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LARGE TIME BEHAVIOR FOR p(x)-LAPLACIAN EQUATIONS
WITH IRREGULAR DATA

XIAOJUAN CHAI, HAISHENG LI, WEISHENG NIU

Abstract. We study the large time behavior of solutions to p(x)-Laplacian
equations with irregular data. Under proper assumptions, we show that the

entropy solution of parabolic p(x)-Laplacian equations converges in Lq(Ω) to

the unique stationary entropy solution as t tends to infinity.

1. Introduction

Let Ω be a bounded domain in RN (N ≥ 2) with smooth boundary ∂Ω. We
consider the asymptotic behavior of the following nonlinear initial-boundary value
problem with irregular data,

ut − div(|∇u|p(x)−2∇u) + |u|q−1u = g in Ω× R+,

u = 0 on ∂Ω× R+,

u(x, 0) = u0(x) in Ω,

(1.1)

where q ≥ 1, p ∈ C(Ω) with 1 < p− = minx∈Ω p(x) ≤ p+ = maxx∈Ω p(x) <∞. By
irregular data, we mean that u0, g ∈ L1(Ω).

Equation in problem (1.1) could be viewed as a generalization of the usual p-
Laplacian equations. It is a rather typical nonlinear problem with variable expo-
nents. Problems of this kind are interesting from the purely mathematical point
of view. Besides, they have potential applications in various fields such as elec-
trorheological fluids (an essential class of non-Newtonian fluids) [30, 29], nonlinear
elasticity [40] flow through porous media [1], image processing [14], etc. Perhaps
for these reasons, such a field has attracted more and more attention and has un-
dergone an explosive development in recent years, see the monograph [15] and the
large amounts of references therein.

As an essential model involving variable exponents, problem (1.1) has been stud-
ied in various contexts by different authors. In [4], Antontsev and Shmarev investi-
gated the existence and uniqueness results for some anisotropic parabolic equations
involving variable exponents. Then with more general assumptions on the variable
exponents, in [3, 17, 18], some existence results were obtained for the parabolic p(x)-
Laplacian equations in different frameworks. In [8, 38], existence and uniqueness
results were addressed for the parabolic p(x)-Laplacian equations with L1-data.
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The asymptotic behavior for the parabolic p(x)-Laplacian equations has also
been studied largely. In [5, 6, 7], the extinction, decay and blow up of solutions for
some anisotropic parabolic equations with variable exponents were investigated.
In [2], Akagi and Matsuura studied the convergence to stationary states for the
solutions of the parabolic p(x)-Laplacian equations. In [19, 22] and [33]–[37], the
large time behaviors for certain kinds of p(x)-Lalacian equations were investigated
and described by means of global attractors.

The considerations in [19, 22], [33]–[37] were mainly focused on p(x)-Laplacian
equations with regular data (the initial data and forcing terms were assumed to be
L2 integrable or even essentially bounded). In [12], we considered the existence of
global attractors for some p(x)-Laplacian equations involving L1 or even measure
data. As we see, the less regularity of the data influences the regularity of the
solutions greatly, and which in turn causes some crucial difficulties in investigating
the asymptotic behaviors of the solutions, see also [21, 23, 25, 26, 27, 41].

In this article, we shall continue the study on the large time behavior of solutions
to p(x)-Laplacian equations with irregular data as in [12]. But from a different point
of view, here we investigate the convergence of the solutions to the stationary states
as t tends to infinity. Under proper assumptions, we shall prove that the unique
entropy solution u(t) to the p(x)-Laplacian problem (1.1) converges in L1(Ω) to the
unique entropy solution v of the corresponding elliptic problem (2.2) as t tends to
infinity.

Our work is largely motivated by the works of Petitta and his coauthors in
[21, 25, 26, 27]. By using the comparison principle and some compactness re-
sults successfully, the authors have obtained the convergence of solutions to the
stationary states for several type of parabolic equations (with constant exponent)
involving irregular data. Yet, the variable exponent problem treated here exhibits
some stronger nonlinearity and inhomogeneity, which require the analysis to be
more delicate.

Next, we first provide some preliminaries in Section 2. Then in Section 3, the last
section, we investigate the large time behavior of the entropy solution to problem
(1.1). Throughout the paper, we denote Ω×(0, T ) by QT for any T > 0, and we use
C to denote some positive constant, which may distinguish with each other even in
the same line and that only depends on.

2. Preliminaries

Let us begin with the definitions and some basic properties of the generalized
Lebesgue and Sobolev spaces. Interested readers may refer to [15, 16, 20] for more
details.

For a variable exponent p ∈ C(Ω) with p− > 1, define the Lebesgue space
Lp(·)(Ω) as

Lp(·)(Ω) = {u : Ω→ R;u is measurable and
∫

Ω

|u|p(x)dx <∞}

with the Luxemburg norm

‖u‖Lp(·)(Ω) = inf{λ > 0 :
∫

Ω

|u(x)
λ
|p(x)dx ≤ 1}.
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We have

min{‖u‖p
+

Lp(·)(Ω)
, ‖u‖p

−

Lp(·)(Ω)
} ≤

∫
Ω

|u|p(x)dx ≤ max{‖u‖p
+

Lp(·)(Ω)
, ‖u‖p

−

Lp(·)(Ω)
}.

As p− > 1, the space is a reflexive Banach space with dual Lp
′(·)(Ω), where 1

p(·) +
1

p′(·) = 1. Let ri ∈ C(Ω) with r−i > 1, i = 1, 2. Then if r1(x) ≤ r2(x) for any
x ∈ Ω, the imbedding Lr2(·)(Ω) ↪→ Lr1(·)(Ω) is continuous, of which the norm does
not exceed |Ω| + 1. Besides, for any u ∈ Lp(·)(Ω), v ∈ Lp′(·)(Ω), we have Hölder’s
inequality ∫

Ω

|uv|dx ≤
( 1
p−

+
1

(p−)′
)
‖u‖Lp(·)(Ω)‖v‖Lp(·)(Ω).

For a positive integer k, the generalized Sobolev space W k,p(·)(Ω) is defined as

W k,p(·)(Ω) = {u ∈ Lp(·)(Ω) : Dαu ∈ Lp(·)(Ω), |α| ≤ k}

with norm
‖u‖Wk,p(·) =

∑
|α|≤k

‖Dαu‖Lp(·)(Ω).

Such a space is also a separable and reflexive Banach space.
For constant 1 ≤ m < ∞, the time dependent spaces Lm(0, T ;W 1,p(·)

0 (Ω)) con-
sists of all strongly measurable functions u : [0, T ]→W

1,p(·)
0 (Ω) with

‖u‖
Lm(0,T ;W

1,p(·)
0 (Ω))

= (
∫ T

0

‖u‖mWk,p(·)dt)1/m <∞.

In this article, we assume that there exists a positive constant C such that

|p(x)− p(y)| ≤ − C

log |x− y|
, for every x, y ∈ Ω with |x− y| < 1

2
. (2.1)

This condition ensures that smooth functions are dense in the generalized Sobolev
spaces. Then W

k,p(·)
0 (Ω) can naturally be defined as the completion of C∞c (Ω)

in W k,p(·)(Ω) with respect to the norm ‖ · ‖Wk,p(·) , and one has W
k,p(·)
0 (Ω) =

W k,p(·)(Ω) ∩ W 1,1
0 (Ω). For u ∈ W

1,p(·)
0 (Ω), the Poincaré type inequality holds,

i.e.,
‖u‖Lp(·)(Ω) ≤ C‖∇u‖Lp(·)(Ω),

where the positive constant C depends on p and Ω. So ‖∇u‖Lp(·)(Ω) is an equivalent

norm in W
1,p(·)
0 (Ω).

Let s(·) be a measurable function on Ω such that ess infx∈Ωs(x) > 0. Define the
Marcinkiewicz space Ms(·)(Ω) as the set of measurable functions v such that∫

Ω∩{|v|>k}
ks(x)dx < C,

for some positive constant C and all k > 0 [31]. It is obvious that if s(x) ≡ s con-
stant, the above definition coincides with the classical definition of Marcinkiewicz
spaces. Thanks to Proposition 2.5 in [31], we have

Lemma 2.1. Let r(·), s(·) ∈ C(Ω) such that s− > 0, (r− s)− > 0 and let u(x, t) be
a function defined on QT . If u ∈Mr(·)(QT ), then |u|s(x) ∈ L1(QT ). In particular,
Mr(·)(QT ) ⊂ Ls(·)(QT ) for all s(·), r(·) ≥ 1 such that (r − s)− > 0.
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Consider the following elliptic equation corresponding to (1.1)

−div(|∇v|p(x)−2∇v) + |v|q−1v = g in Ω,
v = 0 on ∂Ω,

(2.2)

where g ∈ L1(Ω). Let Tk(s) be the usual truncating function defined as Tk(σ) =
max{−k,min{k, σ}}. Denote Φk(σ) as its primitive function,

Φk(σ) =
∫ σ

0

Tk(r)dr =

{
σ2/2 if |σ| < k,

k|σ| − k2/2 if |σ| ≥ k.

Definition 2.2 ([13, 31, 39]). A measurable function v is called an entropy solution
to problem (2.2), if v ∈ Lq(Ω) and for every k > 0, Tk(v) ∈W 1,p(·)

0 (Ω),∫
Ω

|∇v|p(·)−2∇v∇Tk(v − ϕ)dx+
∫

Ω

|v|q−1vTk(v − ϕ)dx ≤
∫

Ω

Tk(v − ϕ)gdx (2.3)

holds for any ϕ ∈W 1,p(·)
0 (Ω) ∩ L∞(Ω).

A function v such that Tk(v) ∈ W 1,p(·)
0 (Ω), for all k > 0, does not necessarily

belong to W 1,1
0 (Ω). Thus ∇v in the equation is defined in a very weak sense [9, 31]:

For every measurable function v : Ω → R such that Tk(v) ∈
W

1,p(·)
0 (Ω) for all k > 0, there exists a unique measurable func-

tion w : Ω → RN , which we call the very weak gradient of v and
denote w = ∇v, such that

∇Tk(v) = wχ{|v|<k}, almost everywhere in Ω and for every k > 0,

where χE denotes the characteristic function of a measurable set
E. Moreover, if v belongs to W 1,1

0 (Ω), then w coincides with the
weak gradient of v.

Theorem 2.3 ([13]). Assume that g ∈ L1(Ω), and (2.1) holds. Then problem (2.2)
admits a unique entropy solution v.

Definition 2.4 ([38]). A function u is called an entropy solution of (1.1), if for
any T > 0, u ∈ C([0, T ];L1(Ω)) ∩ Lq(QT ) such that Tk(u) ∈ Lp−(0, T ;W 1,p(·)

0 (Ω)),
∇Tk(u) ∈ (Lp(·)(QT ))N , and∫

Ω

Φk(u− ϕ)(T )dx−
∫

Ω

Φk(u0 − ϕ(0))dx+
∫ T

0

〈ϕt, Tk(u− ϕ)〉dt

+
∫
QT

|∇u|p(x)−2∇u · ∇Tk(u− ϕ) dx dt+
∫
QT

|u|q−1uTk(u− ϕ) dx dt

≤
∫
QT

gTk(u− ϕ)dx,

(2.4)

holds for any k > 0 and any ϕ ∈ C1(QT ) with ϕ = 0 on ∂Ω × (0, T ). Here 〈·, ·〉
denotes the duality product between W

1,p(·)
0 (Ω) and its dual space W−1,p′(·)(Ω).

Remark 2.5. Similar to Definition 2.2, the gradient of u in Definition 2.2 is also
defined in a very weak sense [38]. On the other hand, let

X = {φ| φ ∈ Lp
−

(0, T ;W 1,p(·)
0 (Ω)),∇φ ∈ (Lp(·)(QT ))N}
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with norm ‖φ‖X = ‖∇φ‖Lp(·)(Ω) + ‖φ‖
Lp− (0,T ;W

1,p(·)
0 (Ω))

. We can choose ϕ ∈ X ∩
L∞(QT ) with ϕt ∈ X∗ + L1(QT ) as a test function in the definition above, see [8].

Remark 2.6. Let v be an entropy solution to problem (2.2). Since it is independent
of time, we have, for any ϕ ∈ C1(QT ) with ϕ = 0 on ∂Ω× (0, T ),∫

Ω

Φk(v − ϕ)(T )dx−
∫

Ω

Φk(v − ϕ(0))dx

=
∫ T

0

〈(v − ϕ)t, Tk(v − ϕ)〉dt

= −
∫ T

0

〈ϕt, Tk(v − ϕ)〉dt.

Thus we find that v is actually an entropy solution to (1.1) with initial data u0 = v.

Theorem 2.7. Assuming that u0, g ∈ L1(Ω) and (2.1) holds, problem (1.1) admits
a unique entropy solution u.

Proof. The proof is rather similar to [38] (see also [10, 28]), thus we just sketch it
in a rather concise way. Consider the approximate problem

unt − div(|∇un|p(x)−2∇un) + |un|q−1un = gn in Ω× R+,

un = 0 on ∂Ω× R+,

un(x, 0) = un0 in Ω,

(2.5)

where {gn}n∈N, {un0}n∈N are smooth approximations of the data g and u0 with

‖un0‖L1(Ω) ≤ ‖u0‖L1(Ω), ‖gn‖L1(Ω) ≤ ‖g‖L1(Ω).

Similar to [38, Lemma 2.5], with rather minor modifications, we can prove that
problem (2.5) admits a unique weak solution un for each n.

Performing the calculations as in [38, pp. 1384 Step 1] (see also [28, Claim 1]), we
obtain that, up to a subsequence, {un} converges to a function u in C([0, T ];L1(Ω)),
and hence almost everywhere inQT , for any given T > 0. Using Vitali’s convergence
theorem, see for example [12], we can prove that |un|q−1un converges to |u|q−1u in
L1(QT ). Performing the calculations as Step 2 in [38], we can deduce that ∇Tk(un)
converges to ∇Tk(u) strongly in (Lp(·)(QT ))N . Taking Tk(un−ϕ) as a test function
in (2.5) and passing to the limit, it is easy to obtain that u is an entropy solution
to problem (1.1). Thanks to the monotonicity of the term |u|q−1u, the uniqueness
can be proved in the same way as [38, pp1396-1398]. �

Remark 2.8. Similar to [38], we can prove that (2.4) actually can hold as an
equality. Yet, the inequality is enough to ensure the uniqueness, see [28] for the
constant exponent case.

3. Asymptotic behavior

In this section, we consider the asymptotic behavior of the entropy solution to
(1.1). To state the main result, let us first adapt to our problem the definition of
entropy subsolutions and entropy supersolutions, which were originally defined in
[26, 24]. Denote by f+, f− the positive and negative parts of a function f with
f = f+ − f−.



6 X. CHAI, H. LI, W. NIU EJDE-2015/61

Definition 3.1. A function v(x) is an entropy subsolution of (2.2) if, for all k > 0,
we have v ∈ Lq(Ω), Tk(v) ∈W 1,p(·)

0 (Ω), and it holds that∫
Ω

|∇v|p(x)−2∇v∇Tk(v − ϕ)+dx+
∫

Ω

|v|q−1vTk(v − ϕ)+dx ≤
∫

Ω

gTk(v − ϕ)+dx,

(3.1)
for any ϕ ∈W 1,p(·)

0 (Ω) ∩ L∞(Ω).
On the other hand, a function v(x) is an entropy supersolution of problem (2.2)

if, for all k > 0, we have v ∈ Lq(Ω), Tk(v) ∈W 1,p(·)
0 (Ω), and it holds that∫

Ω

|∇v|p(x)−2∇v∇Tk(v − ϕ)−dx+
∫

Ω

|v|q−1vTk(v − ϕ)−dx ≥
∫

Ω

gTk(v − ϕ)−dx,

(3.2)
for any ϕ ∈W 1,p(·)

0 (Ω) ∩ L∞(Ω).

Definition 3.2. A function u(x, t) is an entropy subsolution of (1.1) if, for all
T, k > 0, we have u(x, t) ∈ C([0, T ];L1(Ω))∩Lq(QT ), Tk(u) ∈ Lp−(0, T ;W 1,p(·)

0 (Ω)),
∇Tk(u) ∈ (Lp(·)(QT ))N , and it holds that∫

Ω

Φk((u− ϕ)+)(T )dx−
∫

Ω

Φk((u0 − ϕ(0))+)dx

+
∫
QT

|∇u|p(x)−2∇u∇Tk(u− ϕ)+ dx dt

+
∫ T

0

〈ϕt, Tk(u− ϕ)+〉dt+
∫
QT

|u|q−1uTk(u− ϕ)+ dx dt

≤
∫
QT

gTk(u− ϕ)+ dx dt,

(3.3)

for any ϕ ∈ C1(QT ) with ϕ = 0 on ∂Ω× (0, T ) and u(x, 0) ≡ u0(x) ≤ u0(x) a.e. in
Ω with u0 ∈ L1(Ω).

On the other hand, a function u(x, t) is an entropy supersolution of problem
(1.1) if, for all T, k > 0, we have u(x, t) ∈ C([0, T ];L1(Ω)) ∩ Lq(QT ), Tk(u) ∈
Lp
−

(0, T ;W 1,p(·)
0 (Ω)), ∇Tk(u) ∈ (Lp(·)(QT ))N , and it holds that∫

Ω

Φk((u− ϕ)−)(T )dx−
∫

Ω

Φk((u0 − ϕ(0))−)dx

+
∫
QT

|∇u|p(x)−2∇u∇Tk(u− ϕ)− dx dt

+
∫ T

0

〈ϕt, Tk(u− ϕ)−〉dt+
∫
QT

|u|q−1uTk(u− ϕ)− dx dt

≥
∫
QT

gTk(u− ϕ)− dx dt,

(3.4)

for any ϕ ∈ C1(QT ) with ϕ = 0 on ∂Ω× (0, T ) and u(x, 0) ≡ u0(x) ≥ u0(x) a.e. in
Ω with u0 ∈ L1(Ω).

Remark 3.3. Taking Tk(un − ϕ)+, Tk(un − ϕ)− as test functions in (2.5) and
passing to the limits, we obtain that an entropy solution to problem (1.1) is both
an entropy subsolution and an entropy supersolution of the same problem. In the
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same way, an entropy solution to the elliptic problem (2.2) also turns out to be an
entropy subsolution and an entropy supersolution to the problem.

Remark 3.4. Similar to the observation in Remark 2.6, we may find that an en-
tropy subsolution (entropy supersolution) v (respectively v ) of the elliptic problem
(2.2) is automatically an entropy subsolution (entropy supersolution) of (1.1) with
itself as initial data.

Lemma 3.5. Let u0, g ∈ L1(Ω), and u, u be an entropy supersolution and an en-
tropy subsolution to problem (1.1) respectively. Let u be the unique entropy solution
to the same problem. Then for any t > 0, we have u ≤ u ≤ u almost everywhere in
Ω.

The proof of the above lemma is almost the same as that of [26, Lemma 3.3], we
omit it.

Theorem 3.6. Let v and v be, respectively, an entropy supersolution and an en-
tropy subsolution to problem (2.2) respectively. Assume (2.1) holds, g, u0 ∈ L1(Ω)
and v ≤ u0 ≤ v. If

θ(x) .= max{ p(x)q
(q + 1)

, p(x)− N

N + 1
} > 1 in Ω,

then the unique entropy solution u of problem (1.1) converges in Lq(Ω) to the unique
entropy solution v of problem (2.2) as t tends to infinity.

Corollary 3.7. Assume (2.1) holds, g ∈ L1(Ω), u0 ≡ 0. If θ(x) > 1 in Ω, then
the unique entropy solution u(t) of problem (1.1) converges to the unique entropy
solution v of problem (2.2) in Lq(Ω) as t tends to infinity.

Proof of Theorem 3.6. Consider the nonlinear problem

(um)t − div(|∇um|p(x)−2∇um) + |um|q−1um = g in Ω× (0, 1),

um = 0 on ∂Ω× (0, 1),

um(x, 0) = u(x,m) in Ω,

(3.5)

where m ∈ N ∪ {0}, and u(x, 0) = v. Let u(t) be the entropy solution for problem
(1.1) with v as initial data. Thanks to the uniqueness of entropy solutions and
the independency of t for the data g, um(t) is just the restriction of u(t) on the
interval [m,m+ 1). Note that v and v are the entropy subsolution and the entropy
supersolution respectively for problem (1.1) with initial data v. Thanks to Lemma
3.5, v ≤ u(t) ≤ v for any t > 0. Similarly, let u(s+ t) be the solution with u(s) as
initial data, then we have u(s + t) ≤ u(t) for any t, s > 0, which implies that u(t)
is decreasing in t. Thus for 0 < t < 1,

v(x) ≥ um(x, 0) ≥ um(x, t) = u(x,m+ t) ≥ um+1(x, 0) ≥ v(x). (3.6)

Hence there must be a function w(x) ≥ v(x) such that u(x, t) converges to w(x) al-
most everywhere in Ω as t tends to infinity. And then by the dominated convergence
theorem, we have

u(x, t)→ w(x) in L1(Ω) as t→ +∞. (3.7)
Next, following the ideas of [26] (see also [27]), we can perform some estimates for
the sequence {um}, to prove that w(x) is actually the entropy solution v to the
elliptic problem (2.2).
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Thanks to (3.6), we have

‖um(t)‖L1(Ω) = ‖u(m+ t)‖L1(Ω) ≤ ‖v‖L1(Ω) + ‖v‖L1(Ω) ≤ C, 0 < t ≤ 1, (3.8)

where C is obviously independent of m. Thus the sequence {um} is bounded in
L∞(0, 1;L1(Ω)). Taking u0 = u(x,m), T = 1 and ϕ = 0 in Definition 2.4, we
obtain∫

Ω

Φk(um)(1)dx+
∫ 1

0

∫
Ω

|∇Tk(um)|p(x) dx dτ +
∫ 1

0

∫
Ω

|um|q|Tk(um)| dx dτ

≤ k‖g‖L1(Ω) +
∫

Ω

Φk(u(x,m))dx.
(3.9)

Note that

0 ≤ Φk(s) ≤ k|s| ≤ Φk(s) +
k2

2
. (3.10)

Noticing (3.8), we deduce from (3.9) that∫ 1

0

∫
Ω

|∇Tk(um)|p(x) dx dτ ≤ Ck, (3.11)∫ 1

0

∫
Ω

|um|q dx dτ ≤
∫ 1

0

∫
Ω

|um|q|Tk(um)| dx dτ + |Ω|

≤
∫

Ω

Φ1(u(x,m))dx+ |Ω|+ ‖g‖L1(Ω) ≤ C.
(3.12)

For a given function f(x, t) defined on QT , we set

{f ≥ k} = {(x, t) ∈ QT : f(x, t) ≥ k}, {f ≤ k} = {(x, t) ∈ QT : f(x, t) ≤ k}.
Then setting α(·) = p(·)/(q + 1) in Ω and using (3.12), we deduce that∫

{|∇um|α(x)>k}
kq dx dt

≤
∫
{|∇um|α(x)>k}∩{|um|≤k}

kq dx dt+
∫
{|um|>k}

kq dx dt

≤
∫
{|um|≤k}

kq
( |∇um|α(x)

k

) p(x)
α(x)

dx dt+
∫
Q1

|um|q dx dt

≤ 1
k

∫
Q1

|∇Tk(um)|p(x) dx dt+ C ≤ C,

(3.13)

which implies that |∇um|p(·)/(q+1) is bounded in Mq(Q1), and hence we conclude
from Lemma 2.1 that

|∇um|β(·) is bounded in L1(Q1) for β ∈ C(Ω) satisfying
β(·) < p(·)q/(q + 1) in Ω.

(3.14)

On the other hand, let s ∈ C(Ω) such that 1 < s(·) < (N + 1)p(·)/N in Ω. From
the continuity of s and p, for any x ∈ Ω, there exists a ball Bδ(x) of x, such that
s+(Bδ(x) ∩ Ω) < ((N + 1)p(·)/N)− (Bδ(x) ∩ Ω), where

s+(Bδ(x) ∩ Ω) = max{s(y) : y ∈ Bδ(x) ∩ Ω},

((N + 1)p(·)/N)− (Bδ(x) ∩ Ω) = min{(N + 1)p(y)/N : y ∈ Bδ(x) ∩ Ω}.

It is obvious that ∪x∈ΩBδ(x) is an open covering of Ω. Since Ω is compact, there
is a finite sub-covering Bδi(xi), i = 1, 2, . . . , l. For convenience, we denote the set
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Bδi(xi)∩Ω by Ui hereafter. Assume that meas(Ui) > c > 0, i = 1, 2, . . . , l. Denoting
si

+ = s+(Ui), pi− = p−(Ui), we have

((N + 1)p(·)/N)− (Ui) = (N + 1)pi−/N.

Setting Ui,1 = Ui × (0, 1), we deduce that∫
Ui,1∩{|um|>k}

k
(N+1)pi

−
N dx dt

≤
∫ 1

0

∫
Ui

|Tk(um)|
(N+1)pi

−
N dx dt

≤ 2
(N+1)pi

−
N

∫ 1

0

∫
Ui

|Tk(um)− (Tk(um))i|
(N+1)pi

−
N dx dt

+ 2
(N+1)pi

−
N

∫ 1

0

∫
Ui

|(Tk(um))i|
(N+1)pi

−
N dx dt,

(3.15)

where

(Tk(um))i =
1

meas(Ui)

∫
Ui

Tk(um)dx for almost all t ∈ (0, 1).

Thanks to (3.8), we have

|(Tk(um))i| ≤
1

meas(Ui)

∫
Ui

|Tk(um)|dx ≤ C,

where c is independent of k,m. By the well-known Gagliardo-Nirenberg inequality,
we have, for almost all t ∈ (0, 1),∫

Ui

|Tk(um)− (Tk(um))i|
(N+1)pi

−
N dx

≤ C
∫
Ui

|∇Tk(um)|pi
−
dx
(∫

Ui

|Tk(um)− (Tk(um))i|dx
) pi−

N

.

Integrating the above inequality over (0, 1), we deduce that∫ 1

0

∫
Ui

|Tk(um)− (Tk(um))i|
(N+1)pi

−
N dx dt

≤ C
(
‖um‖L∞(0,1;L1(Ω)) + C|Ω|

) pi−
N

∫ 1

0

∫
Ui

|∇Tk(um)|pi
−
dx dt.

Taking the last inequality and (3.8), (3.11) into (3.15), we obtain that∫
Ui,1∩{|um|>k}

k
(N+1)pi

−−N
N dx dt ≤ C, (3.16)

where C may depend on ‖g‖L1(Ω), ‖v‖L1(Ω), |Ω|, but it is independent of k,m. Since

si
+ < (N+1)pi

−

N in Ui, (3.16) implies that (k ≥ 1)∫
Ui,1∩{|um|>k}

ks(x)−1 dx dt ≤
∫
Ui,1∩{|um|>k}

ksi
+−1 dx dt

≤
∫
Ui,1∩{|um|>k}

k
(N+1)pi

−−N
N dx dt ≤ C.



10 X. CHAI, H. LI, W. NIU EJDE-2015/61

Then ∫
{|um|>k}

ks(x)−1dx ≤
l∑
i=1

∫
Ui∩{|um|>k}

ks(x)−1dx ≤ lC. (3.17)

Hence {um} is bounded in Ms(x)−1(Q1). Similar calculations as (3.13) help us to

obtain that {|∇um|
p(x)
s(x) } is bounded in Ms(x)−1(Q1). By Lemma 2.1, we have that

the set {|∇um|β1(x)} is bounded in L1(Q1) for β1 ∈ C(Ω) satisfy-
ing β1(·) < p(·)−N/(N + 1).

(3.18)

Combining (3.14) and (3.18), we obtain that {|∇um|γ(x)} is bounded in L1(Q1) for
any γ ∈ C(Ω) satisfying

0 < γ(x) < θ(x) .= max{p(x)q/(q + 1), p(x)−N/(N + 1)} in Ω.

Thus if θ(x) > 1 in Ω (for example, in the case p(x) > 2 − 1/(N + 1) or q >
1/(p(x)− 1) in Ω), we can choose a constant 1 < r0 < θ(x) such that

{um(t)} is bounded in Lr0(0, 1;W 1,r0
0 (Ω)).

On the other hand, note that

p(x)−N/(N + 1) > p(x)− 1 in Ω.

The definition of θ(x) allows us to choose a positive function γ0 in Ω, such that

p(x)− 1 < γ0(x) < θ(x) in Ω.

Hence {(|∇um|(p(x)−1))γ0(x)/(p(x)−1)} (={|∇um|γ0(x)}) is bounded in L1(Q1).
Therefore, {|∇um|p(x)−1} is bounded in Ls0(Q1) for 1 < s0 ≤ γ0(x)/(p(x) − 1)
in Ω, which implies that div(|∇um|p(x)−2∇um) is uniformly (with respect to m)
bounded in Ls0(0, 1;W−1,s0(Ω)). Then we deduce from the equation that

{(um)t} is bounded in Ls0(0, 1;W−1,s0(Ω)) + L1(0, 1;L1(Ω)).

So, thanks to the well-known compactness result of Aubin’s type, see for example
[32], there is a subsequence of {um}, denoted by {umk}, which converges to a
function ũ in L1(Q1). Since umk(x, t) = u(x, t+mk), we may conclude from (3.7)
that ũ = w(x) is independent of time.

Now, let us show that ũ is actually the entropy solution v of the elliptic problem
(2.2). From (3.11), we have

Tk(um)→ Tk(ũ) weakly in Lp
−

(0, 1;W 1,p(·)
0 (Ω)),

∇Tk(um)→ ∇Tk(ũ) weakly in (Lp(·)(Q1))N .

From the estimate on um, we know that

um → ũ weakly in Lr0(0, 1;W 1,r0
0 (Ω)), for some 1 < r0 < θ(x).

Furthermore, with very minor modifications on the proof of [11, Theorem 3.3], one
can prove that

∇um → ∇ũ a.e. in Q1.

Since um is the entropy solution of (3.5), we have∫
Ω

Φk(um − ϕ)(1)dx−
∫

Ω

Φk(u(x,m)− ϕ(0))dx+
∫ 1

0

〈ϕt, Tk(um − ϕ)〉dt (3.19)
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+
∫
Q1

|∇um|p(x)−2∇um · ∇Tk(um − ϕ) dx dt+
∫
Q1

|um|q−1umTk(um − ϕ) dx dt

(3.20)

≤
∫
Q1

gTk(um − ϕ)dx (3.21)

for any ϕ ∈ C1(Q1) with ϕ = 0 in ∂Ω× (0, 1). Using the convergence results above
for um, and passing to the limit, we deduce that

(3.19)→
∫

Ω

Φk(ũ− ϕ(1))dx−
∫

Ω

Φk(ũ− ϕ(0))dx+
∫ 1

0

〈ϕt, Tk(ũ− ϕ)〉dt.

Since ũ = w(x) is independent of time, similar to Remark 2.6 we have∫
Ω

Φk(ũ− ϕ(1))dx−
∫

Ω

Φk(ũ− ϕ(0))dx+
∫ 1

0

〈ϕt, Tk(ũ− ϕ)〉dt = 0. (3.22)

Passing to the limit in (3.21), we obtain that

(3.21)→
∫
Q1

gTk(ũ− ϕ)dx. (3.23)

At last, passing to the limit in (3.20), we note that∫
Q1

|∇um|p(x)−2∇um · ∇Tk(um − ϕ) dx dt (3.24)

=
∫
Q1

(|∇um|p(x)−2∇um − |∇ϕ|p(x)−2∇ϕ)∇Tk(um − ϕ) dx dt (3.25)

+
∫
Q1

|∇ϕ|p(x)−2∇ϕ · ∇Tk(um − ϕ) dx dt. (3.26)

Using Fatou’s lemma and the weak convergence of ∇Tk(um) we obtain

lim
m→∞

(3.24) ≥
∫
Q1

|∇ũ|p(x)−2∇ũ∇Tk(ũ− ϕ) dx dt. (3.27)

Similarly, since∫
Q1

|um|q−1umTk(um − ϕ) dx dt =
∫
Q1

(|um|q−1um − |ϕ|q−1ϕ)Tk(um − ϕ) dx dt

+
∫
Q1

|ϕ|q−1ϕTk(um − ϕ) dx dt,

(3.28)
we deduce that

lim
m→∞

(3.28) ≥
∫
Q1

|ũ|q−1ũ∇Tk(ũ− ϕ) dx dt. (3.29)

We then conclude from (3.22), (3.23), (3.27) and (3.29) that∫
Q1

|∇ũ|p(·)−2∇ũ∇Tk(ũ− ϕ) dx dt+
∫
Q1

|ũ|q−1ũTk(ũ− ϕ) dx dt

≤
∫
Q1

gTk(ũ− ϕ) dx dt.
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Especially, for φ ∈ C1(Ω), φ |∂Ω= 0, we have∫
Ω

|∇ũ|p(·)−2∇ũ∇Tk(ũ− φ) dx+
∫

Ω

|ũ|q−1ũTk(ũ− φ) dx ≤
∫

Ω

Tk(ũ− φ)g dx.

Then from the density result, we conclude that ũ satisfies the entropy formulation of
problem (2.2) and hence it coincides with the unique entropy solution v. Performing
a similar argument, we can prove that the entropy solution u1(t) for problem (1.1)
with v as initial data also converges in L1(Ω) to the entropy solution v of problem
(2.2).

For the entropy solution u2(t) of (1.1) corresponding to the initial data u0 with
v ≤ u0 ≤ v, thanks to the comparison result, we have

v ≤ u1(t) ≤ u2(t) ≤ u(t) ≤ v.

Thus we obtain that u2(t) converges to v in L1(Ω). Since v, v all lie in Lq(Ω), we
obtain the convergence result in Lq(Ω). �

Proof of Corollary 3.7. Let v1, v2 be the entropy solutions to the following two
problems:

− div(|∇v|p(x)−2∇v) + |v|q−1v = g+ in Ω,
v = 0 on ∂Ω,

(3.30)

and

−div(|∇v|p(x)−2∇v) + |v|q−1v = −g− in Ω,
v = 0 on ∂Ω.

(3.31)

Note that 0 is an entropy subsolution of (3.30), and it is an entropy supersolution
of (3.31). Since the entropy solution can be obtained as the limit of the solutions
for the approximate problems, similar to Lemma 3.5, it is not difficult to show the
following comparison result, see [24, 27] for the constant exponents case,

v2 ≤ 0 ≤ v1 a.e. in Ω.

On the other hand, thanks to Remark 3.3, v1 is an entropy supersolution of (3.30).
And hence, it is an entropy supersolution of (2.2). Similarly, v2 is an entropy
subsolution of (2.2). Thus, the result of the corollary follows immediately from
Theorem 3.6. �

Remark 3.8. Let w(t) = u(t) − v. We can prove that w(t) converges to zero in
Lr(Ω) for any 1 ≤ r < ∞ as t tends to infinity. Indeed, consider the approximate
problem for (2.2),

−div(|∇vn|p(x)−2∇vn) + |vn|q−1vn = gn in Ω,

vn = 0 on ∂Ω,
(3.32)

where {gn} is the same sequence as in (2.5). Problem (3.32) admits a unique
solution vn for each n, and up to subsequences, {vn} converges to the unique
entropy solution v of (2.2) in L1(Ω), see [13, 39]. Subtracting (3.32) from (2.5) and
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setting wn = un − vn, we have

wnt − div(|∇un|p(x)−2∇un − |∇vn|p(x)−2∇vn) + |un|q−1un − |vn|q−1vn = 0

in Ω× R+,

wn = 0 on ∂Ω× R+,

wn(x, 0) = un0 − vn in Ω.
(3.33)

Thanks to the convergence results for un and vn, we know that, up to a subsequence,
wn converges to w = u− v in C([0, T ];L1(Ω)) for any T > 0.

Taking Tk(un)(k ≥ 1) as a test function in (2.5), we deduce that

d

dt

∫
Ω

Φk(un)(t)dx+
∫

Ω

|∇Tk(un)|p(x)dx+
∫

Ω

|un|q|Tk(un)|dx ≤ k‖g‖L1(Ω).

(3.34)
From the definition of Φk(·) we obtain∫

Ω

Φk(un)(t)dx ≤ k‖un(t)‖L1(Ω) ≤
∫

Ω

Φk(un)(t)dx+
k2

2
|Ω|, (3.35)

where |Ω| is the Lebesgue measure of Ω. Note that∫
Ω

Φ1(un)(t)dx ≤
∫

Ω

|un|q|T1(un)|dx+ |Ω|.

We deduce from (3.34) that

d

dt

∫
Ω

Φ1(un)(t)dx+
∫

Ω

Φ1(un)(t)dx ≤ ‖g‖L1(Ω) + |Ω|.

Standard Gronwall type inequality implies that∫
Ω

Φ1(un)(t)dx ≤ ‖g‖L1(Ω) + |Ω|+ e−t
∫

Ω

Φ1(un0 )dx, t > 0.

Thanks to (3.10), we have

‖un(t)‖L1(Ω) ≤ ‖u0‖L1(Ω) +
3
2
|Ω|+ ‖g‖L1(Ω), t > 0. (3.36)

Integrating (3.34) on [t, t+ 1], we obtain∫ t+1

t

∫
Ω

|un|q dx dτ ≤
∫ t+1

t

∫
Ω

(|un|q|T1(un)|+ 1) dx dτ

≤ ‖g‖L1(Ω) + ‖u0‖L1(Ω) + |Ω|.
(3.37)

Multiplying (3.32) by T1(vn), we deduce that∫
Ω

|vn|qdx ≤
∫

Ω

(|vn|q|T1(vn)|+ 1)dx ≤ ‖g‖L1(Ω) + |Ω|. (3.38)

Combining (3.37), (3.38), we have∫ t+1

t

∫
Ω

|wn(τ)|q dx dτ ≤ 2‖g‖L1(Ω) + 2|Ω|+ ‖u0‖L1(Ω), for any t ≥ 0. (3.39)

Taking |wn|q−2wn as a test function in (3.33) (if q < 2, we can take ((|wn|+ε)q−1−
εq−1)sgn(wn) as a test function and then let ε go to zero to justify this calculation.
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Here for simplicity, we assume that q ≥ 2.), we deduce that

1
q

d

dt

∫
Ω

|wn(t)|q dx+ C

∫
Ω

|wn(t)|2q−1dx ≤ 0. (3.40)

Integrating the above inequality from s to t+ 1(0 ≤ t ≤ s < t+ 1), yields∫
Ω

|wn(t+ 1)|q dx ≤
∫

Ω

|wn(s)|q dx.

Integrating this inequality with respect to s from t to t+ 1 and using (3.39), yields∫
Ω

|wn(t+ 1)|q dx ≤
∫ t+1

t

∫
Ω

|wn(τ)|q dx dτ ≤ C, for any t ≥ 0, (3.41)

with C independent of n, t. Integrating (3.40) on [t, t+ 1] for any t ≥ 1, and using
(3.41) we deduce that∫ t+1

t

∫
Ω

|wn(τ)|2q−1 dx dτ ≤ C
∫

Ω

|wn(t)|q dx ≤ C (3.42)

Now setting q1 = 2q − 1, and using |wn|q1−2wn as a test function in (3.33), we
obtain

1
q1

d

dt

∫
Ω

|wn|q1dx+ C

∫
Ω

|wn|q1+q−1dx ≤ 0. (3.43)

Integrating (3.43) from s to t+ 1(1 ≤ t ≤ s < t+ 1), yields∫
Ω

|wn(t+ 1)|q1dx ≤
∫

Ω

|wn(s)|q1dx.

Integrating the above inequality with respect to s from t to t+ 1 and using (3.42),
we obtain∫

Ω

|wn(t+ 1)|q1dx ≤
∫ t+1

t

∫
Ω

|wn(τ)|q1 dx dτ ≤ C, for any t ≥ 1, (3.44)

with C independent of n, t. Now integrating (3.43) on [t, t+ 1] for t ≥ 2, and using
(3.44) we have ∫ t+1

t

∫
Ω

|wn(τ)|q1+q−1dxτ ≤ C
∫

Ω

|wn(t)|q1dx ≤ C.

Bootstrapping the above processes, we can deduce that∫
Ω

|wn(t)|qkdx ≤ C, for t ≥ Tk,

with qk = qk−1 + q − 1, q0 = q, C being independent of n. Passing to the limit,
we obtain the same estimate for w. Combining this estimate with the convergence
result obtained in Theorem 3.6, we obtain that w(t) converges to zero in Lr(Ω) for
any 1 ≤ r <∞ as t tends to infinity.

Remark 3.9. Although we performed all the calculations under the assumption
that g ∈ L1(Ω), with very minor modifications, we can show that all the results
can be extended to the case g ∈ L1(Ω) +W−1,p′(x)(Ω).

If we replace the p(x)-Laplacian operator −div(|∇u|p(x)−2∇u) by a more general
Leray-Lions type operator involving variable exponent −div(a(x,∇v)), where a :
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Ω × RN → RN is a Carathéodory function (i.e. a(x, ξ) is measurable on Ω for all
ξ ∈ RN , and a(x, ξ) is continuous on RN for a.e. x ∈ Ω) such that

a(x, ξ)ξ ≥ α|ξ|p(x),

|a(x, ξ)| ≤ β[b(x) + |ξ|p(x)−1],

(a(x, ξ)− a(x, η))(ξ − η) > 0,

for almost every x ∈ Ω and for all ξ, η ∈ RN with ξ 6= η, α, β being positive
constants, b(x) being a nonnegative function in Lp(·)/p(·)−1(Ω), then the results
obtained above still hold.

Acknowledgments

This work was partially supported by the NSFC (11301003), by the Research
Fund for Doctor Station of the Education Ministry of China (20123401120005), and
by the NSF of Anhui Province (1308085QA02).

References

[1] S. N. Antontsev, S. I. Shmarev; A model porous medium equation with variable exponent of

nonlinearity: existence, uniqueness and localization properties of solutions, Nonlinear Anal.

60 (2005) 515–545.
[2] G. Akagi, K. Matsuura; Well-posedness and large-time behaviors of solutions for a parabolic

equation involving p(x)-Laplacian. The Eighth International Conference on Dynamical Sys-

tems and Differential Equations, a supplement volume of Discrete and Continuous Dynamical
Systems (2011) 22–31.

[3] Y. Alkhutov, V. Zhikov; Existence theorems for solutions of parabolic equations with variable
order of nonlinearity, Proc. Steklov Inst. Math. 270 (2010), pp. 1–12.

[4] S. N. Antontsev, S. I. Shmarev; Anisotropic parabolic equations with variable nonlinearity,

Publ. Mat. Volume 53, Number 2 (2009), 355–399.
[5] S. Antontsev, S. Shmarev; Vanishing solutions of anisotropic parabolic equations with variable

nonlinearity, J. Math. Anal. Appl., 361 (2010), 371–391.

[6] S. Antontsev, S. Shmarev; Extinction of solutions of parabolic equations with variable
anisotropic nonlinearities, Tr. Mat. Inst. Steklova, 261 (2008), Differ. Uravn. Din. Sist.,

16–25.

[7] S. Antontsev, S. Shmarev; Blow-up of solutions to parabolic equations with nonstandard
growth conditions, J. Comp. Appl. Math., 234 (2010), 2633–2645.

[8] M. Bendahmane, P. Wittbold, A. Zimmermann; Renormalized solutions for a nonlinear

parabolic equation with variable exponents and L1-data, J. Differential Equations 249 (2010)
1483–1515.
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[15] L. Diening P. Harjulehto, P. Hästö, M. Ru̇žička; Lebesgue and Sobolev spaces with variable
exponents, Lecture Notes in Mathematics, vol. 2017, Springer-Verlag, Heidelberg, 2011.

[16] X. Fan, D. Zhao; On the spaces Lp(x)(Ω) and W m,p(x)(Ω), J. Math. Anal. Appl. 263 (2001)
424–446.



16 X. CHAI, H. LI, W. NIU EJDE-2015/61

[17] Y. Fu, N. Pan; Existence of solutions for nonlinear parabolic problem with p(x)-growth, J.

Math. Anal. Appl., 362 (2010), 313–326.

[18] W. Gao, B. Guo; Existence and localization of weak solutions of nonlinear parabolic equations
with variable exponent of nonlinearity, Ann. Mat. Pura Appl. (4) 191 (2012) 551–562.

[19] P. Kloeden, J. Simsen; Pullback attractors for non-autonomous evolution equations with

spatially variable exponents. Commun. Pure Appl. Anal. 13 (2014) 2543–2557.
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