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WELL-POSEDNESS OF AN ELLIPTIC EQUATION WITH
INVOLUTION

ALLABEREN ASHYRALYEV, ABDIZHAHAN M. SARSENBI

Abstract. In this article, we study a mixed problem for an elliptic equation
with involution. This problem is reduced to boundary value problem for the

abstract elliptic equation in a Hilbert space with a self-adjoint positive definite

operator. Operator tools permits us to obtain stability and coercive stability
estimates in Hölder norms, in t, for the solution.

1. Introduction

Elliptic equations have important applications in a wide range of applications
such as physics, chemistry, biology and ecology and other fields. In mathematical
modeling, elliptic equations are used together with boundary conditions specifying
the solution on the boundary of the domain. Dirichlet and Neumann conditions
are examples of classical boundary conditions. The role played by coercive inequal-
ities (well-posedness) in the study of local boundary-value problems for elliptic and
parabolic differential equations is well known (see, e.g., [20, 29] and the references
therein). Mathematical models of various physical, chemical, biological or environ-
mental processes often involve nonclassical conditions. Such conditions are usually
identified as nonclassical boundary conditions and reflect situations when a data on
the domain boundary can not be measured directly, or when the data on the bound-
ary depends on the data inside the domain. Well-posedness of various classical and
nonclassical boundary value problems for partial differential and difference equa-
tions has been studied extensively by many researchers with the operator method
tool (see [1, 2, 3, 4, 5, 6, 8, 11, 14, 15, 16, 19, 26, 27, 28]).

The theory of functional-differential equations with the involution has received
less attention than functional-differential equations. Except for a few works [1,
21, 30] parabolic differential and difference equations with the involution are not
studied enough in the literature.

For example, in [30], the mixed problem for a parabolic partial differential equa-
tion with the involution with respect to t

ut(t, x) = auxx(t, x) + buxx(−t, x), 0 < x < l, −∞ < t <∞
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with the Dirichlet condition in x was studied. The Fourier method is common
used method to get existence of unbounded solutions and non existence of solution
dependent on coefficients a and b.

Papers [22, 12], the mixed problem for a first-order partial differential equation
with the involution was investigated. The Fourier method was used to find a classi-
cal solution of the mixed problem for a first-order differential equation with involu-
tion. Application of the Fourier method was substantiated using refined asymptotic
formulas obtained for eigenvalues and eigenfunctions of the corresponding spectral
problem. The Fourier series representing the formal solution was transformed us-
ing certain techniques, and the possibility of its term-by-term differentiation was
proved.

The paper [13] was devoted to the study of first order linear problems with involu-
tion and periodic boundary value conditions. First, it was proved a correspondence
between a large set of such problems with different involutions to later focus atten-
tion to the case of the reflection. Then, different cases for which a Green’s function
can be obtained explicitly, it was derived several results in order to obtain informa-
tion about its sign. More general existence and uniqueness of solution results were
established.

In [17, 18], the basic properties of systems of eigenfunctions and associated func-
tions for one kind of generalized spectral problems for a second-order and a first-
order ordinary differential operators.

In [25], the notion of regularity of boundary conditions for the simplest second-
order differential equation with a deviating argument was introduced. The Riesz
basis property for a system of root vectors of the corresponding generalized spectral
problem with regular boundary conditions (in the sense of the introduced definition)
was established. Examples of irregular boundary conditions to which the theory of
Il’in basis property can be applied were given.

In [24], a nonclassical operator L in L2(−1, 1), generated by the differential
expression with shifted argument

Lu := −u′′(−x), −1 < x < 1 (1.1)

and the boundary conditions

αju
′(−1) + βju

′(1) + αj1u(−1) + βj1u(1) = 0, j = 1, 2 (1.2)

was considered. For the spectral problem corresponding to (1.1) and (1.2), the
author introduces a concept of regular boundary conditions (1.2). In some sense,
the definition is similar to that of strong (Birkhoff) regular boundary conditions
(1.2) for second-order ordinary differential equations. The main result of the paper
states that a system of eigenfunctions and associated functions of the operator L
forms an unconditional basis of the space L2(−1, 1).

In the paper [23], spectral problem for a model second-order differential opera-
tor with an involution was considered. An operator was given by the differential
expression Lu = −u′′(−x) and boundary conditions of general form. A criterion
for the basis property of the systems of eigenfunctions of this operator in terms of
the coefficients in the boundary conditions was obtained.
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In this article, we study the mixed problem for an elliptic equation with the
involution

−∂
2u(t, x)
∂t2

= (a(x)ux(t, x))x + β(a(−x)ux(t,−x))x − σu(t, x) + f(t, x),

−l < x < l, 0 < t < T,

u(t,−l) = u(t, l), ux(t,−l) = ux(t, l), 0 ≤ t ≤ T,
u(0, x) = ϕ(x), u(T, x) = ψ(x), −l ≤ x ≤ l,

ϕ(−l) = ϕ(l), ψ(−l) = ψ(l), ϕ′(−l) = ϕ′(l), ψ′(−l) = ψ′(l),

(1.3)

where u(t, x) is unknown function, ϕ(x), ψ(x), a(x), and f(t, x) are sufficiently
smooth functions, a ≥ a(x) = a(−x) ≥ δ > 0 and σ > 0 is a sufficiently large
number.

Here, we study problem (1.3) for an elliptic equation with the involution by
using the operator tool in monograph [10]. We establish stability estimates in the
C([0, T ], L2[−l, l]) norm, and coercive stability estimates in the Cα([0, T ], L2[−l, l])
and Cα0T ([0, T ], L2[−l, l]) norms for the solution of this problem.

2. Preliminaries and statement of main results

To formulate our results, we introduce the Hilbert L2[−l, l] of all integrable
functions f defined on [−l, l], equipped with the norm

‖f‖L2[−l,l] =
(∫ l

−l
|f(x)|2dx

)1/2

.

We introduce the inner product in L2[−l, l] by

〈u, v〉 =
∫ l

−l
u(x)v(x)dx.

In this article, Cα([0, T ], E) and Cα0T ([0, T ], E) (0 < α < 1) stand for Banach spaces
of all abstract continuous functions ϕ(t) defined on [0, T ] with values in E satisfying
a Hölder condition for which the following norms are finite

‖ϕ‖Cα([0,T ],E) = ‖ϕ‖C([0,T ],E) + sup
0≤t<t+τ≤T

‖ϕ(t+ τ)− ϕ(t)‖E
τα

,

‖ϕ‖Cα0T ([0,T ],E) = ‖ϕ‖C([0,T ],E) + sup
0≤t<t+τ≤T

(t+ τ)α(T − t)α‖ϕ(t+ τ)− ϕ(t)‖E
τα

,

respectively. Here, C([0, T ], E) stands for the Banach space of all abstract contin-
uous functions ϕ(t) defined on [0, T ] with values in E equipped with the norm

‖ϕ‖C([0,T ],E) = max
0≤t≤T

‖ϕ(t)‖E .

Definition 2.1. An operator A densely defined in a Banach space E with domain
D(A) is called positive in E, if its spectrum σA lies in the interior of the sector of
angle ϕ, 0 < ϕ < π, symmetric with respect to the real axis, and moreover on the
edges of this sector S1(ϕ) = {ρeiϕ : 0 ≤ ρ ≤ ∞} and S2(ϕ) = {ρe−iϕ : 0 ≤ ρ ≤ ∞},
and outside of the sector the resolvent (λ−A)−1 is subject to the bound (see [9])

‖(A− λ)−1‖E→E ≤
M

1 + |λ|
.
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The infimum of all such angles ϕ is called the spectral angle of the positive operator
A and is denoted by ϕ(A) = ϕ(A,E). The operator A is said to be strongly positive
in a Banach space E if ϕ(A,E) < π

2 .

Throughout this article, we will indicate with M positive constants which can
be different from time to time and we are not interested in precise. We will write
M(α, β, · · · ) to stress the fact that the constant depends only on α, β, · · · .

With the help of the positive operator A, we introduce the fractional spaces
Eα = Eα(E,A), 0 < α < 1, consisting of all v ∈ E for which the following norm is
finite [9]:

‖v‖Eα = ‖v‖E + sup
λ>0

λ1−α‖A exp{−λA}v‖E . (2.1)

Finally, we introduce a differential operator Ax defined by the formula

Axv(x) = −(a(x)vx(x)x − β(a(−x)vx(−x))x + σv(x) (2.2)

with the domain D(Ax) = {u, uxx ∈ L2[−l, l] : u(−l) = u(l), u′(−l) = u′(l)}.
We can rewrite problem (1.3) in the following abstract form

− utt(t) +Au(t) = f(t), 0 < t < T, u(0) = ϕ, u(T ) = ψ (2.3)

in a Hilbert space H = L2[−l, l] with the unbounded operator A = Ax defined
by formula (2.2). Here, f(t) = f(t, x) and u(t) = u(t, x) are known and unknown
abstract functions respectively and they are defined on (0, T ) with values in H =
L2[−l, l], ϕ = ϕ(x), ψ = ψ(x), and a = a(x) are given smooth elements of H =
L2[−l, l].

The main result of present paper is the following theorem on stability esti-
mates of (1.3) in spaces C([0, T )], L2[−l, l]) and coercive stability estimates in
Cα([0, T ], L2[−l, l]) and Cα0T ([0, T ], L2[−l, l]) norms for the solution of problem
(1.3).

Theorem 2.2. Assume that δ − a|β| ≥ 0, ϕ(x), ϕxx(x), ψ(x), ψxx(x) ∈ L2[−l, l]
and f(t, x) ∈ Cα0T ([0, T ], L2[−l, l]). Then the solution of (1.3) satisfies stability
estimates

‖u‖C([0,T ],L2[−l,l]) ≤M(δ, σ, β, l)[‖ϕ‖L2[−l,l] + ‖ψ‖L2[−l,l] + ‖f‖C([0,T ],L2[−l,l])],

and the coercive stability estimates

‖utt‖Cα0T ([0,T ],L2[−l,l]) + ‖uxx‖Cα0T ([0,T ],L2[−l,l])

≤M(δ, σ, α, β, l)
[
‖ϕxx‖L2[−l,l] + ‖ψxx‖L2[−l,l] + ‖f‖Cα0T ([0,T ],L2[−l,l])

]
.

Theorem 2.3. Assume δ − a|β| ≥ 0, ϕ(x), ϕxx(x), ψ(x), ψxx(x) ∈ L2[−l, l] and

(a(x)ψx(x))x + α(a(−x)ψx(−x))x − σψ(x) + f(T, x) = 0,

(a(x)ϕx(x))x + α(a(−x)ϕx(−x))x − σϕ(x) + f(0, x) = 0

and f(t, x) ∈ Cα([0, T ], L2[−l, l]). Then the solution of (1.3) satisfies coercive
stability estimate

‖utt‖Cα([0,T ],L2[−l,l]) + ‖uxx‖Cα([0,T ],L2[−l,l]) ≤M(δ, σ, α, β, l)‖f‖Cα([0,T ],L2[−l,l]) .

The proofs of Theorem 2.2 and 2.3 are based on the following abstract The-
orem on stability of problem (2.3) in C([0, T ], E) space and coercive stability in
Cα([0, T ], E) and Cα0T ([0, T ], E) spaces and on self-adjointness and positive definite
of the unbounded operator A = Ax defined by formula (2.2) in L2[−l, l] space.
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Theorem 2.4 ([10]). Let A be positive operator in a Banach space E and f ∈
Cα0T ([0, T ], E) (0 < α < 1). Then, for the solution of the boundary value problem
(2.3), stability and coercive stability inequalities

‖u‖C([0,T ],E) ≤M [‖ϕ‖E + ‖ψ‖E + ‖f‖C([0,T ],E)],

‖u′′‖Cα0T ([0,T ],E) + ‖Au‖Cα0T ([0,T ],E)

≤M
[
‖Aϕ‖E + ‖Aψ‖E +

1
α(1− α)

‖f‖Cα0T ([0,T ],E)

]
hold. Moreover, assume that Aϕ− f(0) = 0, Aψ − f(T ) = 0 and f ∈ Cα([0, T ], E)
(0 < α < 1). Then, for the solution of the boundary value problem (2.3), the
coercive stability inequality

‖u′′‖Cα([0,T ],E) + ‖Au‖Cα([0,T ],E) ≤
M

α(1− α)
‖f‖Cα([0,T ],E)

holds.

In the next Section, the self-adjointness and positive definiteness of the operator
A = Ax defined by formula (2.2) in L2[−l, l] space will be studied.

3. Self-adjointness and positive definiteness

Theorem 3.1. Assume that δ − a|β| ≥ 0. Then, the operator A = Ax defined by
formula (2.2) is a self-adjoint and positive definite operator in L2[−l, l] space with
the spectral angle ϕ(A,H) = 0.

Proof. We will prove the following identity

〈Axu, v〉 = 〈u,Axv〉, u, v ∈ D(Ax), (3.1)

and estimate
〈Axu, u〉 ≥ σ〈u, u〉, u ∈ D(Ax). (3.2)

Applying definition of the inner product and integrating by part, we obtain

〈Axu, v〉 = −
∫ l

−l
(a(x)ux(x))xv(x)dx− β

∫ l

−l
(a(−x)ux(−x))xv(x)dx

+ σ

∫ l

−l
u(x)v(x)dx

= −a(l)ux(l)v(l) + a(−l)ux(−l)v(−l) +
∫ l

−l
a(x)ux(x)vx(x)dx

+ β[−a(−l)ux(−l)v(−l) + a(l)ux(l)v(l)]

+ β

∫ l

−l
a(−x)ux(−x)vx(x)dx+ σ

∫ l

−l
u(x)v(x)dx.

From conditions a(x) = a(−x) and u, v ∈ D(Ax), it follows that

−a(l)ux(l)v(l) + a(−l)ux(−l)v(−l) = 0.

Then,

〈Axu, v〉 =
∫ l

−l
a(x)ux(x)vx(x)dx+ β

∫ l

−l
a(x)ux(x)vx(−x)dx

+ σ

∫ l

−l
u(x)v(x)dx.

(3.3)



6 A. ASHYRALYEV, A. M. SARSENBI EJDE-2015/284

In a similar manner, one establishes formula

〈u,Axv〉 =
∫ l

−l
a(x)ux(x)vx(x)dx+ β

∫ l

−l
ux(x)a(−x)vx(−x)dx+ σ

∫ l

−l
u(x)v(x)dx.

Therefore, from these formulas and condition a(x) = a(−x) it follows identity (3.1).
Now, we will prove the estimate (3.2). Applying the identity (3.3), we obtain

〈Axu, u〉

=
∫ l

−l
a(x)ux(x)ux(x)dx+ β

∫ l

−l
ux(x)a(−x)ux(−x)dx+ σ

∫ l

−l
u(x)u(x)dx

≥ σ〈u, u〉+ δ

∫ l

−l
ux(x)ux(x)dx+ βδ

∫ l

−l
a(−x)ux(x)ux(−x)dx.

Using the Cauchy inequality, we obtain∫ l

−l
a(−x)ux(x)ux(−x)dx ≤ a

(∫ l

−l
|ux(x)|2dx

)1/2(∫ l

−l
|ux(−x)|2dx

)1/2

= a〈ux, ux〉.

Since β ≥ −|β|, we have

β

∫ l

−l
a(−x)ux(x)ux(−x)dx ≥ −|β|a〈ux, ux〉.

Then
〈Axu, u〉 ≥ σ〈u, u〉+ (δ − |β|a)〈ux, ux〉 ≥ σ〈u, u〉.

The proof is complete. �

4. Conclusion

In the present study, mixed problem (1.3) for an elliptic equation with the in-
volution is investigated. The stability estimates in C([0, T ], L2[−l, l]) norm and
coercive stability estimates in Cα([0, T ], L2[−l, l]) and Cα0T ([0, T ], L2[−l, l]) norms
for the solution of this problem are established.

Moreover, applying results of paper [5] and the present paper, the nonlocal prob-
lem for an elliptic equation with the involution

−∂
2u(t, x)
∂t2

= (a(x)ux(t, x))x + β(a(−x)ux(t,−x))x − σu(t, x) + f(t, x),

−l < x < l, 0 < t < T,

u(t,−l) = u(t, l), ux(t,−l) = ux(t, l), 0 ≤ t ≤ T,
u(0, x) = u(T, x) + ϕ(x), ut(0, x) = ut(T, x) + ψ(x), −l ≤ x ≤ l,
ϕ(−l) = ϕ(l), ψ(−l) = ψ(l), ϕ′(−l) = ϕ′(l), ψ′(−l) = ψ′(l)

(4.1)

can be studied. Here, u(t, x) is an unknown function, ϕ(x), ψ(x), a(x), and f(t, x)
are sufficiently smooth functions, a ≥ a(x) = a(−x) ≥ δ > 0 and σ > 0 is a
sufficiently large number. The stability estimates in C([0, T ], L2[−l, l]) norm and
coercive stability estimates in Cα([0, T ], L2[−l, l]) and Cα0T ([0, T ], L2[−l, l]) norms
for the solution of problem (4.1) can be established. Finally, applying the result
of the monograph [10], the high order of accuracy two-step difference schemes for
the numerical solution of mixed problems (1.3) and (4.1) can be presented. Of
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course, the stability estimates for the solution of these difference schemes have
been established without any assumptions about the grid steps.
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