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FIELDS OF RATIONAL CONSTANTS OF CYCLIC
FACTORIZABLE DERIVATIONS

JANUSZ ZIELIŃSKI

Abstract. We describe all rational constants of a large family of four-variable

cyclic factorizable derivations. Thus, we determine all rational first integrals
of their corresponding systems of differential equations. Moreover, we give a

characteristic of all four-variable Lotka-Volterra derivations with a nontrivial
rational constant. All considerations are over an arbitrary field of characteristic

zero. Our main tool is the investigation of the cofactors of strict Darboux poly-

nomials. Factorizable derivations are important in derivation theory. Namely,
we may associate the factorizable derivation with any given derivation of a

polynomial ring and that construction helps to determine rational constants

of arbitrary derivations. Besides, Lotka-Volterra systems play a significant role
in population biology, laser physics and plasma physics.

1. Introduction

One of the main results of the paper is Theorem 4.1, which gives the descrip-
tion of the fields of rational constants of a family of four-variable Lotka-Volterra
derivations. This is a generalization of Theorem 2.1, which describes the rings of
polynomial constants. As an important consequence we obtain Corollary 4.2, which
characterizes all four-variable Lotka-Volterra derivations with a nontrivial rational
constant. Such a problem for three variables was studied by Moulin Ollagnier in
[7]. We extend the results of Theorem 4.1 and Corollary 4.2 to cyclic factoriz-
able derivations via diagonal automorphisms. All our considerations are over an
arbitrary field k of characteristic zero.

Recall that if R is a commutative k-algebra, then a k-linear mapping d : R→ R
is called a derivation of R if for all a, b ∈ R

d(ab) = ad(b) + d(a)b.

We call Rd = ker d the ring of constants of the derivation d. Then k ⊆ Rd and a
nontrivial constant of d is an element of the set Rd \ k.

Let us fix some notation: Q+ - the set of positive rationals, N - the set of
nonnegative integers, N+ - the set of positive integers, n - an integer ≥ 3, k[X] :=
k[x1, . . . , xn], the ring of polynomials in n variables, k(X) := k(x1, . . . , xn), the
field of rational functions in n variables.
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If f1, . . . , fn ∈ k[X], then there exists exactly one derivation d : k[X] → k[X]
such that d(x1) = f1, . . . , d(xn) = fn. A derivation d : k[X] → k[X] is called
factorizable if d(xi) = xifi, where the polynomials fi are of degree 1 for i = 1, . . . , n.
We may associate the factorizable derivation with any given derivation of k[X]
and that construction helps to obtain new facts on constants, especially rational
constants, of the initial derivation (see, for instance, [6], [9]). A derivation d :
k[X]→ k[X] is said to be cyclic factorizable if d(xi) = xi(Aixi−1 +Bixi+1), where
Ai, Bi ∈ k for i = 1, . . . , n (we adopt the convention that xn+1 = x1 and x0 = xn).
Special cases of cyclic factorizable derivations are Lotka-Volterra derivations (see
Section 2).

There is no general procedure for determining all constants of a derivation. Even
for a given derivation the problem may be difficult, see for instance counterexamples
to Hilbert’s fourteenth problem (all of them are of the form k[X]d, however it took
more than a half century to find at least one of them, for more details we refer the
reader to [8, 5]) or Jouanolou derivations (where the rings and fields of constants
are trivial, see [6, 8]).

The main motivations of our study are the following:
• Lagutinskii’s procedure of association of the factorizable derivation with

any given derivation (for instance, [6], [9]);
• applications of Lotka-Volterra systems in population biology, laser physics

and plasma physics (see, among many others, [1], [2], [3]);
• links to invariant theory, mainly to connected algebraic groups (see [8])

If δ is a derivation of k(X) such that δ(xi) = fi for i = 1, . . . , n, then the set
k(X)δ \k coincides with the set of all rational first integrals of a system of ordinary
differential equations

dxi(t)
dt

= fi(x1(t), . . . , xn(t)),

where i = 1, . . . , n (for more details we refer the reader to [8]). Therefore, we
describe both: all rational constants of a derivation and all rational first integrals
of its corresponding system of differential equations.

2. Lotka-Volterra derivations and polynomial constants

Let d : k[X] → k[X] be a cyclic factorizable derivation of the form d(xi) =
xi(Aixi−1 + Bixi+1) where Ai, Bi ∈ k for i = 1, . . . , n. Suppose that Ai 6= 0 for
all i. Consider an automorphism σ : k[X] → k[X] defined by σ(xi) = A−1

i+1xi for
i = 1, . . . , n. Then ∆ = σdσ−1 is also a derivation of the ring k[X]. Moreover,
f is a nontrivial polynomial (respectively: rational, see Section 3) constant of a
derivation d if and only if σ(f) is a nontrivial polynomial (respectively: rational)
constant of a derivation ∆. Clearly σ−1(xi) = Ai+1xi and a short computation
shows that ∆(xi) = xi(xi−1 − Cixi+1) for Ci = −BiA−1

i+2 (we allow Ci = 0) and
i = 1, . . . , n. We can proceed similarly if Ai = 0 for some i but Bi 6= 0 for all i.

Let C1, . . . , Cn ∈ k. From now on, d : k[X]→ k[X] is a derivation of the form

d(xi) = xi(xi−1 − Cixi+1)

for i = 1, . . . , n (we still adhere to the convention that xn+1 = x1 and x0 = xn).
We call d a Lotka-Volterra derivation with parameters C1, . . . , Cn.

Let n = 4. For arbitrary C1, C2, C3, C4 ∈ k we may consider the four sentences:

s1 : C1C2C3C4 = 1.
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s2 : C1, C3 ∈ Q+ and C1C3 = 1.
s3 : C2, C4 ∈ Q+ and C2C4 = 1.
s4 : C1C2C3C4 = −1 and Ci = 1 for two consecutive indices i.

In case s2 let C1 = p
q , where p, q ∈ N+ and gcd(p, q) = 1. In case s3 let C2 = r

t ,
where r, t ∈ N+ and gcd(r, t) = 1. In case s4 we define the polynomial f4, namely
for C1 = C2 = 1 let

f4 = x2
1 +x2

2 +x2
3 +C2

3x
2
4 +2x1x2−2x1x3−2C3x1x4 +2x2x3−2C3x2x4 +2C3x3x4,

for the other possibilities one has to rotate the indices appropriately.
Obviously sentences s1 and s4 are mutually exclusive. Note also that if s2 ∧ s3,

then s1. This means that we have ten cases to consider, depending on the truth
values of the sentences s1, s2, s3, s4. Denote by ¬s the negation of the sentence s.

Theorem 2.1 ([4, Theorem 2]). Let d : k[X]→ k[X] be a derivation of the form

d =
4∑
i=1

xi(xi−1 − Cixi+1)
∂

∂xi
,

where C1, C2, C3, C4 ∈ k. Then the ring of constants of d is always finitely generated
over k with at most three generators. In each case it is a polynomial ring, more
precisely:

(1) if ¬s1 ∧ ¬s2 ∧ ¬s3 ∧ ¬s4, then k[X]d = k,
(2) if s1 ∧ ¬s2 ∧ ¬s3, then k[X]d = k[x1 + C1x2 + C1C2x3 + C1C2C3x4],
(3) if ¬s1 ∧ ¬s2 ∧ ¬s3 ∧ s4, then k[X]d = k[f4],
(4) if ¬s1 ∧ ¬s2 ∧ s3 ∧ ¬s4, then k[X]d = k[xt2x

r
4],

(5) if ¬s1 ∧ s2 ∧ ¬s3 ∧ ¬s4, then k[X]d = k[xq1x
p
3],

(6) if ¬s1 ∧ ¬s2 ∧ s3 ∧ s4, then k[X]d = k[f4, x
t
2x
r
4],

(7) if ¬s1 ∧ s2 ∧ ¬s3 ∧ s4, then k[X]d = k[f4, x
q
1x
p
3],

(8) if s1 ∧ ¬s2 ∧ s3, then k[X]d = k[x1 + C1x2 + C1C2x3 + C1C2C3x4, x
t
2x
r
4],

(9) if s1 ∧ s2 ∧ ¬s3, then k[X]d = k[x1 + C1x2 + C1C2x3 + C1C2C3x4, x
q
1x
p
3],

(10) if s2 ∧ s3, then k[X]d = k[x1 + C1x2 + C1C2x3 + C1C2C3x4, x
q
1x
p
3, x

t
2x
r
4].

3. Darboux polynomials and rational constants

A polynomial g ∈ k[X] is said to be strict if it is homogeneous and not divisible
by the variables x1, . . . , xn. For α = (α1, . . . , αn) ∈ Nn, we denote by Xα the
monomial xα1

1 . . . xαnn ∈ k[X]. Every nonzero homogeneous polynomial f ∈ k[X]
has a unique representation f = Xαg, where Xα is a monomial and g is strict.

We call a nonzero polynomial f ∈ k[X] a Darboux polynomial (or an integral
element) of a derivation δ : k[X]→ k[X] if δ(f) = Λf for some Λ ∈ k[X]. We will
call Λ a cofactor of f . Since d is a homogeneous derivation of degree 1, the cofactor
of each homogeneous form is a linear form. Denote by k[X](m) the homogeneous
component of k[X] of degree m.

Lemma 3.1 ([11, Lemma 3.2]). Let n = 4. Let g ∈ k[X](m) be a Darboux polyno-
mial of d with the cofactor λ1x1 + . . .+λ4x4. Let i ∈ {1, 2, 3, 4}. If g is not divisible
by xi, then λi+1 ∈ N. More precisely, if g(x1, . . . , xi−1, 0, xi+1, . . . , x4) = x

βi+2
i+2 G

and xi+2 6 | G, then λi+1 = βi+2 and λi+3 = −Ci+2λi+1.
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Corollary 3.2 ([11, Corollary 3.3]). Let n = 4. If g ∈ k[X] is a strict Darboux
polynomial, then its cofactor is a linear form with coefficients in N.

For any derivation δ : k[X]→ k[X] there exists exactly one derivation δ̄ : k(X)→
k(X) such that δ̄|k[X] = δ. By a rational constant of the derivation δ : k[X]→ k[X]
we mean the constant of its corresponding derivation δ̄ : k(X) → k(X). The
rational constants of δ form a field. For simplicity, we write δ instead of δ̄.

Lemma 3.3 ([10, Lemma 2]). Let n = 4. The field k(X)d contains a nontrivial
rational monomial constant if and only if at least one of the following two conditions
is fulfilled:

(1) C1, C3 ∈ Q and C1C3 = 1,
(2) C2, C4 ∈ Q and C2C4 = 1.

Proposition 3.4 ([8, Prop. 2.2.2]). Let δ : k[X] → k[X] be a derivation and let
f and g be nonzero relatively prime polynomials from k[X]. Then δ( fg ) = 0 if and
only if f and g are Darboux polynomials of δ with the same cofactor.

Proposition 3.5 ([8, Prop. 2.2.3]). Let δ be a homogeneous derivation of k[X] and
let f ∈ k[X] be a Darboux polynomial of δ with the cofactor Λ ∈ k[X]. Then Λ is
homogeneous and each homogeneous component of f is also a Darboux polynomial
of δ with the same cofactor Λ.

Proposition 3.6 ([8, Prop 2.2.1]). Let δ be a derivation of k[X]. Then f ∈ k[X]
is a Darboux polynomial of δ if and only if all factors of f are Darboux polynomials
of δ. Moreover, if f = f1f2 is a Darboux polynomial, then sum of the cofactors of
f1 and f2 equals the cofactor of f .

4. Fields of rational constants of LV derivations

From now on, n = 4. For C1, C2, C3, C4 ∈ k consider the sentences:

s̃2 : C1, C3 ∈ Q and C1C3 = 1.
s̃3 : C2, C4 ∈ Q and C2C4 = 1.

In case s̃2 let C1 = p
q , where p, q ∈ Z, q 6= 0 and gcd(p, q) = 1. In case s̃3 let

C2 = r
t , where r, t ∈ Z, t 6= 0 and gcd(r, t) = 1. Note that these presentations

of Ci are unique up to sign. Sentences s1, s2, s3, s4 and polynomial f4 are as in
Section 2.

Theorem 4.1. Let d : k(X) → k(X) be a four-variable Lotka-Volterra derivation
with parameters C1, C2, C3, C4 ∈ k. Then:

(1) if ¬s1 ∧ ¬s̃2 ∧ ¬s̃3 ∧ ¬s4, then k(X)d = k,
(2) if s1 ∧ ¬s̃2 ∧ ¬s̃3, then k(X)d = k(x1 + C1x2 + C1C2x3 + C1C2C3x4),
(3) if ¬s1 ∧ ¬s̃2 ∧ ¬s̃3 ∧ s4, then k(X)d = k(f4),
(4) if ¬s1 ∧ ¬s̃2 ∧ s3 ∧ ¬s4, then k(X)d = k(xt2x

r
4),

(5) if ¬s1 ∧ s2 ∧ ¬s̃3 ∧ ¬s4, then k(X)d = k(xq1x
p
3),

(6) if ¬s1 ∧ ¬s̃2 ∧ s3 ∧ s4, then k(X)d = k(f4, x
t
2x
r
4),

(7) if ¬s1 ∧ s2 ∧ ¬s̃3 ∧ s4, then k(X)d = k(f4, x
q
1x
p
3),

(8) if s1 ∧ ¬s̃2 ∧ s3, then k(X)d = k(x1 + C1x2 + C1C2x3 + C1C2C3x4, x
t
2x
r
4),

(9) if s1 ∧ s2 ∧ ¬s̃3, then k(X)d = k(x1 + C1x2 + C1C2x3 + C1C2C3x4, x
q
1x
p
3),

(10) if s2 ∧ s3, then k(X)d = k(x1 + C1x2 + C1C2x3 + C1C2C3x4, x
q
1x
p
3, x

t
2x
r
4).
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Proof. All inclusions of the form ⊇ follow from Theorem 2.1. Next we show the
inclusions of the form ⊆.

Let ψ = f
g ∈ k(X)d, where f, g ∈ k[X]\{0} and gcd(f, g) = 1. By Proposition 3.4

we have d(f) = Λf and d(g) = Λg for some Λ ∈ k[X]. Let f =
∑
fj and g =

∑
gj ,

where fj and gj are homogeneous polynomials of degree j. By Proposition 3.5,
since d is homogeneous, we have d(fj) = Λfj and d(gj) = Λgj for all j ∈ N. Then,
by Proposition 3.4 again, we have d( fjgi ) = 0 and d( gjgi ) = 0 for all i and j. Moreover,
obviously

f

g
=

∑
j
fj
gi∑

j
gj
gi

for some fixed i. Therefore it suffices to prove the assertion of Theorem 4.1 for
homogeneous f and g.

Let f = Xαh, where Xα is a monomial and h is strict (analogously we proceed
for g). By Proposition 3.6 both Xα and h are Darboux polynomials of d. Let
λ = λ1x1 + . . .+ λ4x4 be the cofactor of h. By Lemma 3.1 we have

λi+3 = −Ci+2λi+1 (4.1)

for all i in the cyclic sense. Moreover, Corollary 3.2 gives λi ∈ N for i = 1, . . . , 4.
Cases (1)–(3). Suppose that λ1 6= 0. Then (4.1) for i = 2 implies that also
λ3 6= 0 and C4 = −λ1

λ3
∈ Q. Likewise, (4.1) for i = 4 gives C2 = −λ3

λ1
∈ Q.

Therefore C2C4 = 1, which is a contradiction to ¬s̃3. This proves that λ1 = 0.
Analogously we proceed for λ2, λ3 and λ4. Hence we have λ1 = . . . = λ4 = 0 and
the only strict Darboux polynomials of d are constants of d. Note that s2 ⇒ s̃2.
Hence ¬s̃2 ⇒ ¬s2. The same for s3 and s̃3. Thus, in view of Theorem 2.1, we
have h ∈ k or h ∈ k[x1 + C1x2 + C1C2x3 + C1C2C3x4] or h ∈ k[f4], respectively.
Furthermore, by Proposition 3.6, the cofactor of Xα is equal to Λ, since the cofactor
of h equals 0.

Similarly, g = Xβl, where l ∈ k[X]d and Xβ is a Darboux monomial with
the cofactor Λ. Then Xα

Xβ
∈ k(X)d, by Proposition 3.4. In view of Lemma 3.3,

Xα

Xβ
∈ k. Hence ψ = chl , where c ∈ k and h, l ∈ k[X]d. Thus ψ ∈ k or ψ ∈

k(x1 + C1x2 + C1C2x3 + C1C2C3x4) or ψ ∈ k(f4), respectively.
Cases (4), (6). As above λ2 = λ4 = 0. If, contrary to our claim, λ2 6= 0, then
by (4.1) we have λ4 6= 0, C1 = −λ2

λ4
∈ Q and C3 = −λ4

λ2
∈ Q, in contradiction with

¬s̃2. By (4.1) for i = 4:
λ3 = −C2λ1. (4.2)

However, by Corollary 3.2 and by s3, the left-hand side of (4.2) is nonnegative,
whereas the right-hand side of (4.2) is nonpositive. Therefore λ3 = 0 and, since
C2 > 0, we have λ1 = 0. Then h ∈ k[X]d. Since ¬s1 ∧ ¬s̃2 ∧ s3 ∧ ¬s4 ⇒ ¬s1 ∧
¬s2 ∧ s3 ∧ ¬s4 and ¬s1 ∧ ¬s̃2 ∧ s3 ∧ s4 ⇒ ¬s1 ∧ ¬s2 ∧ s3 ∧ s4, we have case (4) or
(6) of Theorem 2.1, respectively. Therefore we have h ∈ k[xt2x

r
4] or h ∈ k[f4, x

t
2x
r
4],

respectively. Moreover, the cofactor of Xα is equal to Λ.
Analogously, g = Xβl, where l ∈ k[xt2x

r
4] and Xβ is a Darboux monomial with

the cofactor Λ. Then Xα

Xβ
∈ k(X)d, by Proposition 3.4 again. Let Xα

Xβ
= xa1x

b
2x
c
3x
e
4,

where a, b, c, e ∈ Z. Then

d

(
Xα

Xβ

)
= xa1x

b
2x
c
3x
e
4((b− eC4)x1 + (c− aC1)x2 + (e− bC2)x3 + (a− cC3)x4).
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Since d(X
α

Xβ
) = 0, we have two systems of linear equations:

b− eC4 = 0
e− bC2 = 0

(4.3)

and
c− aC1 = 0
a− cC3 = 0.

(4.4)

Since ¬s̃2, we obtain a = c = 0. Moreover, e − b rt = 0 implies et = br. Since
gcd(r, t) = 1, we have r | e, and thus e = jr for some j ∈ Z. Therefore br = jrt,
and since r 6= 0, we have b = jt. Consequently,

Xα

Xβ
= xjt2 x

jr
4 = (xt2x

r
4)j ∈ k(xt2x

r
4).

Thus ψ = Xα

Xβ
h
l belongs to k(xt2x

r
4) or k(f4, x

t
2x
r
4), respectively.

Cases (5), (7). These two cases are completely analogous to cases (4) and (6),
respectively.

Case (8). Similarly to case (4) we show that λ1 = . . . = λ4 = 0. Therefore
h ∈ k[X]d. Since s1 ∧ ¬s̃2 ∧ s3 ⇒ s1 ∧ ¬s2 ∧ s3, we have case (8) of Theorem 2.1.
Hence, h ∈ k[x1 + C1x2 + C1C2x3 + C1C2C3x4, x

t
2x
r
4] and the cofactor of Xα is

equal to Λ. Likewise, g = Xβl, where l ∈ k[x1 +C1x2 +C1C2x3 +C1C2C3x4, x
t
2x
r
4]

and the cofactor of Xβ equals Λ. In the same way as in case (4) we show that
Xα

Xβ
∈ k(xt2x

r
4). Finally, ψ ∈ k(x1 + C1x2 + C1C2x3 + C1C2C3x4, x

t
2x
r
4).

Case (9). It is entirely analogous to case (8).

Case (10). Since all Ci are positive, the the left-hand side of (4.1) is nonnegative
and the right-hand side of (4.1) is nonpositive for i = 1, . . . 4. Thus λ1 = . . . = λ4 =
0 and h ∈ k[X]d. Hence, by Theorem 2.1, we have h ∈ k[x1 + C1x2 + C1C2x3 +
C1C2C3x4, x

q
1x
p
3, x

t
2x
r
4]. Moreover, the cofactor of Xα equals Λ. Analogously,

g = Xβl, where l ∈ k[X]d and the cofactor of Xβ equals Λ. Then Xα

Xβ
∈ k(X)d.

If Xα

Xβ
= xa1x

b
2x
c
3x
e
4, where a, b, c, e ∈ Z, then we again obtain the systems of linear

equations of the form (4.3) and (4.4). Similarly to case (4) we obtain e = jr, b = jt

for some j ∈ Z and a = sq, c = sp for some s ∈ Z. Thus Xα

Xβ
∈ k(xq1x

p
3, x

t
2x
r
4).

Consequently, ψ ∈ k(x1 + C1x2 + C1C2x3 + C1C2C3x4, x
q
1x
p
3, x

t
2x
r
4). �

Note that Theorem 2.1 covers all the cases. Theorem 4.1 does not cover all the
cases, however huge majority of them. Nevertheless, the following corollary covers
all the cases.

Corollary 4.2. If d is a four-variable Lotka-Volterra derivation, then k(X)d con-
tains a nontrivial rational constant if and only if at least one of the following four
conditions is fulfilled:

(1) C1C2C3C4 = 1,
(2) C1, C3 ∈ Q and C1C3 = 1,
(3) C2, C4 ∈ Q and C2C4 = 1,
(4) C1C2C3C4 = −1 and Ci = 1 for two consecutive indices i.

Proof. If ¬s1 ∧¬s̃2 ∧¬s̃3 ∧¬s4, then k(X)d = k, by Theorem 4.1. If s̃2 or s̃3, then
k(X)d 6= k, by Lemma 3.3. If s1 or s4, then k(X)d 6= k, by Theorem 4.1. �
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Note that if d is as in Theorem 4.1, then the field of rational constants equals the
field of fractions of the ring of polynomial constants. Which is not true in general,
even k[X] may be trivial, while k(X) nontrivial.

Example 4.3. Let k ∈ {R,C}. Let d : k[X]→ k[X] be a derivation defined by

d(xi) = xi(xi−1 + xi+1), for i = 1, 3,

d(xi) = xi(xi−1 −Πxi+1), for i = 2, 4.

By Theorem 2.1, k[X]d = k. Nevertheless, x1
x3
∈ k(X)d.
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Faculty of Mathematics and Computer Science, N. Copernicus University, ul. Chopina

12/18, 87-100 Toruń, Poland
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