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STRUCTURAL STABILITY OF SOLUTIONS TO THE RIEMANN
PROBLEM FOR A NON-STRICTLY HYPERBOLIC SYSTEM

WITH FLUX APPROXIMATION

MEINA SUN

Abstract. We study the Riemann problem for a non-strictly hyperbolic sys-

tem of conservation laws under the linear approximations of flux functions with
three parameters. The approximated system also belongs to the type of tri-

angular systems of conservation laws and this approximation does not change

the structure of Riemann solutions to the original system. Furthermore, it is
proven that the Riemann solutions to the approximated system converge to

the corresponding ones to the original system as the perturbation parameter

tends to zero.

1. Introduction

Non-strictly hyperbolic systems of conservation laws have not only important
physical background but also special interest and difficulty in mathematics. It is
well known that the Cauchy problem usually does not have a weak L∞-solution
for some non-strictly hyperbolic systems of conservation laws. Thus, the measure-
valued solution should be introduced into this nonclassical situation, such as delta
shock wave [1, 21, 25] and singular shock wave [10, 15], which can often provide a
reasonable explanation for some physical phenomena. However, the mechanism for
the formation of delta shock wave cannot be fully understood, though the necessity
of delta shock wave is obvious for the solutions of Riemann problems for some
non-strictly hyperbolic systems of conservation laws.

In this article, we are concerned with the non-strictly hyperbolic system of con-
servation laws

ut + (u2)x = 0,

vt + (uv)x = 0.
(1.1)

The system (1.1) can be derived in [25] directly from the system of Euler gas
dynamics by letting both the density and the pressure to be constants in the mo-
mentum equation. The system (1.1) arises in several fields which can be used to
model conservation laws for some specific situations, such as magnetohydrodynam-
ics, elasticity and oil recovery process [16, 23]. The first equation in (1.1) is just
the inviscid Burgers equation and the solutions of the Riemann problem are the
classical entropy solutions. The Dirac delta function is introduced as a part for v

2010 Mathematics Subject Classification. 35L65, 35L67, 35B30.
Key words and phrases. Delta shock wave; Riemann problem; non-strictly hyperbolic system;

triangular system; flux approximation.
c©2016 Texas State University.

Submitted December 9, 2015. Published May 19, 2016.

1



2 M. SUN EJDE-2016/126

in the second equation in (1.1) when the characteristic velocity u is discontinuous.
In 1994, Tan, Zhang and Zheng [25] considered the Riemann problem for (1.1)
and they discovered that the form of the standard Dirac delta function supported
on a shock wave was used as a part in their Riemann solutions for some specific
initial data. Since then, the delta shock wave solution for (1.1) has been widely
investigated such as in [19, 20, 28].

The formation of delta shock wave has been extensively studied by using the
vanishing pressure approximation for the systems of pressureless gas dynamics [1, 2,
12, 13, 14, 18, 29, 30] and Chaplygin gas dynamics [3, 21, 27], which is a particular
case of flux function approximation. Recently, the flux function approximation
with two parameters [17] and three parameters [26] has also been carried out for
the systems of pressureless gas dynamics. In the present paper, we consider the
linear approximations of flux functions in (1.1) as follows:

ut + (u2 + εαu)x = 0,

vt + (uv + εβu+ εγv)x = 0,
(1.2)

where α, β, γ are arbitrary real constant numbers and ε is a sufficiently small pos-
itive number. More precisely, we are only concerned with the Riemann problem
here, which is a special Cauchy problem with initial data

(u, v)(x, 0) =

{
(u−, v−), x < 0,
(u+, v+), x > 0,

(1.3)

where u± and v± are all given constants.
It is remarkable that system (1.1) is a particular example for the triangular

systems of conservation laws due to the special structure where the evolution of
the unknown variable u does not depend on the succeeding unknown variable v.
It can be seen that system (1.2) also belongs to the type of triangular systems of
conservation laws under the triangular linear approximations of flux functions. It
can be discovered that the delta shock wave also appears in the solution of the
Riemann problem (1.2) and (1.3) for some specific initial data. Furthermore, it is
proven rigorously that the limits of solutions to the Riemann problem (1.2) and (1.3)
converge to the corresponding ones of the Riemann problem (1.1) and (1.3) when
the perturbation parameter ε tends to zero. In other words, the Riemann solutions
of (1.1) and (1.3) is stable with respect to the triangular linear approximations
of flux functions in the form of (1.2). Actually, one can see that the Riemann
solutions of (1.1) and (1.3) just translate in the (x, t) plane under the triangular
linear approximations of flux functions in the form of (1.2). Thus, this triangular
linear approximations of flux functions in the form of (1.2) does not change the
structure of solutions to the Riemann problem (1.1) and (1.3).

In fact, the concept of Dirac delta function was first introduced into the classical
weak solution of hyperbolic conservation laws by Korchinski [11] in 1975 when he
considered the Riemann problem for the system

ut + (
1
2
u2)x = 0,

vt + (
1
2
uv)x = 0,

(1.4)

which has the trivial difference u→ 2u from (1.1). Since 1994, there are numerous
excellent papers about the concept of delta shock wave for the related equations
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and results, see [4, 7, 10, 15, 22] for instance. At present, the vanishing pressure
approach is one of the popular approaches to study the formation of delta shock
wave appearing in the Riemann solution for some hyperbolic systems of conservation
laws. In the present paper, we consider the linear approximations of flux functions
with three parameters in the form of (1.2) for a particular triangular hyperbolic
system of conservation laws which has not been paid attention before.

This article is organized as follows. In section 2, we describe simply the solutions
of the Riemann problem (1.1) and (1.3) for completeness. In section 3, the Riemann
problem for the approximated system (1.2) is considered and the Riemann solutions
are constructed completely for six different cases. In section 4, the limit of Riemann
solutions to the approximated system (1.2) is taken by letting the perturbation
parameter ε tend to zero, which is identical with the corresponding ones to the
original system. Finally, the conclusion and discussion are drawn in section 5.

2. Preliminaries

In this section, we simply describe the results on the Riemann problem (1.1)
and (1.3), which can be seen such as in [25]. The eigenvalues of (1.1) are λ1 = u
and λ2 = 2u and the corresponding right eigenvectors are −→r 1 = (0, 1)T and −→r 2 =
(1, v/u)T , respectively. It is noted that λ1 < λ2 for u > 0 and λ1 > λ2 for u < 0
here. Thus, (1.1) is a non-strictly hyperbolic system. It can be obtained directly
that the characteristic field for λ1 is linearly degenerate and the characteristic field
for λ2 is genuinely nonlinear.

Besides the constant state, it can be seen from [25] that the self-similar waves
(u, v)(ξ) (ξ = x/t) of the first family are contact discontinuities denoted by J as

J : ξ = ul = ur,

and those of the second family are rarefaction waves denoted by R as

R : ξ = 2u,
u

v
=
ul
vl
, ul < ur,

or shock waves denoted by S as

S : ξ = ul + ur,
ur
vr

=
ul
vl
, ul > ur > 0, or 0 > ul > ur,

in which the indices l and r stand for the left and right states respectively. All the
waves J , R and S are called as classical waves here.

For the case u+ ≤ 0 ≤ u−, a solution containing a weighted delta measure
supported on a line should be constructed. In order to define the delta shock wave
solution to the Riemann problem (1.1) and (1.3), let us introduce the following
definitions below.

Definition 2.1. To define the measure solutions, the two-dimensional weighted
delta measure w(s)δΓ supported on a smooth curve Γ = {(x(s), t(s)) : a < s < b}
is defined by

〈w(s)δΓ, ψ(x, t)〉 =
∫ b

a

w(s)ψ(x(s), t(s))ds, (2.1)

for any test function ψ(x, t) ∈ C∞0 (R×R+).

Now, let us introduce the definition of delta shock wave solution in the framework
introduced by Danilov and Shelkovich [5, 6] and developed by Kalisch and Mitrovic
[8, 9] below. Suppose that Γ = {γi|i ∈ I} is a graph in the closed upper half-plane
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{(x, t)|(x, t) ∈ (−∞,∞)× [0,∞)} which contains Lipschitz continuous arcs γi with
i ∈ I in which I is a finite index set. Suppose that I0 is a subset of I which contains
all indices of arcs linking to the x-axis and Γ0 = {x0

k|k ∈ I0} is the set of initial
points of γk with k ∈ I0.

Definition 2.2. Let (u, v) be a pair of distributions where v has the form

v(x, t) = v̂(x, t) + α(x, t)δ(Γ), (2.2)

in which u, v̂ ∈ L∞(R×R+) and the singular part is defined by

α(x, t)δ(Γ) =
∑
i∈I

αi(x, t)δ(γi). (2.3)

Let us consider the delta shock wave type initial data

(u, v)(x, 0) =
(
u0(x), v̂0(x) +

∑
k∈I0

αk(x0
k, 0)δ(x− x0

k)
)
, (2.4)

in which u0, v̂0 ∈ L∞(R), then the pair of distributions (u, v) are called as a gen-
eralized delta shock wave solution for (1.1) with the delta shock wave type initial
data (2.4) if the following integral identities∫

R+

∫
R

(
uψt + u2ψx

)
dx dt+

∫
R

u0(x)ψ(x, 0)dx = 0, (2.5)∫
R+

∫
R

(v̂ψt + uv̂ψx) dx dt+
∑
i∈I

∫
γi

αi(x, t)
∂ψ(x, t)
∂l

+
∫
R

v̂0(x)ψ(x, 0)dx+
∑
k∈I0

αk(x0
k, 0)ψ(x0

k, 0) = 0,
(2.6)

hold for all test functions ψ ∈ C∞c (R×R+), in which ∂ψ(x,t)
∂l stands for the tangential

derivative of ψ on the graph γi and
∫
γi

expresses the line integral along γi.

With the above definition, a piecewise smooth solution of (1.1) and (1.3) can be
constructed for the case u+ ≤ 0 ≤ u− in the form

u(x, t) =

{
u−, x < σδt,

u+, x > σδt,
v(x, t) =

{
v−, x < σδt

v+, x > σδt
+ w(t)δ(x− σδt) (2.7)

where
σδ = u− + u+, w(t) = (u−v+ − u+v−)t. (2.8)

The functions w(t) and σδ express the strength and propagation speed of delta
shock wave, respectively.

The delta shock wave solution (2.7) with (2.8) satisfies the generalized Rankine-
Hugoniot condition

dx

dt
= σδ,

dw(t)
dt

= σδ[v]− [uv],

[u2] = σδ[u],

(2.9)

where [u] = u(x(t) + 0, t) − u(x(t) − 0, t), etc. In order to ensure the uniqueness,
the entropy condition of delta shock wave should be proposed as λ2r ≤ λ1r ≤
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σδ ≤ λ1l ≤ λ2l. It is an over-compressive condition which implies that all the
characteristics on both sides of the delta shock wave curve are incoming.

The above constructed delta shock wave solution (2.7) with (2.8) should satisfy

〈u, ψt〉+ 〈u2, ψx〉 = 0,

〈v, ψt〉+ 〈uv, ψx〉 = 0,
(2.10)

for any test function ψ(x, t) ∈ C∞0 (R × R+). In the above formula (2.10), as in
[1, 22, 25], we have

〈v, ψ〉 =
∫ ∞

0

∫ ∞
−∞

v0ψ dx dt+ 〈w(t)δS , ψ〉, (2.11)

〈uv, ψ〉 =
∫ ∞

0

∫ ∞
−∞

u0v0ψ dx dt+ 〈uδw(t)δS , ψ〉, (2.12)

in which u0 = u− + [u]H(x − σδt), v0 = v− + [v]H(x − σδt) and u0v0 = u−v− +
[uv]H(x − σδt). In order to require the solution (2.7) with (2.8) to satisfy (2.10)
in the sense of distributions, it is necessary to specify the value of velocity u along
the trajectory of singularity. Thus, uδ is introduced in the formula (2.12) which
stands for the assignment of u on this delta shock wave curve x = σδt, although
the reasonable physical explanation may not be given clearly. Then, the solution
(2.7) can be rewritten as

(u, v)(x, t) =


(u−, v−), x < σδt,

(uδ, w(t)δ(x− σδt)), x = σδt,

(u+, v+), x > σδt,

(2.13)

where uδ = σδ = u− + u+. In fact, it can be seen from [25] that the delta shock
wave solution (2.13) with (2.8) indeed satisfies (2.10) in the sense of distributions.

With the entropy conditions of shock wave and delta shock wave above, there
exist six different configurations of solutions to the Riemann problem (1.1) and
(1.3) according to the values of u− and u+ as follows:

δS(u+ ≤ 0 ≤ u−), J +
−→
S (0 < u+ < u−), J +

−→
R (0 ≤ u− < u+),

←−
R +

−→
R (u− < 0 < u+),

←−
R + J(u− < u+ ≤ 0),

←−
S + J(u+ < u− < 0).

3. Riemann problems (1.2) and (1.3)

In this section, we consider (1.2) and (1.3) for any given sufficiently small pa-
rameter ε > 0. System (1.2) can be rewritten in the quasi-linear form(

u
v

)
t

+
(

2u+ εα 0
v + εβ u+ εγ

)(
u
v

)
x

=
(

0
0

)
. (3.1)

It can be derived directly from (3.1) that the two eigenvalues of system (1.2) are

λ1(u, v) = u+ εγ, λ2(u, v) = 2u+ εα. (3.2)

It is clear that (1.2) is non-strictly hyperbolic for the reason that λ1 < λ2 when
u > ε(γ−α) and λ1 > λ2 when u < ε(γ−α). The corresponding right eigenvectors
of λi (i = 1, 2) can be expressed respectively as

−→r 1 = (0, 1)T , −→r 2 = (u+ εα− εγ, v + εβ)T . (3.3)

By a direct calculation, we have ∇λ1 · −→r 1 = 0 and ∇λ2 · −→r 2 = 2(u + εα − εγ),
in which ∇ denotes the gradient with respect to (u, v). Thus, it can be concluded
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that the characteristic field for λ1 is always linearly degenerate and the associated
wave is the contact discontinuity denoted by J and the characteristic field for λ2 is
genuinely nonlinear provided that u 6= ε(γ−α) and the associated wave is the shock
wave denoted by S or the rarefaction wave denoted by R. The Riemann invariants
along the characteristic fields are

w = u, z =
v + εβ

u+ εα− εγ
. (3.4)

Since both system (1.2) and the Riemann initial data (1.3) are unchanged under
the coordinate transformations in the (x, t) plane: (x, t) → (kx, kt) where k is a
constant, we need to look for the self-similar solutions of the form

(u, v)(x, t) = (u, v)(ξ), ξ = x/t. (3.5)

Hence, the Riemann problem (1.2) and (1.3) is reduced to the boundary-value
problem of ordinary differential equations

−ξuξ + (u2 + εαu)ξ = 0,

−ξvξ + (uv + εβu+ εγv)ξ = 0,
(3.6)

with the boundary condition (u, v)(±∞) = (u±, v±).
Let us denote U = (u, v)T and consider the smooth solutions of the above

boundary-value problem, then (3.6) may be rewritten as

A(U)Uξ = 0, (3.7)

in which

A(u, v) =
(
−ξ + 2u+ εα 0

v + εβ −ξ + u+ εγ

)
. (3.8)

Besides the constant state solution, it provides a rarefaction wave which is a
continuous solution of (3.7) in the form (u, v)(ξ) which is a function of the single
variable ξ = x

t . For a fixed left state (u−, v−), the rarefaction curves in the (u, v)
phase plane, which are the sets of states that may be connected on the right by a
rarefaction wave, are as follows:

R(u−, v−) :


ξ = λ2(u, v) = 2u+ εα,
v+εβ

u+εα−εγ = v−+εβ
u−+εα−εγ ,

u− < u.

(3.9)

It is worthwhile to notice that it is a 1-rarefaction wave for u− < u < ε(γ −α) and
a 2-rarefaction wave for ε(γ − α) < u− < u.

Let us turn to the study of shock wave curves. For a bounded discontinuity at
x = x(t), the Rankine-Hugoniot conditions can be expressed as

σ[u] = [u2 + εαu],

σ[v] = [uv + εβu+ εγv],
(3.10)

where σ = dx
dt and [u] = ur −ul with ul = u(x(t)− 0, t) and ur = u(x(t) + 0, t), etc.

It follows from the first equation in (3.10) that

(σ − ul − ur − εα)(ur − ul) = 0. (3.11)

If ul = ur, then it follows from the second equation in (3.10) that

σ = ul + εγ = ur + εγ, (3.12)
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which responds to the contact discontinuity. Thus, for a fixed left state (u−, v−),
the contact discontinuity curves in the (u, v) phase plane are as follows:

J(u−, v−) :

{
τ = u+ εγ = u− + εγ,

u = u−.
(3.13)

On the other hand, if σ = ul +ur + εα, then it follows from the second equation
in (3.10) that the relation

vr − vl
ur − ul

=
vr + εβ

ur + ε(α− γ)
=

vl + εβ

ul + ε(α− γ)
(3.14)

should be satisfied. It is well known that an admissibility condition should be added
in order to rule out non-physical shock waves. Here the Lax entropy conditions
deduce that u < u− < ε(γ − α) for the 1-shock wave and ε(γ − α) < u < u− for
the 2-shock wave should be satisfied. Through the above analysis, for a given left
state (u−, v−), the shock curves in the (u, v) phase plane are as follows:

S(u−, v−) :


σ = u− + u+ εα,
v+εβ

u+εα−εγ = v−+εβ
u−+εα−εγ ,

u < u−.

(3.15)

It is worthwhile to notice that the shock curves coincide with the rarefaction curves
in the (u, v) phase plane, thus (1.2) belongs to the so-called Temple class [24].

Using the elementary waves discussed above, one is in a position to construct
the solutions of the Riemann problem (1.2) and (1.3) in the following six different
cases according to the values of u− and u+.

(1) If ε(γ−α) < u+ < u−, then the Riemann solution to (1.2) and (1.3) is J +S
and the intermediate state between J and S is determined by

u∗ = u−,

v∗ + εβ

u∗ + εα− εγ
=

v+ + εβ

u+ + εα− εγ
,

(3.16)

which enables us to have

(u∗, v∗) =
(
u−, v+ −

(u+ − u−)(v+ + εβ)
u+ + εα− εγ

)
. (3.17)

Thus, when ε(γ − α) < u+ < u−, the Riemann solution to (1.2) and (1.3) can be
expressed as:

(u, v)(x, t) =


(u−, v−), ξ < τ1,

(u∗, v∗), τ1 < ξ < σ2,

(u+, v+), ξ > σ2,

(3.18)

in which the intermediate state (u∗, v∗) is given by (3.17) and the propagation
speeds of J1 and S2 can be calculated by τ1 = u− + εγ and σ2 = u− + u+ + εα
respectively.

(2) If ε(γ−α) < u− < u+, then the Riemann solution to (1.2) and (1.3) is J+R
and the intermediate state between J and R can also be calculated by (3.17). The
state (u, v) in R2 is determined by

ξ = 2u+ εα,

v + εβ

u+ εα− εγ
=

v+ + εβ

u+ + εα− εγ
,

(3.19)
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(u−, v−)

p(u∗, v∗)p
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p(ε(γ − α),−εβ)
p0 ?

y

J

S

(u−, v−) (u∗, v∗)

J

(u+, v+)

S

Figure 1. The Riemann solution of (1.2) and (1.3) is J +S when
ε(γ − α) < u+ < u−, where β > 0, γ > α and ε is a sufficiently
small positive number.
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0
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1

6
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J

p
0

(u−, v−)
(u∗, v∗)

(u+, v+)

J

R

Figure 2. The Riemann solution of (1.2) and (1.3) is J+R when
ε(γ − α) < u− < u+, where β < 0, γ > α and ε is a sufficiently
small positive number.

such that we have

(u, v) =
(ξ − εα

2
, v+ −

(u+ − ξ−εα
2 )(v+ + εβ)

u+ + εα− εγ

)
. (3.20)

Thus, when ε(γ − α) < u− < u+, the Riemann solution to (1.2) and (1.3) is

(u, v)(x, t) =


(u−, v−), ξ < u− + εγ,

(u∗, v∗), u− + εγ < ξ < 2u− + εα,

R2, 2u− + εα ≤ ξ ≤ 2u+ + εα,

(u+, v+), ξ > 2u+ + εα,

(3.21)

in which the intermediate state (u∗, v∗) and the state (u, v) in R2 are given by
(3.17) and (3.20) respectively.

(3) If u+ < u− < ε(γ−α), then the Riemann solution to (1.2) and (1.3) is S+J
and the intermediate state between S and J is determined by

v∗ + εβ

u∗ + εα− εγ
=

v− + εβ

u− + εα− εγ
,

u∗ = u+,
(3.22)
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Figure 3. The Riemann solution of (1.2) and (1.3) is S+J when
u+ < u− < ε(γ − α), where β > 0, γ < α and ε is a sufficiently
small positive number.
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Figure 4. The Riemann solution of (1.2) and (1.3) is R+J when
u− < u+ < ε(γ − α), where β < 0, γ < α and ε is a sufficiently
small positive number.

which implies that

(u∗, v∗) =
(
u+, v− +

(u+ − u−)(v− + εβ)
u− + εα− εγ

)
. (3.23)

Thus, when u+ < u− < ε(γ − α), the Riemann solution to (1.2) and (1.3) ie
represented as

(u, v)(x, t) =


(u−, v−), ξ < σ1,

(u∗, v∗), σ1 < ξ < τ2,

(u+, v+), ξ > τ2,

(3.24)

in which the intermediate state (u∗, v∗) is given by (3.23) and the propagation
speeds of S1 and J2 can be calculated by σ1 = u− + u+ + εα and τ2 = u+ + εγ
respectively.

(4) If u− < u+ < ε(γ−α), then the Riemann solution to (1.2) and (1.3) is R+J
and the intermediate state between R and J can also be calculated by (3.23). The
state (u, v) in R1 is determined by

ξ = 2u+ εα,

v + εβ

u+ εα− εγ
=

v− + εβ

u− + εα− εγ
,

(3.25)
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such that we have

(u, v) =
(ξ − εα

2
, v− −

(u− − ξ−εα
2 )(v− + εβ)

u− + εα− εγ

)
. (3.26)

Thus, when u− < u+ < ε(γ − α), the Riemann solution to (1.2) and (1.3) is

(u, v)(x, t) =


(u−, v−), ξ < 2u− + εα,

R1, 2u− + εα ≤ ξ ≤ 2u+ + εα,

(u∗, v∗), 2u+ + εα < ξ < u+ + εγ,

(u+, v+), ξ > u+ + εγ,

(3.27)

in which the state (u, v) in R1 and the intermediate state (u∗, v∗) are given by
(3.26) and (3.23) respectively.

(5) If u− < ε(γ − α) < u+, then the Riemann solution to (1.2) and (1.3) is
R1 + J +R2 which can be expressed as

(u, v)(x, t) =



(u−, v−), ξ < 2u− + εα,

R1, 2u− + εα ≤ ξ < ε(2γ − α),
J, ξ = ε(2γ − α),
R2, ε(2γ − α) < ξ ≤ 2u+ + εα,

(u+, v+), ξ > 2u+ + εα,

(3.28)

where the states (u1, v1) in R1 and (u2, v2) in R2 are given by (3.26) and (3.20) re-
spectively. It is remarkable that the two rarefaction waves R1 and R2 are connected
by the contact discontinuity J directly.

(6) If u+ < ε(γ − α) < u−, then one can see that the singularity is impossible
to be a jump with finite amplitude, which implies that there is no solution which
is piecewise smooth and bounded. Motivated by [25], when u+ < ε(γ − α) < u−,
a solution containing a weighted delta measure supported on a curve should be
introduced into the solution to the Riemann problem (1.2) and (1.3).

For the case u+ < ε(γ − α) < u−, it can be concluded from Definitions 2.1 and
2.2 that the delta shock wave solution to the Riemann problem (1.2) and (1.3) can
also be constructed in the form

(u, v)(x, t) =


(u−, v−), ξ < σδ,

(uδ, w(t)δ(x− σδt)), ξ = σδ,

(u+, v+), ξ > σδ,

(3.29)

where w(t) and σδ denote the strength and propagation speed of delta shock wave
and uδ indicates the assignment of u on this delta shock wave curve, respectively.
In fact, the delta shock wave solution in the form (3.29) to the Riemann problem
(1.2) and (1.3) should also satisfy

〈u, ψt〉+ 〈u2 + εαu, ψx〉 = 0,

〈v, ψt〉+ 〈uv + εβu+ εγv, ψx〉 = 0,
(3.30)

for all test functions ψ(x, t) ∈ C∞0 (R×R+). Actually, we have the following theorem
to describe completely the delta shock wave solution to the Riemann problem (1.2)
and (1.3) for the case u+ < ε(γ − α) < u−.
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p(u+, v+)
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R2

p
0

(u−, v−) (u+, v+)

R1 R2

J

Figure 5. The Riemann solution of (1.2) and (1.3) is R1 +J+R2

when u− < ε(γ − α) < u+, where β < 0, γ < α and ε is a
sufficiently small positive number.

6 6

--u

t

x

v p(u+, v+)

p(ε(γ − α),−εβ)

p(u−, v−)

	
I

p
0

(u−, v−)

p
0

δS

(u+, v+)

Figure 6. The Riemann solution of (1.2) and (1.3) is a delta shock
wave δS when u+ < ε(γ − α) < u−, where β < 0, γ > α and ε is
a sufficiently small positive number.

Theorem 3.1. If u+ < ε(γ − α) < u−, then the delta shock wave solution to the
Riemann problem (1.2) and (1.3) can be expressed in the form of (3.29) where

uδ = u− + u+ + ε(α− γ),
σδ = u− + u+ + εα,

w(t) = (u−v+ − u+v− + ε(α− γ)(v+ − v−)− εβ(u+ − u−))t.
(3.31)

Furthermore, the delta shock wave solution (3.29) with (3.31) should also satisfy
the following generalized Rankine-Hugoniot condition

dx

dt
= σδ,

dw(t)
dt

= σδ[v]− [uv + εβu+ εγv],

[u2 + εαu] = σδ[u],

(3.32)

and the over-compressive entropy condition

λ2(u+, v+) < λ1(u+, v+) < σδ < λ1(u−, v−) < λ2(u−, v−). (3.33)
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Proof. It is to check that the delta shock wave solution (3.29) with (3.31) should
satisfy (1.2) in the sense of distributions. Based on the definition of Schwarz dis-
tributions, it is equivalent to proving that (3.29) with (3.31) should satisfy∫ ∞

0

∫ ∞
−∞

(
uψt + (u2 + εαu)ψx

)
dx dt = 0,∫ ∞

0

∫ ∞
−∞

(
vψt + (uv + εβu+ εγv)ψx

)
dx dt = 0,

(3.34)

which is a weak form of system (1.2).
Without loss of generality, let us assume σδ > 0, noticing the fact that ψ is

compact support in R2
+, then we have

I =
∫ ∞

0

∫ ∞
−∞

(
uψt + (u2 + εαu)ψx

)
dx dt

=
∫ ∞

0

∫ x(t)

−∞

(
u−ψt + (u2

− + εαu−)ψx
)
dx dt+

∫ ∞
0

∫ ∞
x(t)

(
u+ψt + (u2

+ + εαu+)ψx
)
dx dt

=
∫ ∞

0

∫ ∞
t(x)

u−ψtdtdx+
∫ ∞

0

∫ t(x)

0

u+ψtdtdx+
∫ ∞

0

(u2
− + εαu− − u2

+ − εαu+)ψ(x(t), t)dt

=
∫ ∞

0

(u+ − u−)ψ(x, t(x))dx+
∫ ∞

0

(u2
− + εαu− − u2

+ − εαu+)ψ(x(t), t)dt,

where t = t(x) = x
σδ

is the inverse function of x = x(t) = σδt. Thus, one can arrive
at σδ = dx

dt = u−+u+ + εα which satisfies σδ[u] = [u2 + εαu] for I vanishes for any
test function ψ(x, t) ∈ C∞c (R×R+).

Analogously, we also have

II =
∫ ∞

0

∫ ∞
−∞

(
vψt + (uv + εβu+ εγv)ψx

)
dx dt

=
∫ ∞

0

∫ x(t)

−∞

(
v−ψt + (u−v− + εβu− + εγv−)ψx

)
dx dt

+
∫ ∞

0

∫ ∞
x(t)

(
v+ψt + (u+v+ + εβu+ + εγv+)ψx

)
dx dt

+
∫ ∞

0

w(t)
(
ψt(x(t), t) + (uδ + εγ)ψx(x(t), t)

)
dt

=
∫ ∞

0

(
u−v− + εβu− + εγv− − u+v+ − εβu+ − εγv+

)
ψ(x(t), t)dt

+
∫ ∞

0

(v+ − v−)ψ(x, t(x))dx+
∫ ∞

0

w(t)dψ(x(t), t),

in which uδ + εγ = σδ has been used. Thus, one can see that the second equality in
(3.32) should be satisfied since II vanishes for any test function ψ(x, t) ∈ C∞c (R×
R+), such that one can get the strength w(t) of delta shock wave.

To ensure the uniqueness of delta shock wave solution to the Riemann problem
(1.2) and (1.3) when u+ < ε(γ − α) < u−, the over-compressive entropy condition
should be proposed. Remember that λ1 < λ2 when u > ε(γ − α) and λ1 > λ2

when u < ε(γ − α). If u+ < ε(γ − α) < u−, then the over-compressive entropy
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condition for delta shock wave (3.33) should be proposed, which implies that all
the characteristics enter the delta shock wave curve from both sides. �

4. Limits of Riemann solutions as ε→ 0

In this section, we are concerned that the limits of solutions to the Riemann
problem (1.2) and (1.3) converge to the corresponding ones of the Riemann problem
(1.1) and (1.3) or not when the perturbation parameter ε tends to zero. In what
follows, we have the theorem to depict the limit problem fully.

Theorem 4.1. The limits of solutions to the Riemann problem (1.2) with (1.3)
converge to the corresponding ones for the non-strictly hyperbolic system (1.1) with
the same Riemann initial data as ε→ 0 in all kinds of situations.

Proof. The proof should also be divided into the following six cases according to
the values of u− and u+.

(1) If ε(γ − α) < u+ < u−, then it tends to 0 < u+ < u− by taking the limit
ε → 0. It is clear to see from (3.17) and (3.18) that the limit ε → 0 of Riemann
solution to (1.2) and (1.3) is also J + S which can be expressed as

lim
ε→0

(u, v)(x, t) =


(u−, v−), ξ < u−,

(u−,
u−v+
u+

), u− < ξ < u− + u+,

(u+, v+), ξ > u− + u+.

(4.1)

(2) If ε(γ − α) < u− < u+, then we have 0 < u− < u+ in the limit situation.
Now it follows from (3.21) together with (3.17) and (3.20) that the limit ε → 0 of
Riemann solution to (1.2) and (1.3) is J +R which can be expressed as

lim
ε→0

(u, v)(x, t) =


(u−, v−), ξ < u−,

(u−,
u−v+
u+

), u− < ξ < 2u−,

( ξ2 ,
ξv+
2u+

), 2u− ≤ ξ ≤ 2u+,

(u+, v+), ξ > 2u+.

(4.2)

(3) If u+ < u− < ε(γ − α), then we have u+ < u− < 0 in the limit situation.
Then, it can be derived from (3.23) and (3.24) that the limit ε → 0 of Riemann
solution to (1.2) and (1.3) is also S + J given by

lim
ε→0

(u, v)(x, t) =


(u−, v−), ξ < u− + u+,

(u+,
u+v−
u−

), u− + u+ < ξ < u+,

(u+, v+), ξ > u+.

(4.3)

(4) If u− < u+ < ε(γ − α), then it is cleat that u− < u+ < 0 in the limit
situation. Then, it follows from (3.27) together with (3.23) and (3.26) that the
limit ε→ 0 of Riemann solution to (1.2) and (1.3) is also R+ J given by

lim
ε→0

(u, v)(x, t) =


(u−, v−), ξ < 2u−,
( ξ2 ,

ξv−
2u−

), 2u− ≤ ξ ≤ 2u+,

(u+,
u+v−
u−

), 2u+ < ξ < u+,

(u+, v+), ξ > u+.

(4.4)

(5) It is clear to get u− < 0 < u+ by taking the limit ε → 0 in the inequality
u− < ε(γ − α) < u+. Then, it follows from (3.28) together with (3.20) and (3.26)
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that the limit ε→ 0 of Riemann solution to (1.2) and (1.3) is also R+ J +R given
by

lim
ε→0

(u, v)(x, t) =



(u−, v−), ξ < 2u−,
( ξ2 ,

ξv−
2u−

), 2u− ≤ ξ < 0,

(0, 0), ξ = 0,
( ξ2 ,

ξv+
2u+

), 0 < ξ ≤ 2u+,

(u+, v+), ξ > 2u+.

(4.5)

(6) Finally, we also have u+ < 0 < u− by taking the limit ε→ 0 in the inequality
u+ < ε(γ − α) < u−. Then, it follows from (3.29) and (3.31) that the limit ε → 0
of Riemann solution to (1.2) and (1.3) is also a delta shock wave given by

lim
ε→0

(u, v)(x, t)

=


(u−, v−), ξ < u− + u+,

(u− + u+, (u−v+ − u+v−)tδ(x− (u− + u+)t)), ξ = u− + u+,

(u+, v+), ξ > u− + u+.

(4.6)

Thus, the conclusion of the theorem can be drawn by gathering the results for the
six different cases together. �

5. Conclusions and discussions

It can be seen from the above discussions that the limits of solutions to the
Riemann problem (1.2) and (1.3) converge to the corresponding ones of the Riemann
problem (1.1) and (1.3) as ε→ 0. The reason lies in that the approximated system
(1.2) is still non-strictly hyperbolic and the characteristic field for λ1 is still linearly
degenerate and the characteristic field for λ2 is still genuinely nonlinear. Thus, this
perturbation does not change the structure of Riemann solutions.

In addition, let us turn our attentions on the simplified system of pressureless
gas dynamics as follows:

ut + (
u2

2
)x = 0,

vt + (uv)x = 0.
(5.1)

It is easy to check that (5.1) has a double eigenvalue λ = u and only one right
eigenvector −→r = (0, 1)T . Then, we can get ∇λ · −→r = 0, which implies that the
characteristic field for λ is always linearly degenerate. Thus, the solutions of Rie-
mann problem (5.1) and (1.3) can be constructed by contact discontinuities, vacuum
or delta shock wave connecting two constant states (u±, v±).

If we also consider the linear approximations of flux functions for (5.1) in the
form

ut + (
u2

2
+ εαu)x = 0,

vt + (uv + εβu+ εγv)x = 0.
(5.2)

We can check that if α = γ, then (5.2) has also a double eigenvalue λ = u + εα
and only one right eigenvector −→r = (0, 1)T . Furthermore, one can see that the
characteristic field for λ is always linearly degenerate. In other words, (5.2) also
belongs to the Temple class when α = γ. Through a simple calculation, it can
be concluded that the Riemann solutions for the approximated system (5.2) just
translate the ones for the original system (5.1) in the (x, t) plane and do not change
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the structure. Thus, when α = γ, we can also see that the limits of solutions to
the Riemann problem (5.2) and (1.3) converge to the corresponding ones of the
Riemann problem (5.1) and (1.3) as ε→ 0 in all the situations.

Otherwise, if α 6= γ, then (5.2) has two different eigenvalues λ1 = u + εα and
λ2 = u + εγ. Thus, (5.2) is strictly hyperbolic for α 6= γ. It is easy to get that
the right eigenvectors are −→r 1 = (ε(α− γ), v + εβ)T and −→r 2 = (0, 1)T respectively,
such that we have ∇λ1 · −→r 1 = ε(α − γ) 6= 0 and ∇λ2 · −→r 2 = 0. Hence, the
characteristic field for λ1 is genuinely nonlinear and the characteristic field for λ2

is linearly degenerate. By a simple calculation, it can be seen that (5.2) does not
belong to the Temple class any more when α 6= γ. It is clear to see that if α 6= γ,
then the Riemann solutions for the approximated system (5.2) have completely
different structures with those for the original system (5.1). If we introduce the
substitutions of state variables u+ εα→ u and v + εβ → v, then (5.2) becomes

ut + (
u2

2
)x = 0,

vt + (uv + ε(γ − α)v)x = 0.
(5.3)

It is well known that this form of the system does not change for the reason the
variable substitutions are linear in the conserved quantities. If γ < α, then it can
be concluded from [20] that the limits of solutions to the Riemann problem (5.3)
and (1.3) also converge to the corresponding ones of the Riemann problem (5.1)
and (1.3) as ε → 0 in all the situations. On the other hand, if γ > α, then the
similar calculation can be carried out and the same conclusion can be drawn. Thus,
if α 6= γ, then one can conclude that the limits of solutions to the Riemann problem
(5.2) and (1.3) converge to the corresponding ones of the Riemann problem (5.1)
and (1.3) as ε→ 0 in all the situations.
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