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2D ZAKHAROV-KUZNETSOV-BURGERS EQUATIONS WITH
VARIABLE DISSIPATION ON A STRIP

NIKOLATI A. LARKIN

ABSTRACT. An initial-boundary value problem for a 2D Zakharov-Kuznetsov-
Burgers type equation with dissipation located in a neighborhood of x = —oco
and posed on a channel-type strip was considered. The existence and unique-
ness results for regular and weak solutions in weighted spaces as well as expo-
nential decay of small solutions without restrictions on the width of a strip were
proven both for regular solutions in an elevated norm and for weak solutions
in the L2-norm.

1. INTRODUCTION

We are concerned with an initial-boundary value problem (IBVP) for the two-
dimensional Zakharov-Kuznetsov-Burgers (ZKB) equation with a variable dissipa-
tivity located in a neighborhood of x = —o0

up + Uy — (a(@)Ug) g + Uty + Upgy + Ugpyy = 0 (1.1)

posed on a strip modeling an infinite channel {(z,y) € R*: z € R, y € (0,B), B >
0}. Here a(z) : R — R is a sufficiently smooth nonnegative function such that

a(x) > 0in R, sup |0ta(z)| < C(i); a(x) > ap > 0V < —r, (1.2)
R

where ag,r are arbitrary positive constants, ¢ = 0,1,2. This equation is a two-
dimensional analog of the well-known Korteweg-de Vries-Burgers equation

Up + Uy — Upy + Uy + Ugge = 0 (1.3)

which includes dissipation due to viscosity of a medium and dispersion and has been
studied by various researchers due to its applications in Mechanics and Physics [11 2,
3]. One can find extensive bibliography and sharp results on decay rates of solutions
to the Cauchy problem (IVP) for (1.3) in [I]. Exponential decay of solutions to
the initial problem for (1.1) with additional damping has been established in [3].
Equations and are typical examples of so-called dispersive equations
which attract considerable attention of both pure and applied mathematicians in
the past decades.
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Quite recently, the interest on dispersive equations became to be extended to
multi-dimensional models such as Kadomtsev-Petviashvili (KP) and Zakharov-
Kuznetsov (ZK) equations [28]. As far as the ZK equation and its generalizations
are concerned, the results on IVPs can be found in [B 10 19, 20} 211, 23] 26] and
IBVPs were studied in [4} [6], O] 16 17, 18] 26, 27]. In [I7, 18] it was shown that
IBVP for the ZK equation posed on a half-strip unbounded in z direction with
the Dirichlet conditions on the boundaries possesses regular solutions which decay
exponentially as ¢t — oo provided initial data are sufficiently small and the width
of a half-strip is not too large. This means that the ZK equation may create an
internal dissipative mechanism for some types of IBVPs.

The goal of our note is to prove that the ZKB equation posed on a strip also
may create a dissipative effect without adding any artificial damping even when
a variable dissipativity (—a(z)ug), is acting only for x < —r. We must mention
that IBVP for the ZK equation on a strip (z € (0,1), y € R) has been studied
in [, 25] and IBVPs on a strip (y € (0,L), x € R) for the ZK equation were
considered in [§] and for the ZK equation with some internal variable damping
[—(a1(z, y)ug) s — (a2(x, y)uy)y] in [7]. In the domain (y € (0, B), z € R, t > 0), the
term wu, in can be scaled out by a simple change of variables. Nevertheless,
it can not be safely ignored for problems posed both on finite and semi-infinite
intervals as well as on infinite in y direction bands without changes in the original
domain [4] 24].

The main results of our paper are the existence and uniqueness of regular and
weak global-in-time solutions for posed on a strip with the Dirichlet boundary
conditions and the exponential decay rate of these solutions as well as continuous
dependence on initial data. We must say that exploiting of an exponential weight
function is crucial for obtaining necessary global estimates as well as for definition
of regular and weak solutions. This fact yearlier has been observed in [12] while
studying the Cauchy problem for the 1D KdV equation.

This article has the following structure. Section 1 is Introduction. Section
contains formulation of the problem. In Section |3} we prove global existence and
uniqueness theorems for regular solutions in some weighted spaces and continuous
dependence on initial data. In Section [d] we prove exponential decay of small
regular solutions in an elevated norm corresponding to the H'(S)-norm. In Section
we prove the existence, uniqueness and continuous dependence on initial data for
weak solutions as well as the exponential decay rate of the L?(S)-norm for small
solutions without limitations on the width of the strip.

2. PROBLEM AND PRELIMINARIES

Let B,T,r be finite positive numbers. Define S = {(z,y) € R?: z € R, y €
(0,B)}; S = {(x,y) €eR?: z € (—r,+00),y € (0,B)} and Sy = S x (0,T).

Hereafter subscripts s, sy, etc. denote the partial derivatives, as well as 0,
or agy when it is convenient. Operators V and A are the gradient and Laplacian
acting over S. By (+,-) and ||-|| we denote the inner product and the norm in L?(S),
and || - || g+ stands for norms in the L?-based Sobolev spaces. We will use also the
spaces H® N L2, where L? = L?(e?*dx), see [12].

Consider the IBVP

Lu = us — (a(2)ug) g + Uty + Upgy + Ugyy =0 in St; (2.1)
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u(z,0,t) =u(x,B,t) =0, x € R, ¢t > 0; (2.2)
U(iL’,y,O) ZUO(xay)a (‘T,y) €S.
3. EXISTENCE OF REGULAR SOLUTIONS

3.1. Regularized problem. First, for fixed h € (0,1) sufficently small and m € N
sufficiently large consider the regularized problem

Lyup = upt — (a(2)Uha)e + Unlng + Uhzes + Unzyy + hdiup, =0, inSp; (3.1)
up(z,0,t) = up(z,B,t) =0, z€R, t>0; (3.2)
up(z,y,0) = uom (z,y), (x,y) €S, (3.3)

where ug,, is an independent of h approximation of ug such that for all m € N

I = /{u?)m + eQbE (Ugm + [uOmUOmz + AUOmz} ? + |vuOm|2
S

(3.4)
+ | Vtgme|? + [02uom|?)} do dy < oo,
T 2
Jhm = /{ugm + 62b (UOm + [UOmUOmac + AUOmac] + |Vu0m\2 (3 5)
S .
+ | Vtome|? + h02uom|*)} dr dy < oo,
JOm = /{u(Q)m + ebe (Ugm + [uOmuOmw + AuOmac]2 + |v'u/01ﬂ|2
S (3.6)

+ [Vuome|?)} dz dy < oo,
Jo = /{u% + esz(ug + [uouogg + Aqu]2 + |Vu0|2 + \Vu0r|2)} dedy < oo (3.7)
s

and lim,, oo Jom = Jo.
Obviously, for m > m* sufficiently large,

JOm < 2J07 Jhm < Jm7 HU0m||2 § 2Hu0H27 (6%m U‘Om) < 2( 2bz’u(2)).

Approximate solutions. We will construct solutions to (3.1))-(3.3) by the Faedo-
Galerkin method: let w;(y) be orthonormal in L?(S) eigenfunctions of the Dirichlet
problem
wjyy + Ajw; =0,y € (0,B); (3.8)
w;(0) = w, (B) = 0.
Define approximate solutions of m—@ as follows:

(z,y,1) Zw] Y)gn;(x, 1), (3.10)

where gp;(x,t) are solutions to the follovvlng Cauchy problem for the system of N
nonlinear parabolic equations:
0 o? 0 0
59m3 (@5 1) + 55003 (2, 8) = o (a(@)gnja (2, 1) = Aj5—gni (2, 1) o
1 .

B
0
4 [l oy s ) dy + b ong( ) =0,
0

B
gn (2, 0) = / 0y (9)uom (@, )y, j=1,...,N. (3.12)
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It is known that for gj;(z,0) sufficiently smooth the Cauchy problem for the
parabolic system (3.1I)-(3.12) has a unique regular solution (at least local in ¢t)
[T, 13}, 22]. To prove the existence of global regular solutions for —, we
need uniform in N global in ¢ estimates of approximate solutions uiLV (z,y,t).

Estimate I. Multiply the j-th equation of (3.11)) by g5, sum up over j =1,..., N
and integrate the result with respect to x over R to obtain

d
lur 11(8) + 2(a(=), [upz*) (1) + 2hlui, |7 () = 0.

Since ul), = Zjv:l w;(y)gn;(x,0) is an approximation of wg, then for N, m suffi-

ciently large [|[udl,[|? < 2||uom||?|| < 4||uol|?. Hence it follows for N, m sufficiently
large that for all ¢t € (0,T)

t
[ 120)+ 20 [ e 2G5)ds < P < 4l (3.13)
0
t N 1|12 2
| . (2, g, 0)2(s) day ds < Loml” 5 luol® (3.14)
0 JS-S. 2a9 aop

In our calculations we drop the indices h, N, m where it is not ambiguous.

Estimate II. For some positive b, multiply the j-th equation of (3.11) by e2bng

, sum up over 5 = 1,..., N and integrate the result with respect to = over R.
Dropping the indices N, h, we obtain
d
i(e%x, u?)(t) + (e2%, [2a(x) 4+ 6b — 16hb%|u?)(t) + 2b(e*?, u?l)(t) -
4b '
+ 2h(62bx’ uiz)(t) - E(e%xa ug)(t) - (eszv A(b’ a, h)u2>(t) =0,

where A(b,a,h) is a continuous function depending on b, h, a(x) and derivatives
of a(z). In our calculations, we will frequently use the following multiplicative
inequalities [15].

Proposition 3.1. (i) For all u € H'(R?),
ol gy < 2l o oy |l - (3.16)
(ii) For allu € H*(D),
2
lullzapy < Collull L2 (pylull g1 ( by (3.17)
where the constant Cp depends on a way of continuation of w € HY(D) as u(R?)
such that 4(D) = u(D).
Extending u (z,y, t) for a fixed ¢ into exterior of S by 0 and exploiting inequality
(B10), we find
4b 8b
= (27u?) (1) < b(e™ ) (8) + 2b(e®, uZ) (1) +2(0° + glluévm||2)(€2b‘”7u2)(t)-
(3.18)

Substituting this into (3.15)) and taking into account (1.2)), for h sufficiently small
and N, m sufficiently large we arrive to

d x 2bx z ¢
O+ O U )W)+ HET O

< C(b,a)(1+ [Juol*)(€**,u?)(1).
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By Gronwall’s lemma,
(€, u?)(t) < C(b,a,T, |[uol)(€***, up),
where C(b,a,T, ||ug||) depends on a(x) and its derivatives. Returning to (3.19),
¢
(€, Jupy *)(t) +/ (€, [Vup * + hlup,|*) (r)dr
0

< C(b,a, T, lluol)(e*,ug) Vit € (0,T),

(3.20)

whence .
[ Nl () dr < COa T, fuol) (e, ).
Adding (3.14)), we obtain
t
/ ”uth ||L2(S) (T) dr < C(bv a,r,T, ||u0H)(e2bw7 U(Q)) (3'21)
0
and the constants in (3.20)), (3.21)) do not depend on N, h, m.

Estimate III. Multiplying the j-th equation of (B.11)) by —(e***g;,),, and drop-
ping the index N, we arrive to

%(621””7 uz)(8) + (7, [2a(x) + 6b — 16hb%Ju, ) () + 20(e*", 3, ) (¢)

+20(*%, w2, ) (1) + (€27, A(bya, h)u) (t) + (€27, ud ) (8) — 2b(e*u, u3)(t) = 0.
(3.22)
Using Proposition [3.1] we estimate

Iy = (€27,u3)(t) < ol ual*(t) 2acs)
< 2ua | (&)l ua |1V (e us) | ()
< 5(e*,2u2, +ul,)(t) +2[6b° + 7”uz‘|2(t)](62bm u?)(t).
= ) Tx Ty 25 » Y
Similarly,

I = 2b(e*  uu?)(t)

<8, 2u2, 4 02, (6) + (2620 + = [ull (0] (€27, u2) (1)

Substituting I, I into (2.3]), taking ¢ and a fixed h > 0 suffuciently small and
making use of (3.13)), (3.21)), we obtain for V¢ € (0,T) :

t
(€, Jupa *)(t )+/0 (€, [Vupy|* + hlupye,*)(s) ds

< C(b7 r,a,T, Hu0||7 ”ebxuO”)(ebe, ugmz)

(3.23)

Estimate I'V. Multiplying the j-th equation of (3.11)) by —2(e?***\g;), and drop-
ping the index N, we arrive to

S 20+ (2 [20(e) + 66— 16AJu, ) (1) + 2(e™", 0, ) (1)

+2(1 = 0)(€**, uguy) (8) + 2h(e™, uZ,, ) (1) + (€27, A(b,a, h)uy)(t) = 0.

’ wzy

Using Proposition [3.1] we estimate

I=2(1-b)(e?, uguy)(t)
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< 2Cp (1 +b)[Jua | ()" uy | ()]l uy | rr1(s) (t)

< §(e2bw72uiy+uzy)(t)_~_ [25(1+b2)+ C%<1+bZ;”uIHQ(t)](62bx7uz)(t)

For 4, h sufficiently small, we transform (3.24)) into the inequality

%(621""” uy) (8) +4b(e*7 3, ) (8) + b(e™ gy, ) (1) + 2h(e®, 4, ) (1)
< C(b,a)[1 + [lua|(8)%) (€, up) (1).

’ Y

Using (3.21) and the Gronwall lemma, we obtain for all ¢ € (0,7),

t
(€, Jupy|*) (2) +/ (€, Jupyy |* + Blthpey |*)(5) ds
0

(3.25)
< Cb,7,a, T, |luoll, [l uo ) (€**, ufmy )-
This and (3.23)) imply that for all finite > 0 and all ¢ € (0,7,
[u™[?(t) < C(b,r, a, T luoll, lle" uol)(€***, [ Vuuoml*). (3.26)

Estimate V. Multiplying the j-th equation of (3.11)) by (€***¢;.4)z, and dropping
the indices N, h, we arrive to

%@m,uiz)m + (€2, [2a(x) + 6b — 16h67Ju2,.,) () + 2b(e*™, u2,, ) (1)
+2h(e?7 2, . Z 2 A, (b, a,h)|0%ul?) (1) (3.27)

i=

— 2b(e* uu, ) (1) + 5(e*ug, uZ, ) (t) = 0,
where A;(b,a, h) are constants. Using (3.16)), we find
—2b(e®* wul, ) (1) + 5(e* ug, ul, ) (t)

2
< OB, 02 0 () + (406 + 2 s 1)

4b2 2bx 2

+ =l @) (e, uz,) (@)

Substituting I in (3.27)) for §, h sufficiently small, we obtain

%(62'“, Uae ) (1) +4b(€* ulyy ) () + b(®, 1z, ) (1) + 20(e® 15,0, ) (2)

< O(bya)[L+ [Jugl*(8) + lull ()% (€%, uZ, ) (D).
Taking into account (3.13]), (3.21]), we find

t
(€, lupza|*) (1) +/ (€, [Vtpe |* + hlupyes. ) (5) ds
0

< C(b,r,a, T ||uoll, [l o) (™, ufpnrs) Yt € (0,T).

Uomaz

(3.28)
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Estimate VI. Differentiate (3.11]) by ¢ and multiply the result by e?**g;; to obtain

1(62“, uf) () + (€27, [2a(@) + 6b — 16hb°Ju3, ) (1) + 2b(e”**, uf, ) (1)

dt (3.29)
+ 20 u?, ) (t) — (€2, A(b, a, h)u?)(t) + (2 — 2b)(e**®u,, u?)(t) = 0.
Using (3.16)), we estimate
1= (2= 2b)(€* ug, uf)(t) < 2(2 4 20)[|uq|(8) | ue ]| (1) V (" ur) || (2)
2 + 2b)?||ug || (t)?
< 6(62bx,2uit +ut2y)(t) + [2()2(54— ( )5”“ H( ) ](ebe7u%)(t)_
Taking 0, h sufficiently small and substituting I into (3.29)), we obtain
d
@(em up)(t) + 4b(e*7, ul, ) (8) + b(e™, ug, ) (1)
< O(by a)[1 + [Jug || (£)%)(e*, uf) ().
Using (3.1) and (3.10)), we calculate
(€7, [une|*)(0) < CTpm.
This implies that for all t € 0,7,
t
(€%, lupne*)(t) +/ (€7, |Vupg]? + hlugie,| ) (s) ds
0
< C(b,r,a,T, [|uol, | uo|) (€, uiy ) (0) (3.30)
< C(b, 7,0, T, ||uoll, | uo ) 1) Tm
< C(b,r,a, T, |uoll, € uo|)[1) Jom-

Estimate VII. Multiplying the j-th equation of (3.11) by —e***g,,, dropping
indices h, N, we arrive, to
(€%, [uz, + (1 — 3hb)uz,])(t)

ry

= (e [uy, ug ) (t) 4 (€222 uu)(t) — (e, [4hb® — 2b% + ba — a?m]ui)(t)
Using (3.16)), we estimate

N |2
I = (e%”‘,uui)(t) < (5(6%””, 21136z + uiy)(t) + [2b25 + 7”“0:;1” ](e%”” u2)(t).

)y

(3.31)

Taking ¢, h sufficiently small and N, m sufficiently large, using (3.23)), (3.27), (3.30)
and substituting I, into (3.31)), we obtain

(€ upza|* + lupzy 1) (8) < C(b,7,a, T, [[uoll, lle*uol) ) Jrm

N (3.32)
< C(b,r,a, T, ||luoll, e uo|)) Jm ¥Vt € (0,T).

Estimate VIII. We shall need the following lemma.

Lemma 3.2. Let u(z,y): S — R be such that

/s " (z,y) + |Vu(z, y)|? —I—umy(x y)] dx dy < oo
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and for all x € R there is some yo € [0, B] such that u(x,yo) = 0. Then
sup [e"u(@, y, ) < 8(1+20%) (™, uy) (1) + 26(e**, g, ) (1)
S

(3.33)
4 2751(62bw7ui)(t) + 35' [51 + 251b2] (e2bw7u2)(t)a
1

where 6,01 are arbitrary positive numbers.

Proof. Denote v = e?®u. Then simple calculations give
1
SlslpvQ(z,y,t) < Ollfvy 2 () + lloay ()] + g[l\vxll2(t) + vl (@)
Returning to the function u(x,y,t), we complete the proof. ([l

Multiplying the j-th equation of (3.11)) by €?**g;,4., dropping indices h, N, we
arrive to

(€02, + (1= hb)ul, ) (t) = —(€*" [ur — (a(2)ug) o], Yo ) (1)
- (62bmuuz, Ugra) () + 2b2(62bm, u? )(t).

zy
Using Lemma and ([3.13)), we estimate

(3.34)

I= (ezbz“uzaumxm)(t) < ||u||(t)||ebxumx||(t) Sgp |ebwuz(xay»t)|

< ellunll* (e, 12, )(0) + 5[5 (1 + 282) (™, 2) (1)
202, (0) 4+ 51 2 02,)(1) + 25(7 0, ) (1))

Taking € and § sufficiently small, positive and substituting I into (3.34)), we find
(ebe’ \Vu}[fm\Q)(t) < C(b7 r,a,T, HUOH)Jhm (3 35)
< C(b,r,a,T,|luoll)Jm ¥t € (0,T). '

Consequently, from the equalities

and
bxy, N N N N N, N N N
(62 T[’u’ht - (a(l‘)uhw)w + Uhzza + uh:pyy + Up Upy + huhwzxwL uhxyy)(t) =0

it follows that
(€%, [unyy |? + [uhyy 1) (8) < C (6,70, T, o)) Jum Yt € (0,T). (3.36)
Jointly, estimates (3.23]),(3.25)), (3.28]), (3.32)),(3.35)), (3.36) read

g (8 + (€27 Ju) * + [V 1 + [Vugs [ + Va2 + [Vug,[*) (¢)

< C(b,ra,T, ||luoll, |e®uol)) Jnm ¥t € (0,T). (3.37)
This and imply
(€ U ) (1) < Clby 7y, T, o], €0 ) T (3.38)
In other words,
ePrul P, € L0, T; H2(S)) (3.39)

and these inclusions are uniform in N, h > 0 while m is fixed and sufficiently large.
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Estimate IX. Differentiating the j-th equation of (3.11)) with respect to = and
multiplying the result by ezbzaigj, dropping indices h, N, we arrive to

(62bz u2 + (1 - hb)“imzx)(t)

» Yrxxay
= 20%(e®*, ul,, ) (1) — (€°" U, Upawa) (1) (3.40)

s Yzxy

+ (€2 [agats + 200Uss + Qlaga), Usaaa) () — (€277 [u2 + wug,], Ofu) (t).

Using Lemma and ([3.37)), we estimate

Iy = (€2,u3, 0pu)(t) < [lus ()€™ Ogull () Sgplebxux(%y,t)\

T 7T

SRR + 5 s PO+ 22) ()0
20, ) () + (14 202) (€02, ) () + 27 0, ) (8]

1 X
Opul®)(t) + EC(b,T, luoll, lle* o) Trm,

IN

Iy = (€*"u, uzeOpu) (t) < [l Oull (1) |[ull(t) sup €™ g (2, y, 1

IN
3

1
ol P (£) (e, |0ul) (£) + g{%(ezb‘”, Uiy ) ()

2
+0(1+ 2b2)(62bx7 Uixy)(t) + 5(621)17 uixaf)(t)

52 0,) (1)

Applying Young’s inequality, taking h, €1, § sufficiently small positive, substitut-
ing I, I into (3.40) and integrating the result, we arrive to

t
/ (€ [uhspay|* + [Unoraa|*)(5) ds < C(b,7,a, T |luoll, € uol) Jpm ~ (3.41)
0
for all t € (0,T).

Estimate X. Multiplying the j-th equation of (3.11)) by —e?**\2g;,, dropping
indices h, N, we arrive to

(eszv (1 - 3h’b)u’iwyy + uiyyy)(t)

= _(ezbruty,uzyyy)(t) + (2b2 - 4hb3)(62br u? )(@)

- o (3.42)
+ (€ [agtay + QUzyy], Usyyy) ()
- (eQb”:uyuI, Ugyyy ) (t) + (e%zuuw, Ugyyy) (t)-
We estimate
Il = _(€2b “tyvuwyyy)(t) < 7(€2b 7uiyyy)(t) + Z(emj 7u12/t)(t)7

2
I = (eszuyumuwyyy)(t) < ||urH(t)HebI“wyyyH(t) S‘;P |ebzuy(x,y,t|

€ 2br 2 [z |[(2)? 2\ 2bx 2
< S 02 ) (8) + T (L 26 (e ud) ()
+2(e2 02, ) (1) + (14 20%) (27, 2,) (1) + 2™, 2., ) (1))
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Iy = (" Wiy, ayyy) (t) < [|ull ()€ uayyy )| (1) sup "ty (2, 1
< HUOHQQ( 2bx 2 )(t)—i— L[Qé( 2bx 2 )(t)
= 2 € Uayyy 2, € Ugayy
2 1
+ g(@be, uizy)(t) + 6(1 + 2b2)(e2b$7 uiyy)(t) + g

Substituting I; — I3 in (3.42)) and choosing h, €, €1, § sufficiently small, positive, after
integration, we transform (3.42)) into the inequality

(1+26%) (e u2,)(t)].

zy

T
ey P+ i PO < Cl T o] [l T (343

Similarly, we obtain from the scalar product
2bz [, N N N N N, N 4, N1 . N
(6 v [uht - (auhm)z + Uhgzx + uhzyy + Up, Upy + haruh ] ) uhyyyy)(t) =0

the estimate

T
/0 (€27, [ul ) () dt < Cb,ra, T, o, [ uo ) . (3.44)

Estimates (3.37), (3.39), (3.41)), (3.43)), (3.44) guarantee that

||ebwuhN||L°°(O,T;H2(S))QL2(O,T;HS(S)) + ||ebIUthHL°°(O,T;HQ(S))nLZ(O,T;H3(S))
+ ||ebxu}]:[t||L°°(O,T;LZ(S))QLz(O,T;Hl(S)) (345)

< C(b,r, T, |[uoll, lle**uol) Thm

and since by (3.4), , Jhm < Jm, these estimates do not depend on N, h.
Independence of Estimates (3.13)),(3.45) of N allow us first to pass to the limit
as N — oo in (3.11)) and to prove the following result:

Theorem 3.3. Let r, B,T be finite positive numbers, h € (0,1); a smooth nonneg-
ative function a(x) be defined by (1.2)) and a given function ugm,(z,y) : R> — R be
such that ugm (x,0) = ugm (z, B) = 0 and for some b >0
T = [ i+ [T + [Vt +
S
+ [ Atigme|* + h|Okuom[*]} do dy < co.
Then for a fized h > 0 sufficiently small and for a fired m sufficiently large there

exists a regular solution up(z,y,t) to (3.1)-(3.3):
Upm € L0, T; LA(S)),  unme € L*(0,T; L*(S));
" U, % Upme € L°(0,T; H*(S)) N L2(0,T; H3(S));
e Upmy € L(0,T; (L*(S)) N L*(0, T; H'(S))

which (dropping the index m) for a.e. t € (0,T) satisfies the equality

(" [unt — (a(2))Unha)z + Unzze + UnUhe + Unaoyy] B2, 9, 1)) (2)

+ h(€" Unzra, (2, Y, 1)) (1) = 0,
where ¢(z,y,t) is an arbitrary function from L>(0,T; L3(S)).

(3.46)



EJDE-2015/60 2D ZAKHAROV-KUZNETSOV-BURGERS EQUATIONS 11

Proof. Dropping the indices h, m, rewrite in the form

(€ [uf’ — (a(x))uy e + uppy +uNug + nyy] N (y) ¥ (1)) (t) (3.47)
+ (e U, © (y) ¥ (2, 1))(8) = 0, (3.48)
where ®"(y) is an arbitrary function from the linear combinations Zl L ow;(y)

and W¥(x,t) is an arbitrary function from L°°(0,7; L?(S)). Taking into account
estimates (3.13), (3.45) and fixing ®V, we can easily pass to the limit as N — oo
in linear terms. To pass to the limit in the nonlinear term, we must use (3.26))

and repeat arguments of [12]. Since linear combinations [Zfil a;w; (y)|¥(z,t) are
dense in L*(0,7T; L*(S) N L3(S)), we arrive to ([3.46). This proves the existence of
regular solutions to (3.1))-(3.3]). O

Moreover, estimates (3.13)), (3.45) do not depend on N, h, hence they are valid
also for the limit solution uy. This allow us to pass to the limit as h — 0 in (3.46)
and to prove the following result.

Theorem 3.4. Let r, B,T be finite positive numbers; a smooth nonnegative func-
tion a(x) be defined by (1.2) and given function ug(x,y) : R?2 — R be such that
uo(x,0) = ugp(z, B) = 0 and for some b > 0,

Jo = /{ug + €2 [uk 4 |Vuo|? + |Vuge|* + udud, + |Aug,|?]} de dy < oc.

Then there exists a reqular solution u(x,y,t) to such that
u € L>®(0,T; L*(S)), wu, € L2(0,T;L2(S));
ePu, e, € L°(0,T; H*(S)) N L2(0,T; H3(S));
e u; € L0, T; L3(S)) N L0, T; H(S))
which for a.e. t € (0,T) satisfies the identity
(" [ur — (a()us) s + Uppe + Uy + Usyy |, d(2, 9, 1)) () = 0, (3.49)
where ¢(x,y,t) is an arbitrary function from L>(0,T; L3(S)).
Proof. First, dropping the index m, we assume that ¢(z,y,t) € L>(0,T; L3(S) N
H'(S)) in (3.46), and rewrite it as
(€7 [unt — (a(2)uhe )z + Unzoe + UnUhe + Unayy ], O(2, Y, ) (2)
— W™ ungas, 92 (. y, ) (t) + bd(w, y,1))(t) = 0.
Due to estimate ,
Tim A(e" Unzaa, du (2, 1)) (1) + bl y, 1)) () = 0.
Hence, passing to limit as h — 0, we obtain the equality
(eb”” [umt — (a(2)Uma)z + Umzze + UmUme + umzyy] ,o(x,y,t)(t) =0, (3.50)

where ¢(z,y,t) € L°°(0,T; LE(S)). Obviously, for ugm,(x,y) sufficiently smooth
and m fixed, limy,_.g Jpm = Jom. Taking into account that lim,, ... Jom = Jy, we
have for m sufficiently large that Jy,, < 2Jy and consequently, estimates ,
do not depend on m, we can pass to the limit as m — oo in the last equality
and come to (3.49), where ¢(z,y,t) € L>(0,T; L(S)). This proves the existence
of regular solutions to f. O
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Remark 3.5. Estimates (3.13]), (3.20), (3.21)) are valid also for the limit function
u(z,y,t) in the form

[ull () < Jluoll?, (3.51)

lull®(®) + (€2, u?)(t) + / {Iluzl®(s) + (€, [Vul*)(s)} ds
0

< C(r,0,a,T, uoll, [l uol) [luol® + (¢, u3)] vt € (0, T).

(3.52)

subsection*Uniqueness of a regular solution
Theorem 3.6. A regular solution from Theorem[3.] is uniquely defined.

Proof. Let uy, us be two distinct regular solutions of (2.1)—(2.3)), then 2z = u; — uq
satisfies the initial-boundary value problem

1
2z — (a(2)22) e + Zzzz + Zoyy + §(uf —u), =0 in Sr, (3.53)
2(x,0,t) = z(x,B,t) =0, z€eR, >0, (3.54)
z(z,y,0) =0 (x,y) €S. (3.55)
Multiplying (3.53]) by 2e2**z, we obtain
d
a(em, 22)(t) + (e®*[2a(x) + 6], 22)(t) — (e***[4b%a + 2ba, + 8b], 22)(t) (3.56)

+ 2b(e??, zZ)(t) + (€2 [uyy + g, 2%)(t) — b(e**® (ug + ug), 22)(t) = 0.
We estimate

I = (€ (ure + uge), 2°) (1) < [Jure + ugal|(8) €7 2] (8) 7o)
< 2furg + uze || (1) €2 () V("7 2) ()
< 6(e®, 22, + 2, 2))(t) + [26%0 + §(||U1z||2(t) + [fuza 2 ())(€%7, 2%)(8),

Iy = b(e™ (w1 + ua), 2)(t) < bllur + ua|(8)[[€” 2|7 4s)
< 2b||ur +uz|(6) ][ 2| (1) V (€% 2) [ (2)
< 6(e%%, 222 + 23 () + [26%0 + ?(Ilulll%) + [Jual*(£))] (€2, 22) (1)

Substituting I, I into (3.56|) and taking ¢ > 0 sufficiently small, we find

%(e%z, 22)(t) + 2b(e?*®, Zi)(t) + b(e?®, zi)(t)

< Cb,a) [1+ [[uall(6) + uzll(£)* + [lurall(5) + lJuza | (£)] (€27, 2%) (2).

By (3:51) and (352),
w € L¥(0,T; LA(S)),  wiw € L2(0,T5L(S)) i=1,2,

(3.57)

hence by Gronwall’s lemma,
(e® 22 () =0 Vte (0,T)

and u; = us a.e. in St. [l
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Remark 3.7. Changing initial condition (3.55) for z(x,y,0) = zo(z,y) # 0, and
repeating the proof of Theorem from (3.57) we obtain

(e 22)(t) < C(b,r,a,T, ||luo|, ||e®uol)(e2**, 22) ¥t € (0,T).

This means continuous dependence of regular solutions on the initial data.

4. DECAY OF REGULAR SOLUTIONS

In this section we prove exponential decay of regular solutions in an elevated
weighted norm corresponding to the H'(S) norm. We start with Theorem
which is crucial for the main result.

Theorem 4.1. Let b € (0,bp), az(x) <0, [lugl| < 2% and u(wz,y,t) be a regular
solution to (2.1)—(2.3). Then for all finite B > 0,

le?ull?(£) < el ebuq|2(0), (4.1)
/ot X (2 |[Vul?)(s) ds < C (b, [luoll)(1 + £)(e**, u), (4.2)

where , ,
b= | . X =bogmy, (43)

supg[a(z) + y/a%(z) + 255
Proof. Multiplying (2.1)) by 2e¢2**u, we obtain

%(62“7 u?)(t) + (€ [2a(z) 4 6b], u? ) (1) + 2b(e***, ul)(t)
— %(e%m,ug)(t) - (eQbf{Zb[Qa(x)b + az(2)] + 863}, u?)(t) = 0.

The following proposition is necessary for our proof.

(4.4)

Proposition 4.2.

B B2 B
/ / 62b$u2(x7y,t) dy dr < 72/ / ewaui(x’:%t) dy dx. (45)
R Jo ™ RJO

Proof. Since u(z,0,t) = u(x, B,t) = 0, fixing (x,t), we can use with respect to y
the following Steklov inequality: if f(y) € Hg(0,), then

7 2 T 2
/0 / (y)dyé/o £y ()2 dy.

After a corresponding process of scaling we complete the proof. O

Taking into account (3.51)), we estimate

b o N . 16b N
I= 3(6% ) (t) < b(e ul + 2ul)(t) + [20° + 7||u0||2} (€2 u?)(t).
Using (4.5) and substituting I in (4.4]), we arrive to

d . . w2
%(e% 7UZ)(t) + 4b(62b ,ui>(t) + b[ﬁ — QCLI(CC)

~ {da(@)b+ 10 + 2 Juol Y] (27, u) (1) < 0
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which can be rewritten as

d
L 02) (1) + x( ) (1) <0, (46)
where
w2 16]|uo|?
X = b[ﬁ — 2a,(x) — 4ba(x) — 106 — 9 ]
Since we need x > 0, define
2 16| ugl? 2
0 < 4b 106% < = =z A7
< 4ba(zx) + < 152 9 S ipe (4.7)
Solving (4.7)), we find
w2 1 2
bo = —51 |, x=bosps (4.8)
B supgla(@) + \/a?(x) + 35] 2h
From (4.6) we obtain
(€%, u?)(t) < e X (e, Jug|?).
This inequality implies (4.1]).
To prove ([4.2), we return to ([4.4) and multiply it by eX! to obtain
d
@[6”(62“7 u?) (1)) + X [(e2, [2a(x) + 6bJul) (1) + 2b(e*, u3)(t)] o)
4.9
4bext
= =5 (@) (0) + X (™, Al by ) (1),
where A(x,b,a) = 2ba,(z) + 4b%a(z) + 863 + x. Substituting (@) in ([4.9), we obtain

%[ext(ezmﬁ)(t)] +eX (e, |Vul?)(t) < O(b, x, a, [uo|)eX! (€, u?)(1).  (4.10)

Integrating and using (4.1)) imply
t

ext(e%mﬁ)(t”/ X (2%, |Vul?)(s) ds < C(b, x, a, ||uo||) (1+8) (€™, ug). (4.11)
0

The proof is complete. O

Observe that differently from [I7, [I8], we do not have any restrictions on the
width of a strip B. The main result of this section is the following assertion.

Theorem 4.3. Let | the conditions of Theorem [[.1] be fulfilled. Then regular solu-
tions of (2.1)—(2.3)) satisfy

(€2, u? + | Vul?)(t) < O (b, x; [luoll) (1 + t)e ™ (e, [ug + [uol” + [Vuol*]) (4.12)
or

le* ullFp s (8) < C (b, x: [luo ) (1 + t)e ™ (€, ug + |uo|® + [Vuo[*).

Proof. We start with the following lemma.
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Lemma 4.4. Regular solutions of (2.1)—(2.3)) satisfy
b
S (2%, ut)(s)

6’“(821’””,IVUI2)(75)+/0 X {(e*[2a(w) + 6b], uz, ) (s) + 5
+ (e [2a(x) + 8b], u3, ) (s) + 2b(e*, uy, ) (5)} ds

e ) 1) + e @t 200, 0) + 80(o) + 88, 03)(0)
alz)b? an(z 3 (4.13)
+4b( 2bz ui)(s)_(e2bz[4 ( )b +2g w( )+8b —X],ug)(s)}ds

+ / XS (e 4 ap () + A2a(z) + 85, u2)(s) ds
0

i,

¢
+ 2/ eX* (2% [a(x) + 4bJu, u2)(s) ds + (2%, |Vuo|? 3
0

Proof. First we transform the scalar product
— (b [t — [a(2) gz + Upaa + Usyy + Uty ], [2(6 U)o + 267Uy, + ebxuﬂ)(t) =
(4.14)

into the equality

ud
i(esz7 IVul? — ?)(t) + (2 [2a(z) + 6b],u2,)(t)

dt
+2b(e®" ug, ) () + (€27 [2a(x) + 8D), uF, ) (¢ >+g(ez”x7u4>(t)
al\x 2 A\ T 3
4a(z)b? + 2a,(x)b + 8b L))

= (e [azq(z) + 4a(z)b + 86%],u2)(t) — (2] 3
+ (e®*[4a(z)b* + 2bay(x) + 8b3], uZ)(t) + 4b(e?*, uuf})(t)

+ (e®*[2a(z) + 8b], uu?)(t).
(4.15)

To prove (4.15]), we estimate separate terms in (4.14) as follows
I = —Q(Bbz [Ut - [a(a:) ] + Ugga + Ugyy + uuw] ) (ebzuw) )(t)
=2 2ba [u, — la(@)uz]e + Uzwe + Ugyy + Uuw]zv ug ) (t)

(6 2) (1) + (2 [20(x) + 6], 02,) (1) + 2D(™* 02, (1)

A
- (e2bm [axa:(x) + 4a(9€)52 + 8b3]7 ui)(t) + ( Qqu uxmc)(t)

_ 2% 2 @ 26 3\(4).
8b(e”*, uuz)(t) + 3(6 ,u”)(t);

'[2 = _2( b [U’ - [a((E)’LLI]z + Uzzz + Ugyy + Uum],e uyy)(t)
[a(@)ue]e + Ugws + Uayy +wtg] |, €"uy)(1)

— 2(eb93 [ut _
= %(e%ﬂc’ui)(t) + (ebe[Qa(gj) + 6b]’ui )(t) + 2b(e 2bx zy)(t)
)(t) + (eQqu’ uxyy)(t) _ 4b(e2ba:’ UU;)(t),

— (e®[2ba, () + 4b%a(z) + 8b°%], ui

I3 = _(ebx I:ut - [a(x)uw]w + Ugze + Ugyy + ’U,Ui] ebx'U/Q)(t)
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d , gpy U 2b e 3 b obe 4
() (0) + 5 2bae) + aa (@), ) (1) + 5 (¢, ut) (1)
- 2( 2bma(x),uui)(t) - (ezbzauzmm + Umyy)(t)
Summing I; + Iz + I3, we obtain (4.15). In turn, multiplying it by eX* and
integrating the result over (0,t), we arrive to (4.13)). The proof of Lemma is

complete. 0
Using (3.16)), we estimate
ext 2eXxt
I = S (@ u)(0) < 2 el ()9 () (1)
ext b2 4||ugl?
< e 1vu) o) + 1o+ Loy 2y,

Substituting I in , we obtain
XM, [Vul?) (1) +2/ X*{(e**[2a(x) + 6b], u3, )(5) + 2(622’96,“4)(8)
+ (€2 [2a(w) + 8b], u3, ) (s) + 20(e** uy, ) (5)} ds
<2 /t{exs(e%w[x + 2ba, () + 4b%a(z) + 8b°], uz)(s)
0

4a(x)b? + 2ba,(x) + 8b°
3

t
2 [ O anale) + WPala) + 89,0 (5) ds
0

+4b(e2 uu?)(s) — (€2 —x],u’)($)}ds  (4.16)

+ 4/0 eX* (e [a(z) + 4blu, u2)(s) ds

8||uoll*
9
By Proposition [3.1]

3
[+ = ) () 4+ 2™ [ Vo — 2.

4a(x)b? + 2ba,(x) + 8b3

I = —(e®] . —x],u’)(s)
< (€ [Tu)(5) + Cx,b,a, o )€, o) (s).
Similarly,
I = 4(e?*[a(z) + 40]u, u2)(s)
< 6,202, +12,)(5) + 5006 0,5, Jug (€7, u2)(5)
and

= 8(c*"*, uuy)(s) < 8bCp [[uolllle"uy [|(s) €™ uyl| 112 (s) (5)

1662 202
< 6(621""”, 2uiy + u2 ,)(8) + [(262 +1)0+ %] (e%w, uZ)(s)

Taking § = 2b and using . from (4.16) we obtain
XU, [Vul?)(t) < C(b, x, a, uol)(1 + )(6%””,% +[uol* + [Vuo|?).
Adding (4.1), we complete the proof of Theorem |
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5. WEAK SOLUTIONS

Here we prove the existence, uniqueness and continuous dependence on initial
data as well as exponential decay results for weak solutions of (2.1))—(2.3) with
ug € LA(S) N LE(S).

Theorem 5.1. Let ug € L*(S) N LE(S). Then for all finite positive T and B there
exists at least one function u(zx,y,t) such that

u€ L>(0,T;L*(S)), wu, € L*(0,T;L*(S)),
ey € L>(0,T; L*(S)) N L*(0,T; H(S)).
Moreover,
u™ —u  *weakly in L>(0,T; L*(S) N L(S)),
PP u™ — ey weakly in L*(0,T; H'(S)),

where u™ are regular solutions to ([2.1)~([2.3) provided by Theorem [3.4, For a.e.
t € (0,T) the following integral identity takes a place

(e"u, v) / {—(e"u,v,)(s) + (e uy, [Vaw + (a(x) + 2b)v,

F(al)b+ B])(s) — 2 (0 b+ ) () + (g by + vy ) ()} s O
bx

= (" uo, v(z,y,0)),
where
v e L>(0,T; LE(S)) N L*(0,T; H*(S)) v € L*(0,T;LY(S))
is an arbitrary function.

Proof. To justify our calculations, we must operate with sufficiently smooth solu-
tions u™(x,y,t). With this purpose, we consider first initial functions ug.,(z,y),

which satisfy conditions of Theore and obtain estimates (3.51f), (3.52) for

functions u™(x,y,t). By Theorem [3.4] we can write for a.e. t € (0,T)
(€ [u" — (a(@)uy)s + ufhy +u™u +ugy, ], ¢, y,0)(1) =0, (5.2)
where ¢(z,y,t) is an arbitrary function from
L(0, T3 L5(8)) N L*(0, T; HA(S)),

and the inner product at the left-hand side of (5.2)) is an integrable function on
(0,T). Integrating (5.2) over (0,t), after standard calculations we arrive to the
integral equality

(ebrum, / [ (0™, 03)(5) + (ul™, [vas + (az) + 26)0

1
+ (a(2)b +b*)v])(s) — §(€2bx|um\27 bv +v;)(8) + (" uy’, buy + vz ) (s)} ds
= (" ugpm, v(z,y,0)).
Using estimates (3.51)), (3.52]), we pass to the limit as m — oo and come to (5.1)). O

(5.3)
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Remark 5.2. There is an alternate manner to define a weak solution as a distri-

bution, using estimates (3.51)), (3.52)), and passing to the limit directly in (5.2]),

Here we can estimate e’*u* € L2(0,T; H=2(S)) which we will need to pass to the
limit in the nonlinear term.

Remark 5.3. It is easy to verify that regular solutions from Theorem u,

satisfy (2.1)—(2.3)), hence (5.2)) and (5.3)). And vice versa, if regular solutions u™
satisfy (5.3)), then for a.e. ¢ € (0,T) they also satisfy (5.2)), and consequently,

ED)-E3).

Uniqueness of a weak solution.

Theorem 5.4. A weak solution of Theorem [5.1] is uniquely defined.

Proof. Actually, this proof is provided by Theorem [3.6] It is sufficient to approxi-
mate an initial function ug € L2(S) N LZ(S) by regular functions ug,, in the form:

im lwom — w0l r2(s)nzcs) = 0,

where ug,, satisfies the conditions of Theorem [3.4] This guarantees the existence
of the unique regular solution to (2.1)—(2.3)), u™, and allows us, due to Remark
to repeat all the calculations which have been done during the proof of Theorem

[3.6] and arrive to
d T xr T
a(e% czm) (1) 4 2b(e**, 22 ) (1) + b(e®™, 22, ()

< O, a) [1+ urml|(6) + w2 |(6)? + [[urzm [l (£)* + luzomll ()] (7, 22,) (D).

By the generalized Gronwall‘s lemma,

(€7, 2)(t) < exp{/ C(b,a) [1+ [[urm*(s) + lluzml|*(s) + [lurzm*(s)
0

+ luzeml| ()] ds} (e, 25,,) (1).

Functions u1,, and ug,, for m sufficiently large satisfy the estimate (3.52)),

t
etim | £)? + / tioe | (5)? ds
0
< C(, T, Jotom | 11" wom ) etom I + (2%, 02,)]
< O T, ol e uol)lluol + (27, e2)], i =1,2.

Hence,

exp{/o C1+ [luamll(s)? + lluzmll(s)® + lwromll(5)? + lluzzm|l(s)*] ds}

< C(b,a, T, |luoll, [l uo]|)-

b2 (x,y,t) is a weak limit of regular solutions {e**z,,(z,y,t)}, then

(€2bz,2:2)(t) < (ebe 22 )(t) 0.

rym

Since e

This implies u; = ug a.e. in Sp. The proof of Theorem is complete. O
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Remark 5.5. Changing initial condition z(x,y,0) = 0 for z(z,y,0) = zo(z,y) # 0,
and repeating the proof of Theorem we obtain that

(e 22)(t) < C(b,a,T,r, ||luo|, ||e®uol|)(e2**, 22) ¥t € (0,T).
This means continuous dependence of weak solutions on initial data.
Decay of weak solutions.

Theorem 5.6. Let b € (0,bg), az(xz) < 0, ||uol] < 37/(16B) and u(z,y,t) be a
weak solution of (2.1))—(2.3]). Then for all finite B > 0,

le*ul*() < e X[l uo | (0), (5:4)

where ) )

1 s
bozﬁ[ o L X:b0@7 (5.5)
supza(z) + \/a?(x) + 2]

Proof. Similarly to the proof of the uniqueness result for a weak solution, we ap-
proximate ug € L?(S) N LZ(S) by sufficiently smooth functions ugm,, satisfying the
conditions of Theorem [3.4] in order to work with regular solutions. Acting in the
same manner as by the proof of Theorem [{.1] we arrive to

" um||*(t) < e[ uo|[(0), (5.6)
where )
T
=by—.
X 0 22

Since u(x,y,t) is a weak limit of regular solutions {u.,(x,y,t)},

(e2bw7u2)(t) < (e2bw7u2 )(t) < G_Xt(62bm7’u,(2)).

m

The proof of Theorem [5.6] is complete. O

In this Theorem we have a more strict condition for the decay of weak solutions
luol| < 8\?}%3 instead of [Jugl| < 2% in the case of decay for regular solution which
follows from (4.7). In the case of weak solutions, we use in (4.7) instead of wug its

approximation ug,,. This implies for m sufficiently large
64B%||ugm||? < 64B22||ug|* < 972
and consequently, ||uo|| < 37/(v/28B).
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