
Electronic Journal of Differential Equations, Vol. 2015 (2015), No. 39, pp. 1–14.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu

EXISTENCE AND UNIQUENESS FOR A DISLOCATION MODEL
WITH SHORT-RANGE INTERACTIONS AND

VARYING STRESS FIELD

HASSAN IBRAHIM

Abstract. In this article, we consider a coupled singular parabolic system,

describing the dynamics of dislocation densities in a bounded domain. The
model takes into consideration the short-range interactions between disloca-

tions, which causes the singularity that appears under the form of dividing by

a gradient term. We prove a long time existence and uniqueness under the
assumption that the applied stresses on the domain is bounded in space and

time. The proof relies on a comparison principle to avoid singularity, and on

exponential gradient estimates for the long time existence.

1. Introduction

1.1. Setting of the problem and main result. In this article, we study the
singular parabolic system

κt = εκxx +
ρxρxx
κx

+ σρx in (0, 1)× (0,∞)

ρt = (1 + ε)ρxx + σκx in (0, 1)× (0,∞),
(1.1)

with the initial conditions

κ(x, 0) = κ0(x), ρ(x, 0) = ρ0(x), x ∈ (0, 1), (1.2)

and the Dirichlet boundary conditions

ρ(0, t) = ρ(1, t) = κ(0, t) = 0, κ(1, t) = 1, t > 0. (1.3)

In what follows, we adopt the notation

IT = I × (0, T ) with I = (0, 1) and T > 0.

System (1.1) is an approximate model of the one introduced by Groma, Csikor and
Zaiser [5] to describe the dynamics of dislocation densities in a constrained channel
submitted to an applied stress (here represented by the function σ = σ(x, t)).
A dislocation is a defect, or irregularity within a crystal structure that can be
observed by electron microscopy. The theory was originally developed by Vito
Volterra in 1905. Dislocations are a non-stationary phenomena and their motion is
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the main explanation of the plastic deformation in metallic crystals (see [12, 6] and
the references therein for a recent and mathematical presentation).

The approximation stated above is based on ε-∆ regularization of a spatially
differentiated system of (1.1), which explains the presence of the different factors ε
and (1 + ε) in the two equations. The stress function

σ : I∞ −→ R,

is assumed bounded and regular, namely:

σ ∈ C2(I∞) with b := ‖σ‖L∞(I∞) < +∞, (1.4)

while the initial data ρ0 and κ0 are assumed smooth over I.
The goal of the present paper is to show the long time existence and uniqueness

of a smooth solution of (1.1), (1.2) and (1.3). The same question has been raised
and solved in [7] (see also [9] for a brief study focusing on the main ideas) but for
a constant σ ∈ R. The proof relied on a comparison principle on the gradient κx
leading to the inequality:

κx > |ρx| on I∞, (1.5)

that was used, first, to avoid the singularity in the first equation of (1.1), and
second, to linearise it in order to obtain some a priori estimates ensuring the long
time existence. We show how to adapt this comparison principle to cover the case
(1.4), and how to obtain the a priori estimates. This will finally lead to our main
result.

Theorem 1.1. Let ρ0, κ0 ∈ C∞(I) satisfy:

ρ0(0) = ρ0(1) = 0,

κ0(0) = 0, k0(1) = 1,

(1 + ε)ρ0
xx + σ(·, 0)κ0

x = 0 on ∂I,

(1 + ε)κ0
xx + σ(·, 0)ρ0

x = 0 on ∂I,

(1.6)

and
κ0
x > |ρ0

x| in I. (1.7)

Then, for every 0 < α < 1, there exists a unique solution:

ρ, κ ∈ C3+α, 3+α2 (I∞) ∩ C∞(I × (0,∞)),

of system (1.1), (1.2) and (1.3) satisfying (1.5).

It is worth mentioning that the boundary condition (1.6) on ρ0 and κ0 is natu-
ral. In fact, it appears from the Hölder regularity of the solution as well as (1.1),
(1.2) and (1.3). However, condition (1.5) is of physical origin as it represents the
positivity of the dislocation densities (see for example [8] for the derivation).

Let us briefly state the strategy of our proof. The existence and uniqueness
is made by using a fixed point argument after an artificial modification of (1.1) in
order to avoid dividing by zero. We will first show the short time existence, proving
in particular that

κx(x, t) ≥
√
γ2(t) + ρ2

x(x, t),

for a well chosen function γ(t) = ce−ct, where c > 0 depends on σ and the initial
data. Here we obtain one of the key estimates | ρxκx | ≤ 1 which, in addition to the
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boundedness of σ, somehow linearise the first equation of (1.1). Consequently, and
due to some a priori estimates, we can prove the global time existence.

To our knowledge, systems of equations involving the singularity in 1/κx as in
(1.1) has not been directly handled elsewhere in the literature. However, parabolic
problems involving singular terms have been widely studied in various aspects (see
for instance [1, 2, 3, 4, 10, 11]).

1.2. Organization of this article. This paper is organized as follows. In Section
2, we show a comparison principle associated to (1.1) that plays a crucial rule in
the long time existence of the solution as well as the positivity of κx. In Section 3,
we present a result of short time existence, uniqueness and regularity by using fixed
point and bootstrap arguments. Finally, in Section 4, we provide some exponential
bounds on the solution and we prove our main result: Theorem 1.1.

2. A comparison principle

In this section, and for simplification reasons, we take I = (−1, 1) and we set

Ga(x) :=
√
x2 + a2, x, a ∈ R.

We now state our comparison principle on the gradient of the solution.

Proposition 2.1 (Comparison principle). Let (ρ, κ) be a regular solution of (1.1)
on the compact IT with κx > 0, and the initial data (ρ0, κ0) satisfying:

κ0
x ≥ Gγ0(ρ0

x), γ0 ∈ (0, 1). (2.1)

Then there exists a positive function γ : [0, T ] 7→ R such that

κx ≥ Gγ(ρx) on IT . (2.2)

Proof. We define M := κx − Gγ(ρx), where the function γ = γ(t), t ∈ [0, T ], is to
be determined in a way that M ≥ 0 on IT . The proof is divided into three steps.

Step 1. (Differential inequality satisfied by M) Assuming the regularity of
ρ, κ and γ, we compute

Mt = κxt −G′γ(ρx)ρxt − Γ,

Mx = κxx −G′γ(ρx)ρxx,

Mxx = κxxx −G′′γ(ρx)ρ2
xx −G′γ(ρx)ρxxx,

(2.3)

where

Γ =
γγ′√
ρ2
x + γ2

.

Differentiating (1.1) with respect to x, we easily obtain

κxt = εκxxx +
ρ2
xx

κx
+
ρxρxxx
κx

− ρxρxxκxx
κ2
x

+ σxρx + σρxx,

ρxt = (1 + ε)ρxxx + σxκx + σκxx.

(2.4)

Using (2.3) and (2.4), direct computations lead to

Mt = εMxx +AMx +BM + C − Γ, (2.5)
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where

A = −ρxρxx
κ2
x

− σG′(ρx),

B =
ρ2
xx

κ2
x

− σxG′(ρx)−
G′γ(ρx)ρxxx

κx
,

C = G(ρx)
(ρ2

xx

κ2
x

− σxG′(ρx)
)
− ρxρ

2
xx

κ2
x

G′(ρx)− σ(G′(ρx))2ρxx

+ εG′′(ρx)ρ2
xx + σxρx + σρxx.

(2.6)

We now estimate the term C and we show, in particular, that we can eliminate σx.
Thus we return back to a case similar to a constant σ. In fact, since G(ρx)G′(ρx) =
ρx, we obtain

C =
ρ2
xx

κ2
x

G(ρx)− σxρx −
ρxρ

2
xx

κ2
x

G′(ρx)− σ(G′(ρx))2ρxx + εG′′(ρx)ρ2
xx

+ σxρx + σρxx

=

I︷ ︸︸ ︷
ρ2
xx

κ2
x

(G(ρx)− ρxG′(ρx)) +

II︷ ︸︸ ︷
σρxx

(
1− (G′(ρx))2

)
+

III︷ ︸︸ ︷
εG′′(ρx)ρ2

xx .

Notice that G(ρx)− ρxG′(ρx) = γ2

G(ρx)
, thus I ≥ 0. However, simple computations

give:

II =
σγ2ρxx
ρ2
x + γ2

and III =
εγ2ρ2

xx

(ρ2
x + γ2)3/2

.

Using (1.4), and applying Young’s inequality, we obtain:∣∣ σγ2ρxx
ρ2
x + γ2

∣∣ ≤ γ|ρxx|
(ρ2
x + γ2)3/4

bγ

(ρ2
x + γ2)1/4

≤ εγ2ρ2
xx

(ρ2
x + γ2)3/2

+
b2γ2

4ε(ρ2
x + γ2)1/2

;

therefore

II ≥ −III − b2γ2

4ε(ρ2
x + γ2)1/2

.

Consequently,

C ≥ − b2γ2

4ε(ρ2
x + γ2)1/2

.

This inequality, together with (2.5) and (2.6), lead to the differential inequality

Mt ≥ εMxx +AMx +BM − b2γ2

4ε(ρ2
x + γ2)1/2

− Γ.

The choice of γ: We want to choose γ such that the above differential inequality
in M is homogeneous. In fact, choosing

γ(t) = γ0e
− b24ε t,

we arrive at
Mt ≥ εMxx +AMx +BM. (2.7)
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Step 2. (Boundary analysis) Since ρ and κ are constants on the boundary
∂I × [0, T ], we obtain

εκxx +
ρxρxx
κx

+ σρx = 0 on ∂I × [0, T ]

(1 + ε)ρxx + σκx = 0 on ∂I × [0, T ];

therefore
Mx =

σ

1 + ε
G′γ(ρx)M on ∂I × [0, T ]. (2.8)

Here we would like to show that the minimum m(t) = minIM(·, t) is not attained
on the boundary, and then to use (2.7) to show its positivity. However, this is
not possible since the above boundary condition (2.8) carries no information that
violates the presence of the minimal point on ∂I. For this reason, we carefully
multiply M by a suitable positive function having large values on the boundary. In
particular, we consider M defined by:

M(x, t) = cosh(θx)M(x, t), θ ∈ R,

where θ is to be adjusted in a way that M(·, t) attains its minimum in I. In fact,
elementary computations show that

Mx = ΘM on ∂I × [0, T ], (2.9)

where
Θ =

(
θ tanh(θx) +

σ

1 + ε
G′γ(ρx)

)
.

The boundedness of σ
1+εG

′
γ(ρx) on IT permits the existence of θ large enough so

that Θ(1, t) > 0 and Θ(−1, t) < 0 for all t ∈ [0, T ]. Hence, by (2.9), the function
M(·, t) can not have a positive minimum on ∂I.
Step 3. (Conclusion) We now write the partial differential inequality satisfied
by M :

M t ≥ εMxx +
(
− ρxρxx

κ2
x

− σG′(ρx)− 2θε tanh(θx)
)
Mx +

[ρ2
xx

κ2
x

− σxG′(ρx)−
G′γ(ρx)ρxxx

κx
− θ tanh(θx)

(
− ρxρxx

κ2
x

− σG′(ρx)
)

+ εθ2
(
2 tanh2(θx)− 1

) ]
M.

(2.10)

Due to the regularity of M , we may find a curve t 7→ (x(t), t) such that

m(t) = min
x∈I

M(x, t) = M(x(t), t) t ∈ [0, T ].

Without loss of generality, we assume that κ0
x >

√
(ρ0
x)2 + γ2

0 . In fact, it suffices to
adjust γ0 in (2.1). Therefore (see Step 2):

m(0) > 0 and x(0) ∈ I.

Again, the regularity of M ensures that x(t) ∈ I for all 0 ≤ t ≤ t0 ≤ T . We claim
that t0 = T . Indeed, if not, we obtain x(t0) ∈ ∂I. Let us show that this can not be
true. Indeed, since x(t) ∈ I for 0 ≤ t < t0 we directly obtain

Mx(x(t), t) = 0 and Mxx(x(t), t) ≥ 0.
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Moreover, using (2.10), we obtain, for some constant c ∈ R, the following ordinary
differential inequality involving m:

m′ ≥ cm for 0 ≤ t < t0,

and therefore
m(t) ≥ m(0)ect for 0 ≤ t < t0. (2.11)

Since m(0) > 0, the above inequality gives m(t0) > 0. Consequently (see Step 2)
x(t0) ∈ I and the claim is true.

Now as we obtain x(t) ∈ I for all t ∈ [0, T ], the inequality (2.11) also holds true
for all t ∈ [0, T ] with m(0) > 0. Hence, we can infer that M ≥ 0 on IT and therefore
M ≥ 0 on IT . �

3. Short time existence and uniqueness

In this section we prove the short time existence and uniqueness for (1.1), (1.2)
and (1.3). The main idea is to find a solution of a truncated system where we
carefully truncate the gradients ρx and κx in order to make use of the fixed point
theorem. After that, and due to the regularity of the obtained solution, we can
eliminate the artificial modification and get back to our original system. Before
stating the main result of this section, let us present some basic tools used in our
analysis.
Basic tools: We first consider, for real values a ≥ 0, the real valued function Ia
defined by:

Ia(x) = x11{|x|≤a} + a11{x≥a} − a11{x≤−a},
where 11A is the indicator function of the set A ⊆ R. It is easily seen that Ia is a
truncation of the identity function which is bounded and Lipschitz on R, and this
property will be repeatedly used hereafter in this section.

We now define the spaces and some fundamental estimates we are use. We may
sometimes use the differentiation notation:

Dk
z (u) =

∂ku

∂zk
.

For p > 3, we consider the parabolic Sobolev space:

Y = W 2,1
p (IT ) = {u ∈ Lp(IT ); Dr

tD
s
xu ∈ Lp(IT ) for 2r + s ≤ 2},

equipped with the norm

‖u‖Y =
∑

2r+s≤2

‖Dr
tD

s
xu‖Lp(IT ).

The value p > 3 is taken to emphasis some regularity properties on the solution.
Indeed, it is well known (see [13] for the details) that if p > 3 then Y is continuously
embedded in a parabolic Hölder space:

Y ↪→ C1+α, 1+α2 (IT ), α = 1− 3
p
, (3.1)

with the following fundamental estimate, valid for u = 0 on the parabolic boundary,

∂p(IT ) = (∂I × [0, T ]) ∪ (I × {0})
that reads

‖ux‖L∞(IT ) ≤ cT
p−3
2p ‖u‖Y , (3.2)

where c = c(p) > 0 is a constant depending only on p.
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Recall that [13, Section 1], for l > 0, the parabolic Hölder space Cl,l/2(IT ) is the
Banach space of functions v that are continuous in IT , together with all derivatives
of the form Dr

tD
s
xv for 2r+s < l, and have a finite norm |v|(l)IT = 〈v〉(l)IT +

∑[l]
j=0〈v〉

(j)
IT

,
where

〈v〉(0)IT = |v|(0)IT = ‖v‖L∞(IT ), 〈v〉(j)IT =
∑

2r+s=j

|Dr
tD

s
xv|

(0)
IT
,

〈v〉(l)IT = 〈v〉(l)x,IT + 〈v〉(l/2)t,IT
, 〈v〉(l)x,IT =

∑
2r+s=[l]

〈Dr
tD

s
xv〉

(l−[l])
x,IT

,

〈v〉(l/2)t,IT
=

∑
0<l−2r−s<2

〈Dr
tD

s
xv〉

( l−2r−s
2 )

t,IT
,

with

〈v〉(α)
x,IT

= inf{c; |v(x, t)− v(x′, t)| ≤ c|x− x′|α, (x, t), (x′, t) ∈ IT }, 0 < α < 1,

〈v〉(α)
t,IT

= inf{c; |v(x, t)− v(x, t′)| ≤ c|t− t′|α, (x, t), (x, t′) ∈ IT }, 0 < α < 1.

Another very useful inequality in our study is a Sobolev estimate for parabolic
equations (see [7, Lemma 2.3]). To state this estimate, we consider solutions u ∈ Y ,
u = 0 on ∂p(IT ), of

ut = εuxx + f, f ∈ Lp(IT ) called the source term. (3.3)

Then we have
‖u‖Lp(IT )

T
+
‖ux‖Lp(IT )√

T
+ ‖uxx‖Lp(IT ) + ‖ut‖Lp(IT ) ≤ c‖f‖Lp(IT ), (3.4)

where c = c(ε, p) > 0 is a constant depending only on p and ε. Now, we may state
the main proposition of this section.

Proposition 3.1 (Short time existence and uniqueness). Let p > 3 and let

ρ0, κ0 ∈ C∞(I),

be two functions such that ρ0(0) = ρ0(1) = κ0(0) = 0 and κ0(1) = 1. Suppose
furthermore that

κ0
x ≥ γ0 on I,

‖Ds
xρ

0, Ds
xκ

0‖L∞(I) ≤M0, s = 1, 2,
(3.5)

with γ0 > 0 and M0 > 0. Then there exists a unique solution (ρ, κ) ∈ Y 2 of (1.1),
(1.2) and (1.3) where

T = T (M0, γ0, ε, b, p), 0 < T < 1. (3.6)

Moreover, this solution satisfies

κx ≥
γ0

2
on IT ,

|ρx| ≤ 2M0 on IT .
(3.7)

Proof. Throughout the proof, and in various estimates we suppose that 0 < T < 1.
This is in no way a problem since we have to choose T small enough to construct
our solution. The proof uses a fixed point argument on a closed subspace of Y .
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Looking at (3.7), we can artificially modify (1.1) using suitable truncations. To
simplify our computations, we set I := I2M0 , and consider

κt = εκxx +
ρxxI(ρx)

(γ0/2) + (κx − γ0/2)+
+ σρx on IT

ρt = (1 + ε)ρxx + σκx on IT ,

(3.8)

with the same initial and boundary conditions (1.2) and (1.3). It is worth noticing
that when (3.7) is satisfied then (3.8) coincides with (1.1). On the other hand,
condition (3.7) also suggests that we consider functions u ∈ Y of bounded gradients,
i.e. ‖ux‖Lp(IT ) ≤ λ where λ > 0 is a fixed sufficiently large constant. For this
reason, define the spaces Y ρλ and Y κλ as follows:

Y ρλ = {u ∈ Y ; ‖ux‖Lp(IT ) ≤ λ, u = ρ0 on ∂p(IT )},
Y κλ = {u ∈ Y ; ‖ux‖Lp(IT ) ≤ λ, u = κ0 on ∂p(IT )}.

Define the application: Ψ : Y ρλ × Y κλ 7−→ Y ρλ × Y κλ by

(ρ̂, κ̂) 7−→ Ψ(ρ̂, κ̂) = (ρ, κ)

where (ρ, κ) is the solution of

κt = εκxx +
ρxxI(ρ̂x)

(γ0/2) + (κ̂x − γ0/2)+
+ σρ̂x on IT

ρt = (1 + ε)ρxx + σκ̂x on IT .

(3.9)

The application Ψ is well defined: The existence and uniqueness of (ρ, κ) ∈
Y ρλ × Y κλ solution of (3.9) is obtained in two steps. In a first step, while having
the initial and boundary conditions (1.2) and (1.3), we find a solution ρ ∈ Y of the
second equation of (3.9), then we plug it into the first equation to get a solution
κ ∈ Y . Here, the existence and uniqueness of both solutions are guaranteed by [13,
Theorem 9.1]. It is worth mentioning that [13, Theorem 9.1] requires a compatibility
condition of order 0 on the initial and boundary data. Those conditions are satisfied
by our boundary assumptions on ρ0 and κ0 (see Proposition 3.1).

In a second step, we use (3.4), basically on the functions:

ρ̄ = ρ− ρ0 and κ̄ = κ− κ0,

together with (3.5), to gain the Lp bounds on ρx and κx if we choose T small
enough. The above steps ensure that the application Ψ is well defined at least for
sufficiently small time.
The application Ψ is a contraction:
We now show that Ψ is a contraction. In fact, let Ψ(ρ̂, κ̂) = (ρ, κ) and Ψ(ρ̂′, κ̂′) =
(ρ′, κ′). The couple (ρ− ρ′, κ− κ′) is the solution of the system

(κ− κ′)t = ε(κ− κ′)xx + F1 on IT

(ρ− ρ′)t = (1 + ε)(ρ− ρ′)xx + F2 on IT
(3.10)

where

F1 =
ρxxI(ρ̂x)

(γ0/2) + (κ̂x − γ0/2)+
− ρ′xxI(ρ̂′x)

(γ0/2) + (κ̂′x − γ0/2)+
+ σ(ρ̂x − ρ̂′x),

F2 = σ(κ̂x − κ̂′x),

with
(ρ− ρ′, κ− κ′) = (0, 0) on ∂p(IT ).
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In the remaining part of the proof, the variable c > 0 is a generic constant that
depends on all constants in Proposition 3.1 but independent of T . Using (3.4) and
(3.10), we deduce that

‖κ− κ′‖Y ≤ c‖F1‖Lp(IT ),

‖ρ− ρ′‖Y ≤ c‖F2‖Lp(IT ).
(3.11)

Estimate of ‖ρ− ρ′‖Y . We note that if v = κ̂− κ̂′, then v satisfies

vt = vxx + f on IT ,

v = 0 on ∂p(IT ),

with f = (κ̂− κ̂′)t − (κ̂− κ̂′)xx. Then, by (3.4), we obtain

‖vx‖Lp(IT ) ≤ c
√
T
∥∥(κ̂− κ̂′)t − (κ̂− κ̂′)xx

∥∥
Lp(IT )

≤ c
√
T‖κ̂− κ̂′‖Y ;

therefore,
‖F2‖Lp(IT ) ≤ cb

√
T‖κ̂− κ̂′‖Y . (3.12)

Using the second equation of (3.11) and (3.12), we finally obtain

‖ρ− ρ′‖Y ≤ cb
√
T‖κ̂− κ̂′‖Y . (3.13)

Estimate of ‖κ− κ′‖Y . We write

F1 = A1 +A2 +A3 +A4,

with

A1 =
I(ρ̂x)

(γ0/2) + (κ̂x − γ0/2)+
(ρxx − ρ′xx) ,

A2 =
ρ′xx(I(ρ̂x)− I(ρ̂′x))

(γ0/2) + (κ̂x − γ0/2)+
,

A3 = ρ′xxI(ρ̂′x)
( 1

(γ0/2) + (κ̂x − γ0/2)+
− 1

(γ0/2) + (κ̂′x − γ0/2)+
)
,

A4 = σ(ρ̂x − ρ̂′x).

(3.14)

We estimate the Lp norms of Ai, i = 1, 2, 3, 4. First remark that the coefficient of
(ρxx − ρ′xx) in A1 is bounded, hence by (3.13) we deduce that

‖A1‖Lp(IT ) ≤ cb
√
T‖κ̂− κ̂′‖Y . (3.15)

For the term A2, we proceed as follows. We apply the L∞ control of the spatial
derivative (3.2) to the function ρ̂− ρ̂′, we obtain

‖(ρ̂− ρ̂′)x‖L∞(IT ) ≤ cT
p−3
2p ‖ρ̂− ρ̂′‖Y . (3.16)

For the term ρ′xx in A2, we first remark that if we let ρ̄′ = ρ′ − ρ0, this function
satisfies (see the second equation of (3.9)):

ρ̄′t = (1 + ε)ρ̄′xx + (1 + ε)ρ0
xx − σκ̂′x on IT ,

ρ̄′ = 0 on ∂pIT ,

and hence, by (3.4) and (3.5), we deduce that

‖ρ′xx‖Lp(IT ) ≤ c(M0 + λ). (3.17)

Knowing that I is Lipschitz, we use (3.16) and (3.17) to obtain

‖A2‖Lp(IT ) ≤ c
(M0 + λ)

γ0
T
p−3
2p ‖ρ̂− ρ̂′‖Y . (3.18)
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For A3, we use the same arguments as for A2, and we are lead to:

‖A3‖Lp(IT ) ≤ c
M0(M0 + λ)

γ2
0

T
p−3
2p ‖κ̂− κ̂′‖Y . (3.19)

Here we have used that the function x → 1
(γ0/2)+(x−γ0/2)+ is Lipschitz continuous

over R. Finally,
‖A4‖Lp(IT ) ≤ cb

√
T‖ρ̂− ρ̂′‖Y . (3.20)

Using (3.15), (3.18), (3.19) and (3.20), we finally obtain

‖F1‖Lp(IT ) ≤ cT
p−3
2p (‖κ̂− κ̂′‖Y + ‖ρ̂− ρ̂′‖Y ) , (3.21)

hence, by (3.21), and the first equation of (3.11), we arrive at

‖κ− κ′‖Y ≤ cT
p−3
2p (‖κ̂− κ̂′‖Y + ‖ρ̂− ρ̂′‖Y ) . (3.22)

Conclusion: Equations (3.13) and (3.22) show that, for T > 0 sufficiently small,
the application Ψ is a contraction, and eventually it has a unique fixed point (ρ, κ)
solution of system (3.8), (1.2) and (1.3). Lastly, to get rid of the artificial trun-
cations (I and the positive part in the denominator in (3.8)), and to show (3.7),
we use the embedding (3.1) and the initial conditions (3.5). This is again with the
possibility of reducing the time T . �

Lemma 3.2. If κ is the solution obtained in Proposition 3.1, then

σκx ∈ Cα,α/2(IT ).

Proof. The embedding (3.1) infers that κx ∈ Cα,α/2(IT ) and hence σκx ∈ C(IT ).
We then compute, for x, x′ ∈ [0, 1] and t, t′ ∈ [0, T ], 0 < T < 1:

|σ(x, t)κx(x, t)− σ(x′, t)κx(x′, t)|

≤ b〈κx〉(α)
x,IT
|x− x′|α + ‖κx‖L∞(IT )‖σx‖L∞(IT )|x− x′|

≤ c|x− x′|α

and

|σ(x, t)κx(x, t)− σ(x, t′)κx(x, t′)|

≤ b〈κx〉(α/2)t,IT
|t− t′|α/2 + ‖κx‖L∞(IT )‖σt‖L∞(IT )|t− t′|

≤ c|t− t′|α/2.

Therefore, σκx ∈ Cα,α/2(IT ). �

Remark 3.3. Lemma 3.2 suggests that we may have a better regularity for the
solution ρ obtained in Proposition 3.1, which in turn, can also lead to a better
regularity on κ due to the coupling in (1.1). This is better illustrated by the next
proposition.

Proposition 3.4 (Regularity by a bootstrap argument). Under the same hypoth-
esis of Proposition 3.1 and if, in addition, the functions ρ0, κ0 satisfy the condition

(1 + ε)ρ0
xx + σ(·, 0)κ0

x = 0 on ∂I,

(1 + ε)κ0
xx + σ(·, 0)ρ0

x = 0 on ∂I,
(3.23)

then the solution (ρ, κ) obtained in Proposition 3.1 satisfies:

ρ, κ ∈ C3+α, 3+α2 (IT ) ∩ C∞(Ī × (0, T )). (3.24)
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Remark 3.5 (Comments on condition (3.23)). The assumption (3.23) on the initial
data, together with the constant boundary values, define a compatibility condition
of order 1. In other words, we obtain

0 = κt(x, 0) = εκxx(x, 0) +
ρx(x, 0)ρxx(x, 0)

κx(x, 0)
+ σ(x, 0)ρx(x, 0) for x ∈ ∂I,

0 = ρt(x, 0) = (1 + ε)ρxx(x, 0) + σ(x, 0)κx(x, 0), for x ∈ ∂I.
This boundary condition let us conclude that (see [13, Theorem 5.2]), if the source
terms (see equation (3.3)) in (1.1) is of class Cβ,β/2(IT ) for 0 < β < 2, then the
solution (ρ, κ) will be of class C2+β, 2+β2 (IT ).

Proof of Proposition 3.4. The proof follows the idea of Remark 3.3. In fact, Lemma
3.2 show that the source term σκx of the second equation of (1.1) is of class
Cα,α/2(IT ). Remark 3.5 with 0 < β = α < 2 and the compatibility conditions
(3.23), ensures that ρ ∈ Cα+2,α+2

2 (IT ), which, by its turn (thanks to similar com-
putations as those done in Lemma 3.2), shows that the the source term ρxρxx

κx
+σρx

of the first equation of (1.1) is of class Cα,α/2(IT ). Finally, we also deduce that
κ ∈ Cα+2,α+2

2 (IT ) and then κx ∈ C1+α, 1+α2 (IT ).
We now repeat exactly the same ideas but with this new regularity on κx, taking

into consideration that still 0 < β = α+ 1 < 2, and hence Remark 3.5 is still appli-
cable. In fact, since κx ∈ C1+α, 1+α2 (IT ) then, by similar arguments as in Lemma
3.2, we obtain σκx ∈ C1+α, 1+α2 (IT ) and the whole process may be repeated. There-
fore, we are finally lead to ρ, κ ∈ C3+α, 3+α2 (IT ). Note that this is the maximum
Hölder regularity that could be obtained up to the boundary since the compatibility
condition (3.23) is not sufficient when β > 2. Indeed, higher order compatibility
assumptions are required if we to achieve more regularity on the boundary.

To get the interior C∞ regularity, we need to carefully overcome the problem of
compatibility at t = 0, x ∈ ∂I. Indeed, let 0 < δ < T , and define any test function
φδ ∈ C∞[0, T ] by

φδ(t) =


0 if 0 ≤ t ≤ δ

3 ,

φδ(t) ∈ (0, 1) if δ
3 ≤ t ≤

2δ
3 ,

1 if 2δ
3 ≤ t ≤ T.

(3.25)

By introducing
ρ̄ = ρφδ and κ̄ = κφδ, (3.26)

we can easily see that (ρ̄, κ̄) satisfy a parabolic system where higher order com-
patibility conditions on the initial data are satisfied. Hence, the parabolic Hölder
regularity can be infinitely applied for ρ̄ and κ̄. Accordingly

(ρ̄, κ̄) ∈ C∞(IT ).

From (3.25) and (3.26) we deduce that

(ρ, κ) = (ρ̄, κ̄) in [
2δ
3
, T ], ∀ 0 < δ < T.

Thus ρ, κ ∈ C∞(Ī × (0, T )) and the proof follows. �

Remark 3.6. It is worth noticing that the regularity (3.24) of the solution (ρ, κ)
(obtained by Proposition 3.1) is sufficient to make use of the comparison principle
(Proposition 2.1 in Section 2).
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4. Exponential estimates and long time existence

In this section, we give some exponential bounds of the solution given by Propo-
sition 3.1, and having the regularity shown by Proposition 3.4. In this section, the
generic constants c > 0 and c(T ) > 0 may vary from line to line.

Proposition 4.1 (Exponential bound in time for ρx and κx). Let

ρ, κ ∈ C3+α, 3+α2 (I∞) ∩ C∞(Ī × (0,∞)),

be a solution of (1.1), (1.2) and (1.3), with ρ0(0) = ρ0(1) = κ0(0) = 0 and κ0(1) =
1. Suppose furthermore that (1.5) is satisfied. Then there exists a constant c =
c(ρ0, κ0, ε, b, p) > 0 such that

‖ρx(·, t)‖L∞(I) ≤ cect for all t ≥ 0,

‖κx(·, t)‖L∞(I) ≤ cect for all t ≥ 0.
(4.1)

Proof. The idea behind our exponential estimates is based upon linearising system
(1.1). Indeed, condition (1.5) implies the boundedness of the coefficient ρx

κx
of the

term ρxx, whereas (1.4) implies the boundedness of the other coefficients. We begin
by estimating ‖κx‖Lp(IT ). By applying (3.4) to the function κ−κ′ where κ′ satisfies

κ′t = κ′xx on IT

κ′ = κ on ∂pIT ,
(4.2)

we obtain

‖κx‖Lp(IT ) ≤ c(T )
(
‖κ0‖

W
2−2/p
p (I)

+ 1
)

+ cb
√
T‖ρ‖W 2,1

p (IT ). (4.3)

Here we have used the fact that | ρxκx | ≤ 1, and the solvability of parabolic equations
in Sobolev spaces (see for instance [13, Theorem 9.1]). The same estimate now
applied to ρ− ρ′ (where ρ′ satisfies an inequality similar to (4.2)) gives

‖ρ‖W 2,1
p (IT ) ≤ c(T )‖ρ0‖

W
2−2/p
p (I)

+ cb‖κx‖Lp(IT ). (4.4)

Combining (4.3) and (4.4), we conclude that for

T ∗ =
1

2c4b4
,

we have

‖κx‖Lp(IT∗ ) ≤ c
(
‖κ0‖

W
2−2/p
p (I)

+ ‖ρ0‖
W

2−2/p
p (I)

+ 1
)
, c = c(T ∗) > 0.

Having the special coupling of system (1.1), together with the above estimate, we
can deduce that

‖ρ‖W 2,1
p (IT∗ )

, ‖κ‖W 2,1
p (IT∗ )

≤ c
(
‖κ0‖

W
2−2/p
p (I)

+ ‖ρ0‖
W

2−2/p
p (I)

+ 1
)
,

where c = c(T ∗) > 0; hence, by (3.1), we obtain

|ρ|(1+α)
IT∗

, |κ|(1+α)
IT∗

≤ c
(
‖κ0‖

W
2−2/p
p (I)

+ ‖ρ0‖
W

2−2/p
p (I)

+ 1
)
, c = c(T ∗) > 0.

The trace theorem for parabolic Sobolev spaces [13, Lemma 3.4] give

‖u(·, t+ T ∗)‖
W

2−2/p
p (I)

≤ c‖u‖W 2,1
p (I×(t,t+T∗)), c = c(T ∗) > 0;

therefore, we can iterate backwards in time to finally obtain our result. �
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Proposition 4.2. Under the same hypothesis of Proposition 4.1, there exists a
constant c = c(ρ0, κ0, ε, b, p) > 0 such that

‖ρxx(·, t)‖L∞(I) ≤ cect for all t ≥ 0,

‖κxx(·, t)‖L∞(I) ≤ cect for all t ≥ 0.
(4.5)

The proof of the above porposition can be found in [7, Propositions 5 and 6].

Proposition 4.3. Under the same hypothesis of Proposition 4.1, there exists a
constant c = c(ρ0, κ0, ε, b, p) > 0 such that

‖κx(·, t)‖L∞(I) ≥ ce−ct for all 0 ≤ t ≤ T. (4.6)

The proof of the above proposition Follows immediately from (1.7) and (2.2).
Now we are ready to show the main result of this paper, namely Theorem 1.1.

Proof of Theorem 1.1. Define the set B by

B = Big{T > 0; ∃ ! solution (ρ, κ) ∈ C3+α, 3+α2 (IT ) of

(1.1), (1.2) and (1.3), satisfying (1.5)

This set is non empty by the short time existence result (Theorem 3.1). Set

T∞ = supB.
We claim that T∞ =∞. Assume, by contradiction that T∞ <∞. In this case, let
δ > 0 be an arbitrary small positive constant, and apply the short time existence
result (Theorem 3.1) with T0 = T∞ − δ. Indeed, by the exponential bounds (4.1),
(4.5) and (4.6), we deduce that the time of existence T given by (3.6) is in fact
independent of δ. Hence, choosing δ small enough, we obtain T0 + T ∈ B with
T0 + T > T∞ and hence a contradiction. �
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