
Electronic Journal of Differential Equations, Vol. 2016 (2016), No. 111, pp. 1–8.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

THE POISSON EQUATION ON KLEIN SURFACES

MONICA ROŞIU

Abstract. We obtain a formula for the solution of the Poisson equation with
Dirichlet boundary condition on a region of a Klein surface. This formula

reveals the symmetric character of the solution.

1. Introduction

In this article we solve a boundary value problem involving the Poisson equation
on Klein surfaces. Our technique is based on the fact that according to a classical
result due to Klein, the boundary value problems on Klein surfaces can be reduced
to similar problems on symmetric Riemann surfaces. On Klein surfaces the formula
for the solution is expressed in terms of an analogue of the Green function, which
has the symmetry in argument and parameter. The extensive study of the Klein
surfaces is due to Schiffer and Spencer [10]. Other useful results about this topic
are the formulas for the Green function on the Möbius strip expressed in [4] and
the Dirichlet problem for harmonic functions treated in [3].

2. Preliminaries

A compact Klein surface is a pair (X,A), consisting of a compact surface X
and a maximal dianalytic atlas A on X, such that A does not contain any analytic
subatlas.

It is known, see [10], that given a compact Klein surface (X,A), its orientable
double covering O2 admits a fixed point free symmetry k, such that X is dianalyt-
ically equivalent with O2/H, where H is the group generated by k, with respect
to the usual composition of functions. We denote the canonical projection of O2

onto O2/H by π. By Klein’s definition, the pair (O2, k) is a k-symmetric compact
Riemann surface. Forwards, we identify X with the orbit space O2/H.

A set G of O2 is called k-symmetric if k(G) = G. Thus, given D a subset of X,
then q−1(D) = G is a k-symmetric subset of O2.

A function f defined on a k-symmetric set is called a k-symmetric function if
f = f ◦ k.

Let γ̃ : [0, 1]→ D be a piecewise smooth Jordan curve of D. Then the arc γ̃ has
exactly two liftings at π−1(D). If γ̃(0) = z̃0 = {z0, k(z0)} and if γ is the lifting of γ̃
at z0, then k ◦γ is the lifting of γ̃ at k(z0).Then π−1(γ̃) = γ∪k(γ) is a k-symmetric
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curve of O2. For any real valued function F defined on γ̃, the function f = F ◦ π
is a k-symmetric function on γ ∪ k(γ), see [9].

The Euclidean lengths of the two curves γ and its symmetric, k ◦ γ, that is
their lengths with respect to the metric ds = |dz| may be different. We modify
this metric and get a new metric dσ on O2, such that the lengths of γ and k ◦ γ,
with respect to the metric dσ, will be the same. We define a k−symmetric metric
dσ = 1

2 (ds+ ds ◦ k). Then the dσ -lengths of γ and k ◦ γ are equal. By definition,
the length of γ̃ is the common dσ -length of γ and k ◦ γ.

Let X be a compact Klein surface and let D be a region bounded by a finite
number of σ-rectifiable Jordan curves. Given F a continuous real-valued function
on D and H a continuous real-valued function on ∂D, we study the problem defined
by Poisson’s equation

∆U = F on D (2.1)

and the Dirichlet boundary condition

U = H on ∂D. (2.2)

Because the Klein surface X is dianalytically equivalent to O2/H, problem (2.1)–
(2.2) on a region D of the Klein surface X, can be replaced by an equivalent problem
on a k-symmetric region G of its double O2 as follows.

We define G = π−1(D), f = F ◦ π on G and h = H ◦ π on ∂G. Then, G is a k-
symmetric region bounded by a finite number of σ-rectifiable Jordan curves on O2.
Since π ◦ k = π, we obtain f = f ◦ k on G and h = h ◦ k on the boundary ∂G, thus
f and h are k-symmetric, continuous real-valued functions. Problem (2.1)–(2.2) is
equivalent to the problem

∆u = f on G

u = h on ∂G.

3. Poisson’s equation on the double cover

Let X be a compact Klein surface and let X̂ be the universal covering surface.
Then X̂ has a unique (up to conjugation) analytic structure making the canonical
projection dianalytic. Let G be the group of covering transformations and let G1 be
the subgroup of conformal elements of G. Then X̂/G is canonically identified with
X and X̂/G1 is canonically identified with O2, see [6].

Whence, a model of the bordered Riemann surface O2 is a region of the com-
plex plane having a finite number of σ-rectifiable Jordan boundary curves. The
arc length parameter s is a boundary uniformizer near every boundary point. A
half-neighborhood of a boundary point is mapped by s onto a half-neighborhood
bounded by a segment of the real s-axis, see [10].

Let dσ = λ(z)|dz| be the k-symmetric metric on G, where λ is a nonnegative
continuous function on G.

Let G be a k-symmetric region in the complex plane, where ∂G consists of σ-
rectifiable Jordan curves Γ ( exterior boundary, positively oriented) and C1, . . . , Cn
(interior boundary, negatively oriented). Given a k-symmetric, continuous, real-
valued function f on G and a k- symmetric, continuous, real-valued function h
on ∂G, then (2.1)–(2.2) can be reduced to the problem consisting of the Poisson
equation

∆u = f on G (3.1)
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and the Dirichlet boundary condition

u = h on ∂G. (3.2)

To solve (3.1)–(3.2) we combine the solution of the Dirichlet problem for harmonic
functions

∆u = 0 on G

u = h on ∂G

and the solution of the Poisson equation with zero boundary values
∆u = f on G

u = 0 on ∂G
(3.3)

In this paper we only consider solutions which are in the class C2(G) ∩ C1(∂G).

Remark 3.1. From the maximum principle, it follows that a solution of (3.1)–
(3.2), if it exists, is necessarily uniquely determined.

For the general existence proof of a solution to (3.1)–(3.2) we refer to [5]. More-
over, in this case, the solution has the following property.

Proposition 3.2. A solution u of (3.1)–(3.2) is a k-symmetric function in G.

Proof. Let u be a solution of (3.1)–(3.2). We define uk : G→ R by uk = 1
2 (u+u◦k).

The hypothesis, f = f ◦k, involves ∆uk = 1
2 (f+f ◦k) = f on G and uk = 0 on ∂G.

Thus uk is also a solution of (3.1)–(3.2). Uniqueness of the solution yields uk = u
on G, therefore u = u ◦ k on G. �

The Dirichlet problem for harmonic functions onG was solved in [3]. To complete
the solution we solve the Poisson equation with zero boundary values for the k-
symmetric region G.

In solving (3.3) we use the Green function of a region G. For the existence of
a harmonic function which vanishes on the boundary and has a finite number of
isolated singularities, with given singular parts, in a relatively compact region of a
Riemann surface, we refer to [1].

First we will derive two important formulas. We recall the meaning of the normal
derivative with respect to the k-symmetric metric dσ. Let u be a C1-function
defined on a σ-rectifiable Jordan curve γ, parameterized in terms of the arc σ-
length. Therefore, γ : z = z(s) = x(s) + iy(s), s ∈ [0, l], where l is the σ-length of
γ.Then the normal derivative of u, denoted by ∂u

∂nσ
, is the directional derivative of

u in the direction of the unit normal vector nσ, see [4]. For any point of the curve
γ, it follows that

∂u

∂nσ
dσ = −∂u

∂y
dx+

∂u

∂x
dy

and, in polar coordinates
∂u

∂nσ
dσ = −1

ρ

∂u

∂θ
dρ+ ρ

∂u

∂ρ
dθ. (3.4)

Let G be a k-symmetric region bounded by a finite number of σ -rectifiable Jor-
dan curves. Suppose that p and q are continuous with continuous partial derivatives
functions on G. By Green’s theorem∫

∂G

p(x, y)dx+ q(x, y)dy =
∫∫

G

( ∂q
∂x
− ∂p

∂y

)
dx dy.
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Given u and v two functions in the class C2(G)∩C1(∂G), parameterized by x(s)
and y(s), where s is the arc σ-length, applying Green’s theorem, with p = −u∂v∂y ,
q = u ∂v∂x we obtain Green’s first identity for the symmetric region G,∫∫

G

(u∆v + (gradu) · (grad v)) dx dy =
∫
∂G

u
∂v

∂nσ
dσ. (3.5)

Reversing the roles of u and v in Green’s first identity and subtracting the new
identity from (3.5) we arrive at Green’s second identity for the symmetric region
G, ∫∫

G

(u ∆v − v∆u) dx dy =
∫
∂G

(
u
∂v

∂nσ
− v ∂u

∂nσ

)
dσ.

Let ζ be a point inside G. The function Φ(z, ζ) = ln |z − ζ| is harmonic at
all points z 6= ζ. Let w be the solution of the Dirichlet boundary-value problem
on G, with the boundary condition w(z) = Φ(z, ζ) on ∂G. The unique function
gG(z; ζ) = −Φ(z, ζ) + w(z) defined on G\{ζ} is called the Green’s function for the
region G, with respect to the point ζ, see [1].

Let g(k)
G (z, ζ̃) be the k-invariant Green’s function for the region G, with singu-

larities at ζ and k(ζ), defined by

g
(k)
G (z, ζ̃) =

1
2

[gG(z, ζ) + gG(z, k(ζ))]

on G\{ζ, k(ζ)}. For additional information on this topic we refer to [4] and to the
original source [10].

Let ws be the solution of the Dirichlet boundary-value problem on G, with the
boundary condition ws(z) = 1

2 [Φ(z, ζ) + Φ(z, k(ζ)] on ∂G. From the definition of
the Green function and the definition of g(k)

G (z, ζ̃), it follows that

g
(k)
G (z, ζ̃) = −1

2
[Φ(z, ζ) + Φ(z, k(ζ)] + ws(z).

Therefore, g(k)
G (z, ζ̃) is a harmonic function of z in G\{ζ, k(ζ)}, with singularities

− 1
2 ln |z − ζ| and − 1

2 ln |z − k(ζ)| at ζ and k(ζ), respectively. Also, g(k)
G (z, ζ̃) = 0

for all z on ∂G.

Theorem 3.3. Let G be a k-symmetric region in the complex plane, where ∂G
consists of a finite number of σ-rectifiable Jordan curves. Let u be a C2-function
on G, such that u = 0 on ∂G. Then, for all ζ in G,

u(ζ) =
1

2π

∫∫
G

∆u(z)gG(z; ζ) dx dy. (3.6)

Proof. Let Cε be a negatively oriented circle of radius ε, centered at ζ and let Gε
be G minus Dε, the closed disk bounded by Cε. The boundary of Gε is the union of
∂G and Cε. Applying Green’s second identity for Gε, with v = gG(·, ζ) and using
that u = 0 on ∂G, gG is harmonic in Gε and gG = 0 on ∂G, we get

−
∫∫

Gε

∆u(z)gG(z, ζ) dx dy =
∫
Cε

u(z)
∂gG
∂nσ

(z, ζ)dσ −
∫
Cε

gG(z, ζ)
∂u

∂nσ
(z)dσ.

Next, we let ε tends to zero, taking into account that the outward normal derivative
(with respect to the region Gε) on Cε is the inner radial derivative pointing towards
the pole ζ.
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(1) First we prove that

lim
ε→0

∫
Cε

gG(z, ζ)
∂u

∂nσ
(z)dσ = 0.

The curve −Cε is parameterized by z = z(θ) = ζ + εeiθ, 0 ≤ θ ≤ 2π and using
(3.4), we obtain

−
∫
Cε

gG(z; ζ)
∂u

∂nσ
(z)dσ =

∫
−Cε

gG(z; ζ)
∂u

∂nσ
(z)dσ = ε

2π∫
0

gG(z(θ); ζ)
∂u

∂ρ
(z(θ))dθ.

By definition, gG(z; ζ) = − ln |z − ζ|+ w(z), where w is harmonic in G. Then w is
continuous in Dε and thus w is bounded on Cε. As the function u has continuous
partial derivatives in G, ∂u∂ρ is continuous on Dε, hence is bounded on Cε. Therefore
there is a constant m, such that |w| ≤ m and |∂u∂ρ | ≤ m on Cε. Since on Cε,
ln |z − ζ| = ln ε, we arrive at |gG(z, ζ)| ≤ m+ | ln ε|, for z ∈ Cε. Therefore∣∣ ∫

Cε

gG(z, ζ)
∂u

∂nσ
(z)dσ

∣∣ ≤ 2πε(m+ | ln ε|)m

and the right side of the last inequality tends to zero as ε tends to zero. Therefore,

lim
ε→0

∫
Cε

gG(z, ζ)
∂u

∂nσ
(z)dσ = 0.

(2) We prove that

lim
ε→0

∫
Cε

u(z)
∂gG
∂nσ

(z, ζ)dσ = −2πu(ζ).

The definition of the Green function yields∫
Cε

u(z)
∂gG
∂nσ

(z, ζ)dσ = −
∫
Cε

u(z)
∂Φ
∂nσ

(z)dσ +
∫
Cε

u(z)
∂w

∂nσ
(z)dσ.

Using (3.4) and the mean value property, we have

−
∫
Cε

u(z)
∂Φ
∂nσ

(z)dσ = −
∫ 2π

0

u(z(θ))
1
ε
εdθ = −2πu(ζ).

Using again (3.4), we get∫
Cε

u(z)
∂w

∂nσ
(z)dσ = ε

∫ 2π

0

u(z(θ))
∂w

∂ρ
(z(θ))dθ.

As the function w is harmonic, w has continuous partial derivatives in G, then ∂w
∂ρ

is continuous on Dε, hence is bounded on Cε. The function u is also bounded on
Cε. Therefore there is a constant M , such that |u| ≤M and |∂w∂ρ | ≤M on Cε. So∣∣ ∫

Cε

u(z)
∂w

∂nσ
(z)dσ

∣∣ ≤ 2πεM2,

which tends to zero as ε tends to zero. Thus

lim
ε→0

∫
Cε

u(z)
∂w

∂nσ
(z)dσ = 0,

lim
ε→0

∫
Cε

u(z)
∂gG
∂nσ

(z, ζ)dσ = −2πu(ζ).
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(3) Since u is a C2-function on G, ∆u is continuous on Dε, then ∆u is bounded
on Dε. Also, as we argued above, w is bounded on Dε.Thus there is a constant M0,
such that |∆u| ≤M0 and |w| ≤M0 on Dε. Then∣∣ ∫∫

G

∆u(z)gG(z, ζ) dx dy −
∫∫

Gε

∆u(z)gG(z, ζ) dx dy|

= |
∫∫

Dε

∆u(z)gG(z, ζ) dx dy|

≤
∫∫

Dε

|∆u(z) ln |z − ζ|| dx dy +
∫∫

Dε

|∆u(z)w(z)| dx dy

≤M0

∫∫
Dε

| ln |z − ζ|| dx dy +M2
0

∫∫
Dε

dx dy

= M2
0πε

2 +M0

∫ 2π

0

∫ ε

0

ρ| ln ρ|dρdθ

which tends to zero as ε tends to zero. Thus

lim
ε→0

∫∫
Gε

∆u(z)gG(z, ζ) dx dy =
∫∫

G

∆u(z)gG(z, ζ) dx dy.

By (1), (2) and (3) it follows (3.6). �

The next theorem yields the formula for the solution of the Poisson problem with
zero boundary values on a k-symmetric region G.

Theorem 3.4. Let G be a k-symmetric region bounded by a finite number of σ-
rectifiable Jordan curves. Let f be a k-symmetric, continuous function on G. There
is a unique k-symmetric, C2-function u on G, such that ∆u = f on G and u = 0
on ∂G. For all ζ in G,

u(ζ) =
1

4π

∫∫
G

f(z)[gG(z, ζ) + gG(z; k(ζ))] dx dy. (3.7)

Proof. Since k is an involution of G, the function u(ζ)+u(k(ζ))
2 is a k-symmetric

function on G. By Theorem 3.3,

u(ζ) =
1

2π

∫∫
G

f(z)gG(z, ζ) dx dy,

u(k(ζ)) =
1

2π

∫∫
G

f(k(z))gG(z; k(ζ)) dx dy.

The k-symmetry of f implies

u(ζ) + u(k(ζ))
2

=
1

2π

∫∫
G

f(z)
gG(z, ζ) + gG(z; k(ζ))

2
dx dy.

By Proposition 3.2, u is a k-symmetric function on G, then the left side of the last
equality is u(ζ) and we conclude that

u(ζ) =
1

4π

∫∫
G

f(z)[gG(z, ζ) + gG(z; k(ζ))] dx dy.

By Remark 3.1, it follows (3.7). �



EJDE-2016/111 THE POISSON EQUATION 7

4. Poisson’s equation on the orbit space

Let X be compact Klein surface and let D be a region bounded by a finite number
of σ-rectifiable Jordan curves. The Klein surface X is the factor manifold of the
k-symmetric Riemann surface O2 with respect to the group H. Then, D is obtained
from the k-symmetric region G by identifying the k-symmetric points. Therefore,
the k-symmetric Green’s function g

(k)
G (z, ζ̃), where ζ̃ = π(ζ), is continuous on D,

harmonic on D\{ζ̃}, g(k)
G (z, ζ̃) = 0 for all z on ∂D and has the singularity − 1

2 ln |z−
ζ̃| at ζ̃. Then, g(k)

G (z, ζ̃) is the Green function of D with singularity at ζ̃ = π(ζ).
We obtain the formula for the solution of (3.1)–(3.2) on a k-symmetric region

G.

Theorem 4.1. Let G be a k-symmetric region bounded by a finite number of σ-
rectifiable Jordan curves. Let f be a k-symmetric, continuous function on G and h
be a k-symmetric, continuous function on ∂G. There is a unique function u on G,
such that ∆u = f on G and u = h on ∂G. For all ζ in G,

u(ζ) =
1

2π

∫∫
G

f(z)g(k)
G (z, ζ̃) dx dy +

1
2π

∫
∂G

h(z)
∂g

(k)
G (z, ζ̃)
∂nσ

dσ. (4.1)

Proof. By definition,
1
2
[
gG(z, ζ) + gG(z, k(ζ))

]
= g

(k)
G (z, ζ̃)

is the k-invariant Green function for the region G, with singularities − 1
2 ln |z − ζ|

and − 1
2 ln |z − k(ζ)| at ζ and k(ζ), respectively. We combine the solution of the

Dirichlet problem for harmonic functions given by

u(ζ) =
1

2π

∫
∂G

h(z)
∂g

(k)
G (z, ζ̃)
∂nσ

dσ

for ζ ∈ G, see [4], with the solution of the Poisson’s equation which is zero on the
boundary given by Theorem 3.4. �

Next we derive the solution of (2.1)–(2.2) on the region D.

Proposition 4.2. Let F be the continuous real-valued function on D, defined by the
relation f = F ◦ π and let H be the continuous real-valued function on ∂D,defined
by the relation h = H ◦ π. The solution of (2.1)–(2.2) is the function U defined on
D, by the relation u = U ◦ π, where π is the canonical projection of O2 on X and
u is the solution (4.1) of (3.1)–(3.2) on the k-symmetric region G of O2.

Proof. The k-symmetry of the function f on G, yields

∆U(ζ̃) = ∆u(ζ) = f(ζ) = f(k(ζ)) = F (ζ̃),

for all ζ̃ ∈ D, where ζ̃ = π(ζ). Also, the k-symmetry of the function h on ∂G,
yields

U(ζ̃) = u(ζ) = h(ζ) = h(k(ζ)) = H(ζ̃),

for all ζ̃ ∈ ∂D.Due to the uniqueness, the function U defined on D by

U(ζ̃) = u(ζ),

for all ζ̃ in D, where ζ̃ = π(ζ), is the solution of (2.1)–(2.2). �



8 M. ROŞIU EJDE-2016/111

References

[1] L. V. Ahlfors, L. Sario; Riemann Surfaces, Princeton Univ. Press, Princeton, NJ, 1960.
[2] N. Alling, N. Greenleaf; The Foundation of the Theory of Klein Surfaces, Lecture Notes in

Math. 219, Springer-Verlag, New York, 1971.
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