Furthermore, the convergence in (4.2) is uniform in ε ∈ (0, 1] and on the time
interval [τ, T ].

Proof. We first give some estimates to show that the weak solutions v(n)(t) are
bounded in time t ∈ [τ, T ] and uniformly bounded in both n and ε in some proper
spaces.

Note that as the weak convergent sequence is bounded. Then there exists a
positive constant C1 such that

‖v(n)
0 ‖2H1 ≤ C1 for all n ∈ Z+, (4.3)

where and in the following Ci, i = 1, . . . , 6 are deterministic constants independent
of ε and n.

Now, in (3.5), we replace v(t) with v(n)(t), take the inner products with v(n)(t)
in L2(RN ) and use the assumptions (1.3)-(1.4), (1.6)-(1.7) and (1.9) to deduce that

d

dt
‖v(n)(t)‖2H1 + ‖v(n)(t)‖2H1 + α1‖u(n)(t)‖pp + α2‖u(n)(t)‖pa,p
≤ C2(‖z(ϑtω)‖2H1 + ‖z(ϑtω)‖pH1) + C3

(4.4)

is valid a.e. t ≥ τ . By integrating (4.4) from τ to t and using (4.3), we readily
prove the following bounds, uniformly in both n and ε ∈ (0, 1]:

v(n)(t) is uniformly bounded in L∞(τ, T ;H1(RN )), (4.5)

v(n)(t) is uniformly bounded in L2(τ, T ;H1(RN )), (4.6)

u(n)(t) is uniformly bounded in Lp(τ, T ;Lp(RN )), (4.7)

u(n)(t) is uniformly bounded in Lp(τ, T ;Lp(RN , a)),

where u(n)(t) = v(n)(t)+εz(ϑtω). At the same time, by using (1.3) and (1.7), along
with (4.7), we deduce that

f1(·, u(n)(t)) is uniformly bounded in Lq(τ, T ;Lq(RN )), (4.8)

a(·)f2(u(n)(t)) is uniformly bounded in Lq(τ, T ;Lq(RN )), (4.9)
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where q is the conjugate of p. On the other hand, we have

−∆v(n)(t) is uniformly bounded in L2(τ, T ;H−1(RN )). (4.10)

Hence, from (4.6) and (4.8)-(4.10) we infer that

v
(n)
t (t)−∆v(n)

t (t) is uniformly bounded in

L2(τ, T ;H−1(RN )) + Lq(τ, T ;Lq(RN )).
(4.11)

Furthermore, in (3.5), replacing v(t) by v(n)(t), then multiplying with v
(n)
t (t),

we find that

‖v(n)
t (t)‖2H1 +

d

dt
‖v(n)(t)‖2H1 ≤ C4‖u(n)(t)‖2p−2

H1 + ‖ψ2‖2 + ‖g‖2) + C5, (4.12)

where we have used the embedding H1 ↪→ L2p−2 under the assumptions on p and
N . Then integrating (4.12) from τ to T , connection with (4.3) and (4.5), we obtain

v
(n)
t (t) is uniformly bounded in L2(τ, T ;H1(RN )), (4.13)

and therefore along with (4.6) it implies that v(n)(t) ∈ C(τ, T ;H1(RN )), see [26,
Corollary 7.3].

Hence, by the compactness theorem (see, e.g. [30]) we can extract a subsequence
from {v(n)(t)}n (which we will repeatedly and wickedly label {v(n)(t)}n) such that

v(n)(t) ⇀ v̂(t) weakly* in L∞(τ, T ;H1(RN )),

v(n)(t) ⇀ v̂(t) weakly in L2(τ, T ;H1(RN )), (4.14)

v(n)(t)→ v̂(t) strongly in L2(τ, T ;L2(BR)), (4.15)

where BR = {x ∈ RN ; |x| ≤ R} for all R > 0. By using a similar method as [25], it
is not difficult to verify that v̂(t) satisfies (3.5)-(3.6) in the sense of Definition 3.2.
The uniqueness of solutions implies that v̂(t) = v(t).

For any τ ∈ R, by (4.14), we see that

v(n)(t) ⇀ v(t) weakly in H1(RN ), (4.16)

for almost every t ≥ τ . We then show that (4.16) holds for any t ≥ τ . Indeed, in
terms of (4.16), for any t ≥ τ , we can choose a enough small number h > 0 such
that

lim
n→∞

〈v(n)(t+ h)− v(t+ h), φ〉 = 0, ∀φ ∈ H−1(RN ), (4.17)

where 〈·, ·〉 denotes the pairing between H1 and its duality H−1. Hence by using
first (4.17) and then (4.13) we can infer that for any t ≥ τ ,

lim
n→∞

|〈v(n)(t)− v(t), φ〉|

≤ lim
n→∞

(
|〈v(t+ h)− v(t), φ > |+ | < v(n)(t+ h)− v(n)(t), φ〉|

)
≤ lim
n→∞

(
|〈
∫ t+h

t

vs(s)ds, φ〉|+ |〈
∫ t+h

t

v(n)
s (s)ds, φ〉|

)
≤ lim
n→∞

(
‖(v′‖L2(t,t+h;H1) + ‖(v′(n)‖L2(t,t+h;H1)

)
h1/2‖φ‖H−1 .

(4.18)

Hence by (4.18) we know that (4.2) is proved as claimed. �

Remark 4.2. The strong convergence in (4.15) can be achieved by the compactness
theorem [26, Theorem 8.1].



10 W. ZHAO, S. SONG EJDE-2015/282

5. Existence of random attractors in H1(RN )

We first show that the RDS (ϕ, ϑ) generated by the stochastic nonclassical dif-
fusion equations (1.1) admits a closed and Dµ-pullback random bounded absorbing
set in H1(RN ), where µ ∈ (0, 2) is based on the following consideration. In this
section, our proofs are closely related to the energy equality (3.8). Throughout this
paper, the number c is a generic constant independent of ε, t, z(ϑtω) and v(t).

Lemma 5.1. Assume that (1.2)-(1.9) are satisfied and g ∈ L2(RN ) with ε ∈ (0, 1].
Then there exists a closed and Dµ-pullback random bounded absorbing set Kµ =
{Kµ(ω);ω ∈ Ω} for the RDS (ϕ, ϑ) in H1(RN ); that is, for any D ∈ Dµ and P-a.e.
ω ∈ Ω, there exists T = T (D,ω) < 0 such that

ϕ(−τ, ϑτω)D(ϑτω) ⊆ Kµ(ω), for all τ ≤ T,

where the universe Dµ is the collection of nonempty subsets D = {D(ω);ω ∈ Ω} of
H1(RN ) such that

lim
τ→−∞

(
eµτ sup

u∈D(ϑτω)

{‖u‖2H1}
)

= 0, (5.1)

where µ ∈ (0, 2) and for every fixed µ the universe Dµ is inclusion closed and
Kµ ∈ Dµ.

Proof. We first estimate each term on the right hand side of (3.8). By (1.3)-(1.4)
and using a similar arguments as (4.2) in [34], we obtain∫

RN
f1(x, v + εz(ϑtω))v dx

≥ α1

2
‖u‖pp − εc(‖z(ϑtω)‖pp + ‖z(ϑtω)‖2)− c(‖ψ1‖1 + ‖ψ2‖2).

(5.2)

By using (1.6)-(1.7), we have∫
RN

a(x)f2(v + εz(ϑtω))v dx

=
∫

RN
a(x)f2(u)udx− ε

∫
RN

a(x)f2(u)z(ϑtω)dx

≥ α2

∫
RN

a(x)|u|pdx− γ
∫

RN
a(x)dx− εβ2

∫
RN

a(x)|u|p−1|z(ϑtω)|dx

− εδ
∫

RN
a(x)|z(ϑtω)|dx.

(5.3)

By the Young inequality, and using assumption (1.2), we obtain

εβ2

∫
RN

a(x)|u|p−1|z(ϑtω)|dx ≤ α2

2

∫
RN

a(x)|u|pdx+ εc

∫
RN
|z(ϑtω)|pdx, (5.4)

εδ

∫
RN

a(x)|z(ϑtω)|dx ≤ ε‖a‖∞
∫

RN
|z(ϑtω)|2dx+

δ2

4
‖a‖1. (5.5)

where c = c(α2, β2, p, ‖a‖∞). Then, it follows from (5.3)-(5.5) that∫
RN

a(x)f2(v + εz(ϑtω))v dx

≥ α2

2

∫
RN

a(x)|u|pdx− εc(‖z(ϑtω)‖pp + ‖z(ϑtω)‖2)− c‖a‖1.
(5.6)
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On the other hand, we have

2
∣∣∣ ∫

RN
gv dx

∣∣∣ ≤ (2− µ)‖v(t)‖2 +
1

2− µ
‖g‖2 ≤ (2− µ)‖v(t)‖2H1 +

1
2− µ

‖g‖2. (5.7)

Then, we incorporate (5.2),(5.6) and (5.7) into (3.8) to yield

‖v(t)‖2H1 +
∫ t

τ

e−µ(t−s)(α1‖u(s)‖pp + α2‖u(s)‖pa,p)ds

≤ e−µ(t−τ)‖v0‖2H1 + εe−µt
∫ t

τ

eµsς(ϑsω)ds+ c,

(5.8)

where
ς(ϑtω) = c(‖z(ϑtω)‖2 + ‖z(ϑtω)‖pp).

We now fix t ≤ 0. From (3.4), we have

‖v(t, ω; τ, u0)‖2H1

≤ e−µ(t−τ)‖v0‖2H1 + εe−µt
∫ t

τ

eµsς(ϑsω)ds+ c

≤ e−µt
(

2eµτ‖u0‖2H1 + 2εeµτ‖z(ϑτω)‖2H1 + ε

∫ t

τ

eµsς(ϑsω)ds+ c
)

≤ e−µt
(

2eµτ‖u0‖2H1 + 2εceµτe−
µ
2 τr(ω) + εc

∫ t

τ

e
µ
2 sr(ω)ds+ c

)
≤ e−µt

(
2eµτ‖u0‖2H1 + 2εce

µ
2 τr(ω) + εc

2
µ
r(ω) + c

)
.

(5.9)

Therefore, it follows from (5.9) that for every D ∈ Dµ, there exists T = T (D,ω) <
t ≤ 0 such that

‖v(t, ω; τ, u0)‖2H1 ≤ ce−µt(1 + εr(ω)), for all τ ≤ T. (5.10)

By noticing that u(0) = v(0) + εz(ω), letting t = 0 in (5.10), we obtain

‖u(0, ω; τ, u0)‖2H1 ≤ 2‖v(0, ω; τ, u0)‖2H1 + 2ε‖z(ω)‖2H1

≤ 2c(1 + εr(ω)) + 2ε‖z(ω)‖2H1

≤ R(ω) =: c(1 + εr(ω)),

(5.11)

for all τ ≤ T . Observing that

eµτR(ϑτω) = eµτ + εeµτr(ϑτω) ≤ eµτ + εe
µ
2 τr(ω)→ 0,

as τ → −∞. Hence Kµ = {‖u‖H1 ; ‖u‖2H1 ≤ c(1 + εr(ω)), ω ∈ Ω} ∈ Dµ. On the
other hand, from (5.11) we find that R(ω) is measurable, and so is the set-valued
mapping Kµ. Therefore Kµ is a closed and Dµ-pullback random bounded absorbing
set for the RDS (ϕ, ϑ) defined in (3.9). This completes the proof. �

Now, we will use the weak-to-weak continuity of solutions in Lemma 4.1 to
demonstrate the Dµ-pullback asymptotically compactness for the RDS (ϕ, ϑ) in
H1(RN ). In fact, we obtain the pre-compactness for the RDS (ϕ, ϑ) uniformly
in ε ∈ (0, 1], which is one of the crucial conditions for us to discuss the upper
semi-continuity in section 6.
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Lemma 5.2. Assume that (1.2)-(1.9) are satisfied, g ∈ L2(RN ), ε ∈ (0, 1] and
the universe Dµ defined by (5.1). Then for every fixed µ ∈ (0, 2), the RDS (ϕ, ϑ)
corresponding to the stochastic nonclassical diffusion equations (1.1) is Dµ-pullback
asymptotically compact in H1(RN ).

Proof. Let τn → −∞, and xn ∈ D(ϑτnω) with D ∈ Dµ. It suffices to show that the
sequence {ϕ(−τn, ϑτnω)xn}n is pre-compact in H1(RN ).

Put K = {K(ω);ω ∈ Ω} omitting the subscript µ, where

K = {‖u‖H1 ; ‖u‖2H1 ≤ c(1 + r(ω))}.
Then, K is also a closed and Dµ-pullback random bounded absorbing set (see
Lemma 5.1), so ϕ(−τn, ϑτnω)xn ∈ K(ω) for τn → −∞. By the boundedness of K
and weak compactness theorem, there exists some y0 ∈ H1(RN ) such that, up to a
subsequence,

ϕ(−τn, ϑτnω)xn ⇀ y0 weakly in H1(RN ) (5.12)
uniformly in ε ∈ (0, 1]. We need to show that the convergence in (5.12) is equivalent
to the norm convergence. That is, there exists a subsequence {n′} ⊂ {n} such that

ϕ(−τn′ , ϑτn′ω)xn′ → y0 strongly in H1(RN ). (5.13)

To this end, it suffices to show

lim sup
τn→−∞

‖ϕ(−τn, ϑτnω)xn − εz(ω)‖H1 ≤ ‖y0 − εz(ω)‖H1 . (5.14)

To prove the inequality (5.14), first, we give an equivalent form of the element
y0 by the RDS ϕ. Fix k > τn. By the cocycle property of the RDS ϕ, we have

ϕ(−τn, ϑτnω)xn = ϕ(−k, ϑkω)ϕ(−τn + k, ϑτnω)xn, (5.15)

and by using again Lemma 5.1 it gives

ϕ(−τn + k, ϑτnω)xn = ϕ(−τn + k, ϑτn−kϑkω)xn ∈ K(ϑkω), (5.16)

if τn converges to −∞. Then without loss generality, we may assume that for every
n ∈ Z+ there exists yk ∈ K(ϑkω) such that

ϕ(−τn + k, ϑτnω)xn ⇀ yk weakly in H1(RN ) (5.17)

uniformly in ε ∈ (0, 1]. From the definition of the RDS (ϕ, ϑ), the equality (5.15)
can be rewrote as the form of weak solutions. As by (3.9) we have

ϕ(−τn, ϑτnω)xn = ϕ(−k, ϑkω)ϕ(−τn + k, ϑτnω)xn
= u(0, ω; k, ϕ(−τn + k, ϑτnω)xn)

= v(0, ω; k, ϕ(−τn + k, ϑτnω)xn − εz(ϑkω)) + εz(ω),
(5.18)

so that along with (5.17) and (5.18), we infer that for every k ∈ Z−,
y0 = w- lim

τn→−∞
ϕ(−τn, ϑτnω)xn

= w- lim
τn→−∞

v(0, ω; k, ϕ(−τn + k, ϑτnω)xn − εz(ϑkω)) + εz(ω),

= v(0, ω; k, yk − εz(ϑkω)) + εz(ω) = u(0, ω; k, yk) = ϕ(−k, ϑkω)yk

(5.19)

uniformly in ε ∈ (0, 1]. On the other hand, because of

ϕ(−τn+k, ϑτnω)xn = u(k, ω; τn, xn) = v(k, ω; τn, xn−εz(ϑτnω))+εz(ϑkω), (5.20)

by (5.18) and (5.20) we have

ϕ(−τn, ϑτnω)xn = v(0, ω; k, v(k, ω; τn, xn − εz(ϑτnω)) + εz(ω). (5.21)
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Put y(n)(k) = v(k, ω; τn, xn − εz(ϑτnω)) and

v(n)(t) = v(t, ω; k, y(n)
k ), v(t) = v(t, ω; k, yk − εz(ϑkω)).

Then, from (5.17) it follows that y(n)(k) converges weakly to yk − εz(ϑkω) in
H1(RN ).

We now consider the energy equation (3.8) on the intervals [k, 0]. First in terms
of (5.21) and using (3.8) with t = 0 and τ = k, we find that

‖ϕ(−τn, ϑτnω)xn − εz(ω)‖2H1

= ‖v(0, ω; k, v(k, ω; τn, xn − εz(ϑτnω)))‖2H1

= eµk‖y(n)(k)‖2H1 − 2
∫ 0

k

eµs(f1(x, v(n)(s) + εz(ϑsω)), v(n)(s))ds

− 2
∫ 0

k

eµs(af2(v(n)(s) + εz(ϑsω)), v(n)(s)ds

+ 2
∫ 0

k

eµs(g, v(n)(s))ds− (2− µ)
∫ 0

k

eµs‖v(n)(s)‖2H1ds

= I1 + I2 + I3 + I4 + I5.

(5.22)

First, we estimate I1. In (5.8), giving t = k and τ = τn, by utilizing (3.4), we
deduce that

I1 = eµk‖y(n)(k)‖2H1

= eµk‖v(k, ω; τn, xn − εz(ϑτnω))‖2H1

≤ 2eµτn‖xn‖2H1 + 2eµτn‖z(ϑτnω)‖2H1 +
∫ k

τn

eµs(ς(ϑsω) + c)ds

≤ 2eµτn‖xn‖2H1 + 2ce
µ
2 τnr(ω) + ce

µ
2 k(1 + r(ω)),

and hence by xn ∈ D(ϑτnω), we obtain that

lim
τn→−∞

I1 ≤ ce
µ
2 k(1 + r(ω)), (5.23)

where c is a deterministic positive constant independent of k. To compute I2, we
rewrite it as

I2 = −2
∫ 0

k

eµs(f1(x, v(n)(s) + εz(ϑsω)), v(n)(s))ds

= −2
∫ 0

k

eµs
∫

RN (|x|≤R)

f1(x, v(n)(s) + εz(ϑsω))v(n)(s) dx ds

− 2
∫ 0

k

eµs
∫

RN (|x|≥R)

f1(x, v(n)(s) + εz(ϑsω))v(n)(s) dx ds

= I ′2 + I ′′2 ,

(5.24)
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where the radius R is large enough. To estimate I ′2, we rewrite it as

I ′2 = −2
∫ 0

k

eµs
∫

RN (|x|≤R)

f1(x, v(n)(s) + εz(ϑsω))v(n)(s) dx ds

= −2
∫ 0

k

eµs
∫

RN (|x|≤R)

f1(x, u(n)(s))u(n)(s) dx ds

+ 2
∫ 0

k

eµs
∫

RN (|x|≤R)

f1(x, u(n)(s))z(ϑsω) dx ds.

(5.25)

Note that from (4.15), u(n)(s) → u(s) for almost every (t, x) ∈ [k, 0] × BR, where
BR = {x ∈ RN ; |x| ≤ R}. Then by the continuity of f1, we have

f1(x, u(n)(s))u(n)(s)→ f1(x, u(s))u(s), a.e. (t, x) ∈ [k, 0]×BR. (5.26)

On the other hand, from (1.3) we see that f1(x, u(n)(s))u(n)(s) ≥ −ψ1(x), ψ1 ∈
L1(RN ), and by the Hölder inequality,∣∣∣ ∫ 0

k

eµs
∫

RN (|x|≤R)

f1(x, u(n)(s))u(n)(s) dx ds
∣∣∣

≤
(∫ 0

k

eµs‖f1(x, u(n)(s))‖qqds
)1/q(∫ 0

k

eµs‖u(n)(s)‖ppds
)1/p

≤M < +∞,
(5.27)

where we have used (4.7) and (4.8), the positive constant M independent of ε, n.
Then (5.26) and (5.27) together imply that we can utilize the Fatou-Lebesgue
lemma to the nonnegative sequence f1(x, u(n)(s))u(n)(s) + ψ1(x) to get that

lim inf
τn→−∞

∫ 0

k

eµs
∫

RN (|x|≤R)

f1(x, u(n)(s))u(n)(s) dx ds

≥
∫ 0

k

eµs
∫

RN (|x|≤R)

lim inf
τn→−∞

f1(x, u(n)(s))u(n)(s) dx ds

=
∫ 0

k

eµs
∫

RN (|x|≤R)

f1(x, u(s))u(s) dx ds.

(5.28)

Here we note that by (5.27), the left side of (5.28) is finite. On the other hand,
since f1(x, u(n)(s))→ f1(x, u(s)) is weakly convergent in Lq(k, 0;Lq(BR)) by (4.8),
and connection with our assumption (1.9), z(ϑsω) ∈ H1 ↪→ Lp, then we have

lim
τn→−∞

∫ 0

k

eµs
∫

RN (|x|≤R)

f1(x, u(n)(s))z(ϑsω) dx ds

=
∫ 0

k

eµs
∫

RN (|x|≤R)

f1(x, u(s))z(ϑsω) dx ds.
(5.29)

Hence taking τn → −∞ in (5.25) and then using (5.28) and (5.29) we find that

lim sup
τn→−∞

I ′2 ≤ −2
∫ 0

k

eµs
∫

RN (|x|≤R)

f1(x, u(s))v(s) dx ds. (5.30)
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We next estimate I ′′2 . By using (1.3) we have

I ′′2 = −2
∫ 0

k

eµs
∫

RN (|x|≥R)

f1(x, v(n)(s) + εz(ϑsω))v(n)(s) dx ds

= −2
∫ 0

k

eµs
∫

RN (|x|≥R)

f1(x, u(n)(s))u(n)(s) dx ds

+ 2
∫ 0

k

eµs
∫

RN (|x|≥R)

f1(x, u(n)(s))z(ϑsω) dx ds

≤ 2
∫ 0

k

eµs
∫

RN (|x|≥R)

ψ1(x) dx ds

+ 2
∫ 0

k

∫
RN (|x|≥R)

(
e

1
qµs|f1(x, u(n)(s))|

)(
e

1
pµs|z(ϑsω)|

)
dx ds

≤ 2
∫ 0

k

eµs
∫

RN (|x|≥R)

ψ1(x) dx ds+ 2
(∫ 0

k

eµs
∫

RN (|x|≥R)

|z(ϑsω)|p dx ds
)1/p

×
(∫ 0

k

eµs
∫

RN
|f1(x, u(n)(s))|q dx ds

)1/q

.

(5.31)
Note that ψ1 ∈ L1(RN ), and z(ϑsω) ∈ H1 ↪→ Lp. Then we may choose the radius
R large enough such that for any ε > 0,∫ 0

k

eµs
∫

RN (|x|≥R)

ψ1(x) dx ds ≤ cε,∫ 0

k

eµs
∫

RN (|x|≥R)

|z(ϑsω)|p dx ds ≤ cε.
(5.32)

On the other hand, by (4.8), there is constant M > 0 independent of n and ε such
that ∫ 0

k

eµs
∫

RN
|f1(x, u(n)(s))|q dx ds ≤M. (5.33)

Then by (5.31)-(5.33) we have

lim sup
τn→−∞

I ′′2 ≤ cε, (5.34)

where the constant c is independent of ε.
By combining (5.30) and (5.34) into (5.24) we find that for R large enough,

lim sup
τn→−∞

I2 ≤ cε− 2
∫ 0

k

eµs
∫

RN (|x|≤R)

f1(x, u(s))v(s) dx ds. (5.35)

Similarly we can show that

lim sup
τn→−∞

I3 ≤ cε− 2
∫ 0

k

eµs
∫

RN (|x|≤R)

a(x)f2(u(s))v(s) dx ds. (5.36)

By the weak convergence of {v(n)(s)}n in L2(k, 0;H1(RN )) in (4.14), we immedi-
ately get that

lim
τn→−∞

I4 = lim
τn→−∞

∫ 0

k

eµs(g, v(n)(s)) dx ds =
∫ 0

k

eµs(g, v(s))ds, (5.37)
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lim inf
τn→−∞

I5 = lim inf
τn→−∞

∫ 0

k

eµs‖v(n)(s)‖2H1ds ≥
∫ 0

k

eµs‖v(s)‖2H1ds. (5.38)

Then, we include (5.23) and (5.35)-(5.38) into (5.22), by letting R→ +∞, to yield

lim sup
τn→−∞

‖ϕ(−τn, ϑτnω)xn − εz(ω)‖2H1

≤ ce
µ
2 k(1 + r(ω))− (2− µ)

∫ 0

k

eµs‖v(s)‖2H1ds

− 2
∫ 0

k

eµs
∫

RN
f1(x, u(s))v(s) dx ds

− 2
∫ 0

k

eµs
∫

RN
a(x)f2(u(s))v(s) dx ds+ 2

∫ 0

k

eµs
∫

RN
gv(s) dx ds.

(5.39)

On the other hand, from the energy equality (3.8), we have

− (2− µ)
∫ 0

k

eµs‖v(s)‖2H1ds− 2
∫ 0

k

eµs
∫

RN
f1(x, u(s))v(s) dx ds

− 2
∫ 0

k

eµs
∫

RN
a(x)f2(u(s))v(s) dx ds+ 2

∫ 0

k

eµs
∫

RN
gv(s) dx ds

= ‖v(0, ω; k, yk − εz(ϑkω))‖2H1 = ‖ϕ(−k, ϑkω)yk − εz(ω)‖2H1 .

(5.40)

Then it follows from (5.39)-(5.40) that

lim sup
τn→−∞

‖ϕ(−τn, ϑτnω)xn − εz(ω)‖2H1

≤ ce
µ
2 k(1 + r(ω)) + ‖ϕ(−k, ϑkω)yk − εz(ω)‖2H1

= ce
µ
2 k(1 + r(ω)) + ‖y0 − εz(ω)‖2H1

(5.41)

by (5.19). Letting k → −∞ in (5.41), we have showed that

lim sup
τn→−∞

‖ϕ(−τn, ϑτnω)xn − εz(ω)‖2H1 ≤ ‖y0 − εz(ω)‖2H1 . (5.42)

This concludes the proof. �

We now state our main result in this section.

Theorem 5.3. Assume that (1.2)-(1.9) are satisfied, g ∈ L2(RN ). Then the RDS
(ϕ, ϑ) corresponding to the stochastic nonclassical diffusion equations (1.1) admits
a unique Dµ-random attractor Aµ in H1(RN ), where the universe Dµ is defined in
(5.1). Furthermore, if 0 < ν ≤ µ < 2, then Aν ⊆ Aµ.

Proof. By Lemmas 5.1 and 5.2 and by Theorem 2.5, we obtain the existence of
unique Dµ-random attractor for the RDS (ϕ, ϑ) in Dµ for every µ ∈ (0, 2). On the
other hand, in view of the definition of Dµ, if ν ≤ µ, then Dν ⊆ Dµ. Note that
Aµ as a random attractor attracts every set of the universe Dµ, and hence attracts
every set of the universe Dν . Since Aν ∈ Dν , then Aµ attracts Aν as an element of
Dν , i.e. for P-a.e. ω ∈ Ω,

lim
τ→−∞

d(ϕ(−τ, ϑτω)Aν(ϑτω),Aµ(ω)) = 0,

where d is the Hausdorff semi-metric. By the invariant property of random attrac-
tor, ϕ(−τ, ϑνω)Aν(ϑτω) = Aν(ω) for all τ < 0 and P-a.e. ω ∈ Ω. Then we have
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d(Aν(ω),Aµ(ω)) = 0, which implies that Aν(ω) ⊆ Aµ(ω) for P-a.e. ω ∈ Ω, as
required. �

Remark 5.4. From Theorem 5.3, it follows that the uniqueness for the RDS (ϕ, ϑ)
related to (1.1) relies on the choice of the universe Dµ. If the universe Dµ increases
with respect to the parameter µ in the meaning of sets inclusion relation, so does
the corresponding random attractors Aµ.

Our method can also be used for studying the non autonomous nonclassical
diffusion equation

ut −∆ut −∆u+ u+ f(x, u) = g(x, t) + εhẆ , x ∈ RN ,

u(x, τ) = u0(x), x ∈ RN .

6. Upper semi-continuity of random attractors at ε = 0

In this section, to indicate the dependence of solutions of (1.1) on ε, we write
the solutions as uε, and the corresponding RDS as (ϕε, ϑ). Without loss generality,
we fix µ = 1 in this section.

In the last section, we showed that (ϕε, ϑ) possesses a D-random attractor Aε,
where D is defined in (5.1) with µ = 1. When ε = 0, the system (1.1) reduces into
the deterministic equation

ut −∆ut −∆u+ u+ f(x, u) = g(x), x ∈ RN ,

u(x, τ) = u0(x), x ∈ RN , t > τ,
(6.1)

while the nonlinearity f(x, u) = f1(x, u)+a(x)f2(u) satisfies that (1.2)-(1.4), (1.6)-
(1.7) and additionally,

∂

∂s
f1(x, s) ≥ −l,

∣∣ ∂
∂s
f1(x, s)

∣∣ ≤ α3|s|p−2 + ψ3(x), ψ3 ∈ L∞(RN ), (6.2)

∂

∂s
f2(s) ≥ −l,

∣∣ ∂
∂s
f2(s)

∣∣ ≤ α3|s|p−2 + κ, (6.3)

where α3, l, κ ≥ 0. Note that we have replaced the assumptions (1.5) and (1.8) by
the above (6.2) and (6.3), respectively.

It is easy to check that the solution of (6.1) defines a continuous deterministic
dynamical system on H1(RN ), denoted by ϕ0. Note that all the results in the
previous section hold for ε = 0. In particular, ϕ0 admits a unique global attractor
in H1(RN ), denoted by A0.

The purpose of this section is to establish the relationships of the random at-
tractors Aε = {Aε(ω);ω ∈ Ω} and the global attractor A0 when ε→ 0+.

We first show that, as ε→ 0+, the solutions of the stochastic nonclassical diffu-
sion equations (1.1) converge to the limiting deterministic equations (6.1).

Lemma 6.1. Suppose that g ∈ L2(RN ), (1.2)-(1.4), (1.6)-(1.7), (1.9), and (6.2)-
(6.3) hold. Given 0 < ε ≤ 1, let uε and u be the solutions of equations (1.1) and
(6.1) with initial conditions uε0 and u0, respectively. Then for P-a.e. ω ∈ Ω and
τ ≤ t ≤ 0, we have

‖uε(t, ω; τ, uε0)− u(t; τ, u0)‖2H1

≤ ce−cτ‖uε0 − u0‖2H1 + cεe−cτ (‖uε0‖2H1 + ‖u0‖2H1) + cεe−cτ (1 + r(ω)),

where c is a deterministic positive constant independent of ε, and r(ω) is as in
(3.4).
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Proof. Put vε = uε(t, ω; τ, uε0) − εz(θtω) and U = vε − u, where vε and u satisfy
(3.5) and (6.1), respectively. Then we obtain that U is a solution of the equation

Ut −∆ut −∆U + U + f(x, uε)− f(x, u) = 0. (6.4)

Multiplying by U and integrating over RN , we find that

1
2
d

dt
(‖U‖2 + ‖∇U‖2) + ‖∇U‖2 + ‖U‖2

= −
∫

RN
f(x, uε)U dx+

∫
RN

f(x, u)U dx.
(6.5)

Note that

−
∫

RN
f(x, uε)U dx+

∫
RN

f(x, u)U dx

= −
∫

RN
(f1(x, uε)− f1(x, u))U dx−

∫
RN

a(x)((f2(uε)− f2(u))U dx

=
∫

RN

∂

∂s
f1(x, s)(u− uε)U dx+

∫
RN

a(x)
∂

∂s
f2(s)(u− uε)U dx

=: I1 + I2,

(6.6)

For the term I1, it follows from (6.2) and (6.3) that

I1

= −
∫

RN

∂

∂s
f1(x, s)U2dx− ε

∫
RN

∂

∂s
f1(x, s)z(ϑtω)U dx

≤ l‖U‖2 + εα3

∫
RN

(|uε|+ |u|)p−2|z(ϑtω)||U |dx+ ε

∫
RN

ψ3(x)|z(ϑtω)||U |dx

≤ l‖U‖2 + cε(‖uε‖pp + ‖u‖pp + ‖z(ϑtω)‖pp + ‖U‖pp)
+ (‖U‖2 + ε‖ψ3‖2∞‖z(ϑtω)‖2)

≤ (l + 1)‖U‖2 + cε(‖uε‖pp + ‖u‖pp + ‖z(ϑtω)‖2 + ‖z(ϑtω)‖pp) ,

(6.7)

where we have used that ‖U‖pp = ‖uε−u− z(ϑtω)‖pp ≤ c‖uε‖pp + ‖u‖pp + ‖z(ϑtω)‖pp).
Similarly, we have

I2 ≤ (l + 1)‖a‖∞‖U‖2 + cε(‖uε‖pp + ‖u‖pp + ‖z(ϑtω)‖2 + ‖z(ϑtω)‖pp). (6.8)

Hence combinations (6.6)-(6.8) give

−
∫

RN
f(x, uε)U dx+

∫
RN

f(x, u)U dx

≤ c‖U‖2 + cε(‖uε‖pp + ‖u‖pp + ‖z(ϑtω)‖2 + ‖z(ϑtω)‖pp),

from which and (6.5) we obtain that, using (3.4),

d

dt
‖U‖2H1 ≤ c‖U‖2H1 + cε(‖uε‖pp + ‖u‖pp) + cεe

µ
2 |t|r(ω), (6.9)
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where c is deterministic constant. We now integrate (6.9) over [τ, t](t ≤ 0) to obtain

‖U(t)‖2H1

≤ ec(t−τ)‖U(τ)‖2H1 + cεect
∫ t

τ

e−cs(‖uε‖pp + ‖u‖pp)ds

+ cεectr(ω)
∫ t

τ

e−(µ2 +c)sds

≤ ec(t−τ)‖U(τ)‖2H1 + cεec(t−τ)
∫ t

τ

(‖uε‖pp + ‖u‖pp)ds+ cεec(t−τ)−
µ
2 τr(ω)

≤ e−cτ‖U(τ)‖2H1 + cεe−cτ
∫ t

τ

(‖uε‖pp + ‖u‖pp)ds+ cεe−cτr(ω),

(6.10)

where we have used eµt ≤ 1 for t ≤ 0. By (5.8), using (3.4) we obtain that∫ t

τ

e−µ(t−s)‖uε(s)‖ppds ≤ e−µ(t−τ)‖vε0‖2H1 + εe−µt
∫ t

τ

eµsς(ϑsω)ds+ c

≤ e−µ(t−τ)‖uε0 − εz(ϑtω)‖2H1 + cεe−
µ
2 tr(ω) + c .

(6.11)

Because e−µ(t−s) ≥ e−µ(t−τ) for τ ≤ t ≤ 0, by (6.11) we obtain∫ t

τ

‖uε(s)‖ppds ≤ ‖uε0 − εz(ϑtω)‖2H1 + cεe
µ
2 t−µτr(ω) + ceµ(t−τ)

≤ ‖uε0 − εz(ϑtω)‖2H1 + cεe−µτr(ω) + ce−µτ .

(6.12)

Similarly, by (6.1) we can deduce that∫ t

τ

‖u(s)‖ppds ≤ ‖u0‖2H1 + c. (6.13)

Hence, from (6.10), (6.12)-(6.13) it follows that

‖U(t)‖2H1 ≤ e−cτ‖U(τ)‖2H1 + cεe−cτ (‖uε0‖2H1 + ‖u0‖2H1) + cεe−cτ (1 + r(ω)), (6.14)

then we naturally obtain

‖uε(t, ω; τ, uε0)− u(t, τ, u0)‖2H1

= ‖U(t) + εz(ϑtω)‖2H1

≤ 2‖U(t)‖2H1 + 2ε‖z(ϑtω)‖2H1 ≤ 2‖U(t)‖2H1 + cεe−
µ
2 tr(ω)

≤ 2e−cτ‖U(τ)‖2H1 + cεe−cτ (‖uε0‖2H1 + ‖u0‖2H1) + cεe−cτ (1 + r(ω))

= 2e−cτ‖uε0 − u0 − z(ϑτω)‖2H1 + cεe−cτ (‖uε0‖2H1 + ‖u0‖2H1) + cεe−cτ (1 + r(ω))

≤ 4e−cτ‖uε0 − u0‖2H1 + cεe−cτ (‖uε0‖2H1 + ‖u0‖2H1) + cεe−cτ (1 + r(ω)),

where we have used e−µt ≤ e−µτ for τ ≤ t ≤ 0. �

Theorem 6.2. Suppose that g ∈ L2(RN ), (1.2)-(1.4), (1.6)-(1.7), (1.9), and (6.2)-
(6.3) hold. Then the random attractors Aε is upper semi-continuous at ε = 0, i.e.,
for P-a.e.ω ∈ Ω,

lim
ε↘0

d(Aε(ω),A0) = 0,

where d is the Haustorff semi-metric in H1(RN ).
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Proof. From Lemma 6.1, we know that the RDS (ϕε, ϑ) converges to the DS ϕ0

in H1(RN ) when ε ↘ 0 and ‖uε0 − u0‖H1 → 0. On the other hand, it follows
from Lemma 5.1 that for every 0 < ε ≤ 1, the RDS (ϕε, ϑ) possesses a D-random
absorbing set Eε (here for brevity we do not consider the dependence of Eε on µ),
that is to say, for every D ∈ D and P-a.e.ω ∈ Ω, there exists T = T (D,ω) ≤ 0 such
that for all τ ≤ T

‖ϕ(−τ, ϑτω)D(ϑτω)‖2H1 ≤M(1 + εr(ω)),

where M is a deterministic constant independent of ε, r(ω) in (3.4) and D (where
Dµ = D) in (5.1). Denote

Eε = {u ∈ H1(RN ); ‖u‖2H1 ≤M(1 + εr(ω))}. (6.15)

Then Eε ∈ D, and for P-a.e.ω ∈ Ω, it produces that

lim sup
ε↓0

‖Eε‖H1 ≤M.

Finally, we shall show that for P-a.e.ω ∈ Ω, the union

A(ω) = ∪0<ε≤1{Aε(ω)} is precompact in H1(RN ). (6.16)

Indeed, for any sequence {un}n ⊂ A(ω), there exists some εn ∈ (0, 1] such that
un ∈ Aεn(ω) for all n ∈ Z+. According to the invariance of the random attractor
Aεn , there is a sequence vn ∈ Aεn(ϑτnω) such that

un = ϕεn(−τn, ϑτnω)vn, n ∈ Z+.

By the proof of Lemma 5.2, it has showed that ϕε is pre-compact in H1(RN )
uniform in ε ∈ (0, 1] and thus ϕεn(−τn, ϑτnω)vn has a convergent subsequence in
H1(RN ) with respect to all εn. Therefore, we obtain that (6.16) holds true. The
conditions of Theorem 2.6 are satisfied. The proof is complete. �
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