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ASYMPTOTIC BEHAVIOR OF INTERMEDIATE SOLUTIONS OF
FOURTH-ORDER NONLINEAR DIFFERENTIAL EQUATIONS

WITH REGULARLY VARYING COEFFICIENTS

ALEKSANDRA B. TRAJKOVIĆ, JELENA V. MANOJLOVIĆ

Abstract. We study the fourth-order nonlinear differential equation`
p(t)|x′′(t)|α−1 x′′(t)

´′′
+ q(t)|x(t)|β−1 x(t) = 0, α > β,

with regularly varying coefficient p, q satisfyingZ ∞
a

t
“ t

p(t)

”1/α
dt <∞.

in the framework of regular variation. It is shown that complete informa-

tion can be acquired about the existence of all possible intermediate regularly

varying solutions and their accurate asymptotic behavior at infinity.

1. Introduction

We study the equation(
p(t)|x′′(t)|α−1x′′(t)

)′′ + q(t)|x(t)|β−1x(t) = 0, t ≥ a > 0, (1.1)

where

(i) α and β are positive constants such that α > β,
(ii) p, q : [a,∞)→ (0,∞) are continuous functions and p satisfies∫ ∞

a

t1+(1/α)

p(t)1/α
dt <∞. (1.2)

Equation (1.1) is called sub-half-linear if β < α and super-half-linear if β > α. By
a solution of (1.1) we mean a function x : [T,∞)→ R, T ≥ a, which is twice contin-
uously differentiable together with p|x′′|α−1x′′ on [T,∞) and satisfies the equation
(1.1) at every point in [T,∞). A solution x of (1.1) is said to be nonoscillatory if
there exists T ≥ a such that x(t) 6= 0 for all t ≥ T and oscillatory otherwise. It is
clear if x is a solution of (1.1), then so does −x, and so in studying nonoscillatory
solutions of (1.1) it suffices to restrict our attention to its (eventually) positive
solutions.
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Throughout this paper extensive use is made of the symbol ∼ to denote the
asymptotic equivalence of two positive functions, i.e.,

f(t) ∼ g(t), t→∞ ⇔ lim
t→∞

g(t)
f(t)

= 1.

We also use the symbol ≺ to denote the dominance relation between two positive
functions in the sense that

f(t) ≺ g(t), t→∞ ⇔ lim
t→∞

g(t)
f(t)

=∞.

In our analysis of positive solutions of (1.1) a special role is played by the four
functions

ϕ1(t) =
∫ ∞
t

s− t
p(s)1/α

ds, ϕ2(t) =
∫ ∞
t

(s− t)( s

p(s)
)1/αds, ψ1(t) = 1, ψ2(t) = t,

which are the particular solutions of the unperturbed differential equation

(p(t)|x′′(t)|α−1x′′(t))′′ = 0.

Note that the functions ϕi and ψi, i = 1, 2 defined above satisfy the dominance
relation

ϕ1(t) ≺ ϕ2(t) ≺ ψ1(t) ≺ ψ2(t), t→∞.
Asymptotic and oscillatory behavior of solutions of (1.1) have been previously

considered in [9, 19, 16, 21, 26, 30, 31]. Kusano and Tanigawa in [19] made a detailed
classification of all positive solutions of the equation (1.1) under the condition (1.2)
and established conditions for the existence of such solutions. It was proved that
the following four types of combination of the signs of x′, x′′ and

(
p|x′′|α−1 x′′

)′ are
possible for an eventually positive solution x(t) of (1.1):

(p(t)|x′′(t)|α−1x′′(t))′ > 0, x′′(t) > 0, x′(t) > 0 for all large t, (1.3)

(p(t)|x′′(t)|α−1x′′(t))′ > 0, x′′(t) > 0, x′(t) < 0 for all large t, (1.4)

(p(t)|x′′(t)|α−1x′′(t))′ > 0, x′′(t) < 0, x′(t) > 0 for all large t, (1.5)

(p(t)|x′′(t)|α−1x′′(t))′ < 0, x′′(t) < 0, x′(t) > 0 for all large t. (1.6)

As a results of further analysis of the four types of solutions mentioned above,
Kusano and Tanigawa in [19] have shown that the following six types are possible
for the asymptotic behavior of positive solutions of (1.1):

(P1) x(t) ∼ c1ϕ1(t),
(P2) x(t) ∼ c2ϕ2(t) as t→∞,
(P3) x(t) ∼ c3 as t→∞,
(P4) x(t) ∼ c4t as t→∞,
(I1) ϕ1(t) ≺ x(t) ≺ ϕ2(t) as t→∞,
(I2) 1 ≺ x(t) ≺ t as t→∞,

where ci > 0, i = 1, 2, 3, 4 are constants. Positive solutions of (1.1) having the
asymptotic behavior (P1)–(P4) are collectively called primitive positive solutions
of the equation (1.1), while the solutions having the asymptotic behavior (I1) and
(I2) are referred to as intermediate solutions of the equation (1.1).

The interrelation between the types (1.3)-(1.6) of the derivatives of solutions
and the types (P1)–(P4), (I1) and (I2) of the asymptotic behavior of solutions is
as follows:

(i) All solutions of type (1.3) have the asymptotic behavior of type (P1);
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(ii) A solution of type (1.4) has the asymptotic behavior of one of the types
(P1), (P2), (P3) and (I1);

(iii) A solution of type (1.5) has the asymptotic behavior of one of the types
(P3) and (P4);

(iv) A solution of type (1.6) has the asymptotic behavior of one of the types
(P3), (P4) and (I2).

The existence of four types of primitive solutions has been completely charac-
terized for both sub-half-linear and super-half-linear case of (1.1) with continuous
coefficients p and q as the following theorems proven in [19] show.

Theorem 1.1. Let p, q ∈ C[a,∞). Equation (1.1) has a positive solution x satis-
fying (P3) if and only if

J1 =
∫ ∞
a

t
( 1
p(t)

∫ t

a

(t− s)q(s) ds
)1/α

dt <∞. (1.7)

Theorem 1.2. Let p, q ∈ C[a,∞). Equation (1.1) has a positive solution x satis-
fying (P4) if and only if

J2 =
∫ ∞
a

( 1
p(t)

∫ t

a

(t− s)sβ q(s) ds
)1/α

dt <∞. (1.8)

Theorem 1.3. Let p, q ∈ C[a,∞). Equation (1.1) has a positive solution x satis-
fying (P1) if and only if

J3 =
∫ ∞
a

tq(t)ϕ1(t)β dt <∞. (1.9)

Theorem 1.4. Let p, q ∈ C[a,∞). Equation (1.1) has a positive solution x satis-
fying (P2) if and only if

J4 =
∫ ∞
a

q(t)ϕ2(t)β dt <∞. (1.10)

Unlike primitive solutions, establishing necessary and sufficient conditions for
the existence of the intermediate solutions seems to be much more difficult task.
Thus, only sufficient conditions for the existence of these solutions was obtained in
[19].

Theorem 1.5. If (1.10) holds and if

J3 =
∫ ∞
a

tq(t)ϕ1(t)β dt =∞,

then equation (1.1) has a positive solution x such that ϕ1(t) ≺ x(t) ≺ ϕ2(t), t→∞.

Theorem 1.6. If (1.8) holds and

J1 =
∫ ∞
a

t
( 1
p(t)

∫ t

a

(t− s)q(s) ds
)1/α

dt =∞,

then (1.1) has a positive solution x such that 1 ≺ x(t) ≺ t as t→∞.

However, sharp conditions for the oscillation of all solutions of (1.1) in both cases
(sub-half-linear and super-half-linear) have been obtained in [16].
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Theorem 1.7. Let β < 1 ≤ α. All solutions of (1.1) are oscillatory if and only if

J2 =
∫ ∞
a

( 1
p(t)

∫ t

a

(t− s)sβ q(s) ds
)1/α

dt =∞ .

Thus, our task is to establish necessary and sufficient conditions for (1.1) to
possess intermediate solutions of types (I1) and (I2) and to determine precisely
their asymptotic behavior at infinity. Since this problem is very difficult for equation
(1.1) with general continuous coefficients p and q, we will make an attempt to solve
the problem in the framework of regular variation, that is, we limit ourselves to
the case where p and q are regularly varying functions and focus our attention on
regularly varying solutions of (1.1). The recent development of asymptotic analysis
of differential equations by the means of regularly varying functions, which was
initiated by the monograph of Marić [22], has shown that there exists a variety
of nonlinear differential equations for which the problem mentioned above can be
solved completely. The reader is referred to the papers [8, 10, 13, 14, 18, 20, 28] for
the second order differential equations, to [11, 12, 15, 17, 25] for the fourth order
differential equations and to [3]-[7], [23, 24, 27] for some systems of differential
equations. The present work can be considered as a continuation of the previous
papers [11, 12, 15], which are the special cases of (1.1) with α = 1 or p(t) ≡ 1 but
has features different from them in the sense that the generalized regularly varying
functions (or generalized Karamata functions) introduced in [2] will be used in order
to make clear the dependence of asymptotic behavior of intermediate solutions on
the coefficient p.

For reader’s convenience the definition of generalized regularly varying functions
and some of their basic properties are summarized in Section 2. In Sections 3 we
consider equation (1.1) with generalized regularly varying p and q, and after showing
that each of two classes of its intermediate generalized regularly varying solutions
of type (I1) and (I2) can be divided into three disjoint subclasses according to their
asymptotic behavior at infinity, we establish necessary and sufficient conditions
for the existence of solutions and determine the asymptotic behavior of solutions
contained in each of the six subclasses explicitly and precisely. In the final Section
4 it is shown that our main results, when specialized to the case where p and q are
regularly varying functions in the sense of Karamata, provide complete information
about the existence and asymptotic behavior of regularly varying solutions in the
sense of Karamata for that equation (1.1). This information combined with that
of the primitive solutions of (1.1) (cf. Theorems 1.1-1.4) enables us to present full
structure of the set of regularly varying solutions for equations of the form (1.1)
with regularly varying coefficients.

2. Basic properties of regularly varying functions

We recall that the set of regularly varying functions of index ρ ∈ R is introduced
by the following definition.

Definition 2.1. A measurable function f : (a,∞)→ (0,∞) for some a > 0 is said
to be regularly varying at infinity of index ρ ∈ R if

lim
t→∞

f(λt)
f(t)

= λρ for all λ > 0.
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The totality of all regularly varying functions of index ρ is denoted by RV(ρ).
In the special case when ρ = 0, we use the notation SV instead of RV(0) and refer
to members of SV as slowly varying functions. Any function f ∈ RV(ρ) is written
as f(t) = tρ g(t) with g ∈ SV, and so the class SV of slowly varying functions is of
fundamental importance in the theory of regular variation. If

lim
t→∞

f(t)
tρ

= lim
t→∞

g(t) = const > 0

then f is said to be a trivial regularly varying function of the index ρ and it is
denoted by f ∈ tr− RV(ρ). Otherwise, f is said to be a nontrivial regularly
varying function of the index ρ and it is denoted by f ∈ ntr− RV(ρ).

The reader is referred to Bingham et al. [1] and Seneta [29] for a complete
exposition of theory of regular variation and its application to various branches of
mathematical analysis.

To properly describe the possible asymptotic behavior of nonoscillatory solutions
of the self-adjoint second-order linear differential equation (p(t)x′(t))′+q(t)x(t) = 0,
which are essentially affected by the function p(t), Jaroš and Kusano introduced in
[2] the class of generalized Karamata functions with the following definition.

Definition 2.2. Let R be a positive function which is continuously differentiable on
(a,∞) and satisfies R′(t) > 0, t > a and limt→∞R(t) =∞. A measurable function
f : (a,∞) → (0,∞) for some a > 0 is said to be regularly varying of index ρ ∈ R
with respect to R if f ◦R−1 is defined for all large t and is regularly varying function
of index ρ in the sense of Karamata, where R−1 denotes the inverse function of R.

The symbol RVR(ρ) is used to denote the totality of regularly varying functions
of index ρ ∈ R with respect to R. The symbol SVR is often used for RVR(0). It is
easy to see that if f ∈ RVR(ρ), then f(t) = R(t)ρ `(t), ` ∈ SVR. If

lim
t→∞

f(t)
R(t)ρ

= lim
t→∞

`(t) = const > 0

then f is said to be a trivial regularly varying function of index ρ with respect to
R and it is denoted by f ∈ tr− RVR(ρ). Otherwise, f is said to be a nontrivial
regularly varying function of index ρ with respect to R and it is denoted by f ∈
ntr− RVR(ρ). Also, from Definition 2.2 it follows that f ∈ RVR(ρ) if and only if it
is written in the form f(t) = g(R(t)), g ∈ RV(ρ). It is clear that RV(ρ) = RVt(ρ).
We emphasize that there exists a function which is regularly varying in generalized
sense, but is not regularly varying in the sense of Karamata, so that, roughly
speaking, the class of generalized Karamata functions is larger than that of classical
Karamata functions.

To help the reader we present here some elementary properties of generalized
regularly varying functions.

Proposition 2.3. (i) If g1 ∈ RVR(σ1), then gα1 ∈ RVR(ασ1) for any α ∈ R.
(ii) If gi ∈ RVR(σi), i = 1, 2, then g1 + g2 ∈ RVR(σ), σ = max(σ1, σ2).
(iii) If gi ∈ RVR(σi), i = 1, 2, then g1g2 ∈ RVR(σ1 + σ2).
(iv) If gi ∈ RVR(σi), i = 1, 2 and g2(t) → ∞ as t → ∞, then g1 ◦ g2 ∈

RVR(σ1σ2).
(v) If ` ∈ SVR, then for any ε > 0,

lim
t→∞

R(t)ε`(t) =∞, lim
t→∞

R(t)−ε`(t) = 0.
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Next, we present a fundamental result (see [2]), called generalized Karamata
integration theorem, which will be used throughout the paper and play a central
role in establishing our main results.

Proposition 2.4. Let ` ∈ SVR. Then:
(i) If α > −1,∫ t

a

R′(s)R(s)α`(s) ds ∼ R(t)α+1 `(t)
α+ 1

, t→∞;

(ii) If α < −1,∫ ∞
t

R′(s) R(s)α `(s) ds ∼ −R(t)α+1 `(t)
α+ 1

, t→∞;

(iii) If α = −1, then functions∫ t

a

R′(s)R(s)−1 `(s) ds and
∫ ∞
t

R′(s)R(s)−1 `(s) ds

are slowly varying with respect to R.

3. Asymptotic behavior of intermediate generalized regularly
varying solutions

In what follows it is always assumed that functions p and q are generalized
regularly varying of index η and σ with respect to R, with R(t) is defined with

R(t) =
(∫ ∞

t

s1+ 1
α

p(s)1/α
ds
)−1

, (3.1)

and expressed as

p(t) = R(t)ηlp(t), lp ∈ SVR and q(t) = R(t)σlq(t), lq ∈ SVR . (3.2)

From (3.1) and (3.2) we have that

t1+ 1
α = R′(t)R(t)

η
α−2lp(t)1/α. (3.3)

Integrating (3.3) from a to t we have

t2+ 1
α

2 + 1
α

=
∫ t

a

R′(s)R(s)
η
α−2lp(s)1/αds, t→∞, (3.4)

implying that η
α ≥ 1. In what follows we limit ourselves to the case where η > α

excluding the other possibilities because of computational difficulty. Applying the
generalized Karamata integration theorem (Proposition 2.4) at the right hand side
of (3.4) we obtain

t ∼
( η − α

2α+ 1

)− α
2α+1

R(t)
η−α
2α+1 lp(t)

1
2α+1 , t→∞. (3.5)

From (3.3) and (3.5) we can express R′(t) as follows

R′(t) ∼
( η − α

2α+ 1

)− α+1
2α+1

R(t)
3α+1−η
2α+1 lp(t)−

1
2α+1 , t→∞ , (3.6)

which can be rewritten in the form

1 ∼
( η − α

2α+ 1

) α+1
2α+1

R′(t)R(t)m2(α,η)−1lp(t)
1

2α+1 , t→∞. (3.7)
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The next lemma, following directly from the generalized Karamata integration the-
orem using (3.7), will be frequently used in our later discussions. To that end and
to further simplify formulation of our main results we introduce the notation:

m1(α, η) =
−2α2 − η
α(2α+ 1)

, m2(α, η) =
η − α
2α+ 1

. (3.8)

It is clear that m1(α, η) < −1 < 0 < m2(α, η) and

m1(α, η) = 2m2(α, η)− η

α
;

m2(α, η)− η
α

= −2m2(α, η)− 1 . (3.9)

In proofs of our main results constants mi(α, η), i = 1, 2, will be abbreviated as
mi, i = 1, 2, respectively.

Lemma 3.1. Let f(t) = R(t)µLf (t), Lf ∈ SVR. Then:
(i) If µ > −m2(α, η),∫ t

a

f(s) ds ∼ m2(α, η)
α+1
2α+1

µ+m2(α, η)
R(t)µ+m2(α,η)Lf (t)lp(t)

1
2α+1 , t→∞;

(ii) If µ < −m2(α, η),∫ ∞
t

f(s) ds ∼ m2(α, η)
α+1
2α+1

−(µ+m2(α, η))
R(t)µ+m2(α,η)Lf (t)lp(t)

1
2α+1 , t→∞;

(iii) If µ = −m2(α, η), then functions∫ t

a

f(s) ds =
∫ t

a

R(s)−m2(α,η)Lf (s) ds,∫ ∞
t

f(s) ds =
∫ ∞
t

R(s)−m2(α,η)Lf (s) ds

are slowly varying with respect to R.

To make an in depth analysis of intermediate solutions of type (I1) and (I2) of
(1.1) we need a fair knowledge of the structure of the functions ψ1, ψ2, ϕ1 and ϕ2

regarded as generalized regularly varying functions with respect to R. From (3.5),
(3.6) and (3.7) it is clear that ψ1 ∈ SVR and ψ2 ∈ RVR(m2(α, η)). Using (3.2) and
applying Lemma 3.1 twice, we obtain

ϕ1(t) =
∫ ∞
t

∫ ∞
s

R(r)−η/αlp(r)−1/α dr ds

∼ m2(α, η)
2(α+1)
2α+1

m1(α, η)(m1(α, η)−m2(α, η))
R(t)m1(α,η) lp(t)

− 1
α(2α+1) , t→∞,

(3.10)

which shows that ϕ1 ∈ RVR (m1(α, η)). Further, by (3.2) and (3.5), in view of
(3.9)-(ii), another two applications of Lemma 3.1 yield

ϕ2(t) ∼ m2(α, η)−
1

2α+1

∫ ∞
t

∫ ∞
s

R(r)−2m2(α,η)−1 lp(r)−
2

2α+1 dr ds

∼ m2(α, η)
m2(α, η) + 1

R(t)−1, t→∞,
(3.11)

implying ϕ2 ∈ RVR(−1).
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3.1. Regularly varying solutions of type (I1). The first subsection is devoted
to the study of the existence and asymptotic behavior of generalized regularly
varying solutions with respect to R of type (I1) with p and q satisfying (3.2).
Expressing such solution x of (1.1) in the form

x(t) = R(t)ρ lx(t), lx ∈ SVR, (3.12)

since ϕ1(t) ≺ x(t) ≺ ϕ2(t), t→∞, the regularity index ρ of x must satisfy

m1(α, η) ≤ ρ ≤ −1.

If ρ = m1(α, η), then since x(t)/R(t)m1(α,η) = lx(t)→∞, t→∞, x is a member of
ntr− RVR(m1(α, η)), while if ρ = −1, then since x(t)/R(t)−1 = lx(t)→ 0, t→∞,
x is a member of ntr− RVR(−1). Thus the set of all generalized regularly varying
solutions of type (I1) is naturally divided into the three disjoint classes

ntr− RVR(m1(α, η)) or

RVR(ρ) with ρ ∈ (m1(α, η) , −1) or ntr− RVR (−1) .

Our aim is to establish necessary and sufficient conditions for each of the above
classes to have a member and furthermore to show that the asymptotic behavior
of all members of each class is governed by a unique explicit formula describing the
decay order at infinity accurately.

Main results.

Theorem 3.2. Let p ∈ RVR(η), q ∈ RVR(σ). Equation (1.1) has intermediate
solutions x ∈ ntr− RVR(m1(α, η)) satisfying (I1) if and only if

σ = −βm1(α, η)− 2m2(α, η) and
∫ ∞
a

tq(t)ϕ1(t)β dt =∞. (3.13)

The asymptotic behavior of any such solution x is governed by the unique formula
x(t) ∼ X1(t), t→∞, where

X1(t) = ϕ1(t)
(α− β

α

∫ t

a

sq(s)ϕ1(s)β ds
) 1
α−β

. (3.14)

Theorem 3.3. Let p ∈ RVR(η), q ∈ RVR(σ). Equation (1.1) has intermediate
solutions x ∈ RVR(ρ) with ρ ∈ (m1(α, η),−1) if and only if

− βm1(α, η)− 2m2(α, η) < σ < β −m2(α, η), (3.15)

in which case

ρ =
σ +m2(α, η)− α

α− β
(3.16)

and the asymptotic behavior of any such solution x is given by the unique formula
x(t) ∼ X2(t), t→∞, where

X2(t) =
((m2(α, η)

(α+1)2

2α+1

α

)2 p(t)
1

2α+1 q(t)R(t)−2
α(α+1)
2α+1

(m1(α, η)− ρ)(ρ+ 1)(ρ(ρ−m2(α, η)))α
) 1
α−β

.

(3.17)

Theorem 3.4. Let p ∈ RVR(η), q ∈ RVR(σ). Equation (1.1) has intermediate
solutions x ∈ ntr− RVR(−1) satisfying (I1) if and only if

σ = β −m2(α, η) and
∫ ∞
a

q(t)ϕ2(t)β dt <∞. (3.18)
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The asymptotic behavior of any such solution x is given by the unique formula
x(t) ∼ X3(t), t→∞, where

X3(t) = ϕ2(t)
(α− β

α

∫ ∞
t

q(s) ϕ2(s)β ds
) 1
α−β

. (3.19)

Preparatory results. Let x be a solution of (1.1) on [t0,∞) such that ϕ1(t) ≺
x(t) ≺ ϕ2(t) as t→∞. Since

lim
t→∞

(
p(t)(x′′(t))α

)′ = lim
t→∞

x′(t) = lim
t→∞

x(t) = 0, lim
t→∞

p(t)(x′′(t))α =∞, (3.20)

integrating (1.1) first on [t,∞), and then on [t0, t] and finally twice on [t,∞) we
obtain

x(t) =
∫ ∞
t

s− t
p(s)1/α

(
ξ2 +

∫ s

t0

∫ ∞
r

q(u)x(u)β du dr
)1/α

ds, t ≥ t0, (3.21)

where ξ2 = p(t0)x′′(t0)α.
To prove the existence of intermediate solutions of type (I1) it is sufficient to

prove the existence of a positive solution of the integral equation (3.21) for some
constants t0 ≥ a and ξ2 > 0, which is most commonly achieved by application of
Schauder-Tychonoff fixed point theorem. Denoting by Gx(t) the right-hand side
of (3.21), to find a fixed point of G it is crucial to choose a closed convex subset
X ⊂ C[t0,∞) on which G is a self-map. Since our primary goal is not only proving
the existence of generalized RV intermediate solutions, but establishing a precise
asymptotic formula for such solutions, a choice of such a subset X must be made
appropriately. It will be shown that such a choice of X is possible by solving the
integral asymptotic relation

x(t) ∼
∫ ∞
t

s− t
p(s)1/α

(∫ s

b

∫ ∞
r

q(u)x(u)β du dr
)1/α

ds, t→∞, (3.22)

for some b ≥ t0, which can be considered as an approximation (at infinity) of (3.21)
in the sense that it is satisfied by all possible solutions of type (I1) of (1.1). Theory
of regular variation will in fact ensure the solvability of (3.22) in the framework of
generalized Karamata functions.

As preparatory steps toward the proofs of Theorems 3.2-3.4 we show that the
generalized regularly varying functions Xi, i = 1, 2, 3 defined respectively by (3.14),
(3.17) and (3.19) satisfy the asymptotic relation (3.22).

Lemma 3.5. Suppose that (3.13) holds. Function X1 given by (3.14) satisfies the
asymptotic relation (3.22) for any b ≥ a and belongs to ntr− RVR(m1(α, η)).

Proof. From (3.2), (3.5) and (3.10), we have

tq(t)ϕ1(t)β ∼ m
2β(α+1)−α

2α+1
2

(m1(m1 −m2))β
R(t)σ+βm1+m2 lp(t)

α−β
α(2α+1) lq(t), t→∞ ,

and applying (iii) of Lemma 3.1, in view of (3.13), we obtain∫ t

a

sq(s)ϕ1(s)β ds ∼ m
2β(α+1)−α

2α+1
2

(m1(m1 −m2))β

∫ t

a

R(s)−m2 lp(s)
α−β

α(2α+1) lq(s) ds ∈ SVR,

(3.23)
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as t→∞, which together with (3.14) gives

X1(t) ∼ ϕ1(t)
( m

2β(α+1)−α
2α+1

2

(m1(m1 −m2))β
α− β
α

J1(t)
) 1
α−β

, t→∞,

where

J1(t) =
∫ t

a

R(s)−m2 lp(s)
α−β

α(2α+1) lq(s) ds. (3.24)

Thus, since J1 ∈ SVR, we conclude that X1 ∈ ntr− RVR(m1(α, η)) and rewrite the
previous relation, using (3.10), as

X1(t) ∼ R(t)m1 lp(t)
− 1
α(2α+1)

(( m2

m1(m1 −m2)

)αα− β
α

J1(t)
) 1
α−β

, t→∞.

(3.25)
To prove that (3.22) is satisfied by X1, we first integrate q(t)X1(t)β on [t,∞),

applying Lemma 3.1 and using (3.13) we have∫ ∞
t

q(s)X1(s)β ds

∼ m−
α

2α+1
2

(( m2

m1(m1 −m2)

)αα− β
α

) β
α−β

R(t)−m2 lp(t)
α−β

α(2α+1) lq(t)J1(t)
β

α−β ,

as t→∞. Integrating the above relation on [b, t], for any b ≥ a, we obtain∫ t

b

∫ ∞
s

q(r)X1(r)β dr ds ∼ m−
α

2α+1
2

(( m2

m1(m1 −m2)

)αα− β
α

) β
α−β

×
∫ t

b

R(s)−m2 lp(s)
α−β

α(2α+1) lq(s)J1(s)
β

α−β ds

= m
− α

2α+1
2

(( m2

m1(m1 −m2)

)αα− β
α

) β
α−β

∫ t

b

J1(s)
β

α−β dJ1(s)

= m
− α

2α+1
2

(( m2

m1(m1 −m2)

)β α− β
α

) α
α−β

J1(t)
α

α−β , t→∞.

Integrating the above relation multiplied by p(t)−1 and powered by 1
α twice on

[t,∞), applying Lemma 3.1 and using (3.9)-(i), we obtain∫ ∞
t

∫ ∞
s

( 1
p(r)

∫ r

a

∫ ∞
u

q(ω)X1(ω)β dωdu
)1/α

dr ds

∼
(( m2

m1(m1 −m2)

)β α− β
α

) 1
α−β m2

m1(m1 −m2)
R(t)m1 lp(t)

− 1
α(2α+1) J1(t)

1
α−β ,

as t → ∞, which due to (3.25) proves that X1 satisfies the desired asymptotic
relation (3.22) for any b ≥ a. �

Lemma 3.6. Suppose that (3.15) holds and let ρ be defined by (3.16). Function X2

given by (3.17) satisfies the asymptotic relation (3.22) for any b ≥ a and belongs to
RVR(ρ).

Proof. Using (3.8) and (3.16) we obtain

σ + ρβ +m2 = α(ρ+ 1), σ + ρβ + 2m2 = α(ρ−m1) . (3.26)
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The function X2 given by (3.17) can be expressed in the form

X2(t) ∼ (λα2)−
1

α−β m
2(α+1)2

(2α+1)(α−β)
2 R(t)ρ

(
lp(t)

1
2α+1 lq(t)

) 1
α−β

, t→∞, (3.27)

where
λ = (ρ(ρ−m2))α (m1 − ρ) (ρ+ 1) .

Thus, X2 ∈ RVR(ρ). Using (3.26) and (3.27), applying Lemma 3.1 twice, we find∫ ∞
t

q(s)X2(s)β ds ∼ − m
(α+1)(2αβ+α+β)

(2α+1)(α−β)
2(

λα2
) β
α−β (σ + ρβ +m2)

R(t)σ+ρβ+m2

(
lp(t)

1
2α+1 lq(t)

) α
α−β

,

and for any b ≥ a,∫ t

b

∫ ∞
s

q(r)X2(r)β dr ds

∼ m
2α(α+1)(β+1)
(2α+1)(α−β)

2(
λα2

) β
α−β (−(σ + ρβ +m2))(σ + ρβ + 2m2)

R(t)σ+ρβ+2m2

(
lp(t)

2α−β
2α+1 lq(t)α

) 1
α−β

=
m

2α(α+1)(β+1)
(2α+1)(α−β)

2(
λα2

) β
α−β α2(−(ρ+ 1))(ρ−m1)

R(t)α(ρ−m1)
(
lp(t)

2α−β
2α+1 lq(t)α

) 1
α−β

=
m

2α(α+1)(β+1)
(2α+1)(α−β)

2(
λα2

) β
α−β α2(ρ+ 1)(m1 − ρ)

R(t)α(ρ−2m2+ η
α )
(
lp(t)

2α−β
2α+1 lq(t)α

) 1
α−β

, t→∞ ,

where we have used (3.9)-(i) in the last step. We now multiply the last relation
by p(t)−1, raise to the exponent 1/α and integrate the obtained relation twice on
[t,∞). As a result of application of Lemma 3.1, we obtain for t→∞∫ ∞

t

( 1
p(s)

∫ s

b

∫ ∞
r

q(u)X2(u)β du dr
)1/α

ds

∼ − m
(α+1)(α+β+2)
(α−β)(2α+1)

2(
λα2

) β
α(α−β) (α2(m1 − ρ)(ρ+ 1))1/α(ρ−m2)

R(t)ρ−m2

(
lp(t)

β−α+1
2α+1 lq(t)

) 1
α−β

,

and∫ ∞
t

∫ ∞
s

( 1
p(r)

∫ r

b

∫ ∞
u

q(ω)X2(ω)β dωdu
)1/α

dr ds

∼ m
2(α+1)2

(α−β)(2α+1)
2(

λα2
) β
α−β ρ(ρ−m2)(α2(m1 − ρ)(ρ+ 1))1/α

R(t)ρ
(
lp(t)

1
2α+1 lq(t)

) 1
α−β

, t→∞.

This, due to (3.27), completes the proof of Lemma 3.6. �

Lemma 3.7. Suppose that (3.18) holds. Then the function X3 given by (3.19)
satisfies the asymptotic relation (3.22) for any b ≥ a and belongs to ntr− RVR(−1).

Proof. Using (3.2), (3.11), (3.18) and applying (iii) of Lemma 3.1, we obtain∫ ∞
t

q(s) ϕ2(s)β ds ∼
( m2

m2 + 1

)β
J3(t), t→∞, (3.28)
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where

J3(t) =
∫ ∞
t

R(s)−m2 lq(s) ds, J3 ∈ SVR, (3.29)

implying, from (3.19),

X3(t) ∼
( m2

m2 + 1

) α
α−β

R(t)−1
(α− β

α
J3(t)

) 1
α−β

, t→∞. (3.30)

This shows that X3 ∈ RVR(−1). Next, we integrate q(t)X3(t)β on [t,∞), using
(3.18) we obtain∫ ∞

t

q(s)X3(s)β ds ∼
( m2

m2 + 1

) αβ
α−β

(α− β
α

) β
α−β

∫ ∞
t

R(s)−m2 lq(s) J3(s)
β

α−β ds

=
( m2

m2 + 1

) αβ
α−β

(α− β
α

) β
α−β

∫ ∞
t

J3(s)
β

α−β (−dJ3(s))

=
( m2

m2 + 1

) αβ
α−β

(α− β
α

) α
α−β

J3(t)
α

α−β ∈ SVR, t→∞.

Further, integrating previous relation on [b, t] for any fixed b ≥ a, by Lemma 3.1,
we have∫ t

b

∫ ∞
s

q(r)X3(r)β dr ds

∼
( m2

m2 + 1

) αβ
α−β

(α− β
α

) α
α−β

m
− α

2α+1
2 R(t)m2 lp(t)

1
2α+1 J3(t)

α
α−β , t→∞.

Multiply the above by p(t)−1 and raise to the exponent 1/α, integrating obtained
relation twice on [t,∞), using (3.9)-(ii), as a result of application of Lemma 3.1, we
obtain∫ ∞

t

( 1
p(s)

∫ s

b

∫ ∞
r

q(u)X3(u)β du dr
)1/α

ds

∼
( m2

m2 + 1

) β
α−β

(α− β
α

) 1
α−β m

α
2α+1
2

m2 + 1
R(t)−m2−1lp(t)

− α
α(2α+1) J3(t)

1
α−β , t→∞,

and ∫ ∞
t

∫ ∞
s

(
1
p(r)

∫ r

b

∫ ∞
u

q(ω)X3(ω)β dωdu
)1/α

dr ds

∼
( m2

m2 + 1

) β
α−β

(α− β
α

) 1
α−β m2

m2 + 1
R(t)−1J3(t)

1
α−β ∼ X3(t), t→∞,

which in view of (3.30), completes the proof of Lemma 3.7. �

The above theorems are a basis for applying the Schauder-Tychonoff fixed point
theorem to establish the existence of intermediate solutions of the equation (1.1). In
fact, intermediate solutions will be constructed by means of fixed point techniques,
and afterwards we confirm that they are really generalized regularly varying func-
tions with the help of the generalized L’Hospital rule formulated below.

Lemma 3.8. Let f, g ∈ C1[T,∞). Let

lim
t→∞

g(t) =∞ and g′(t) > 0 for all large t. (3.31)
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Then

lim inf
t→∞

f ′(t)
g′(t)

≤ lim inf
t→∞

f(t)
g(t)

≤ lim sup
t→∞

f(t)
g(t)

≤ lim sup
t→∞

f ′(t)
g′(t)

.

If we replace (3.31) with the condition

lim
t→∞

f(t) = lim
t→∞

g(t) = 0 and g′(t) < 0 for all large t,

then the same conclusion holds.

Proofs of main results.

Proof of the “only if” part of Theorems 3.2, 3.3 and 3.4. Suppose that (1.1)
has a type (I1) intermediate solution x ∈ RVR(ρ) on [t0,∞). Clearly, ρ ∈ [m1,−1].
Using (3.2) and (3.12), we obtain integrating (1.1) on [t,∞)

(p(t)(x′′(t))α)′ =
∫ ∞
t

q(s)x(s)β ds =
∫ ∞
t

R(s)σ+βρlq(s)lx(s)β ds. (3.32)

Noting that the last integral is convergent, we conclude that σ + βρ+m2 ≤ 0 and
distinguish the two cases:
(1) σ + βρ+m2 = 0 and (2) σ + βρ+m2 < 0.

Assume that (1) holds. Since by Lemma 3.1-(iii) function S3 defined with

S3(t) =
∫ ∞
t

R(s)−m2 lq(s)lx(s)β ds, (3.33)

is slowly varying with respect to R, integration of (3.32) on [t0, t] shows that

p(t)(x′′(t))α ∼ m−
α

2α+1
2 R(t)m2 lp(t)

1
2α+1S3(t), t→∞, (3.34)

which is rewritten using (3.9)-(ii) as

x′′(t) ∼ m−
1

2α+1
2 R(t)−2m2−1lp(t)−

2
2α+1S3(t)1/α, t→∞.

Integrability of x′′(t) on [t,∞), and −m2−1 < 0, allows us to integrate the previous
relation on [t,∞), implying

−x′(t) ∼ m
α

2α+1
2

m2 + 1
R(t)−m2−1lp(t)−

1
2α+1S3(t)1/α, t→∞,

which we may integrate once more on [t,∞] to obtain

x(t) ∼ m2

m2 + 1
R(t)−1S3(t)1/α, t→∞. (3.35)

This shows that x ∈ RVR(−1).
Assume next that (2) holds. From (3.32) we find that

(p(t)(x′′(t))α)′ ∼ − m
α+1
2α+1
2

σ + βρ+m2
R(t)σ+βρ+m2 lp(t)

1
2α+1 lq(t)lx(t)β , t→∞,

which by integration on [t0, t] implies

p(t)(x′′(t))α ∼ − m
α+1
2α+1
2

σ + βρ+m2

∫ t

t0

R(s)σ+βρ+m2 lp(s)
1

2α+1 lq(s)lx(s)βds, (3.36)

as t → ∞. In view of (3.20), integral on right-hand side is divergent, so σ + βρ +
2m2 ≥ 0. We distinguish the two cases:
(2.a) σ + βρ+ 2m2 = 0 and (2.b) σ + βρ+ 2m2 > 0.
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Assume that (2.a) holds. Denote by

S1(t) =
∫ t

t0

R(s)−m2 lp(s)
1

2α+1 lq(s)lx(s)βds . (3.37)

Then S1 ∈ SVR and using (3.2) we rewrite (3.36) as

x′′(t) ∼ m−
1

2α+1
2 R(t)−η/αlp(t)−1/αS1(t)1/α, t→∞. (3.38)

Because of integrability of x′′(t) on [t,∞] and the fact that − η
α+m2 = m1−m2 < 0,

via Lemma 3.1 we conclude by integration of (3.38) on [t,∞] that

−x′(t) ∼ − m
α

2α+1
2

m1 −m2
R(t)m1−m2 lp(t)

− α+1
α(2α+1)S1(t)1/α, t→∞.

which because integrability of x′(t) on [t,∞) and m1 < 0, we may integrate once
more on [t,∞) to get

x(t) ∼ m2

m1(m1 −m2)
R(t)m1 lp(t)

− 1
α(2α+1)S1(t)1/α, t→∞. (3.39)

implying that x ∈ RVR(m1).
Assume that (2.b) holds. From (3.36), application of Lemma 3.1 gives

p(t)(x′′(t))α ∼ − m
2(α+1)
2α+1

2

(σ + βρ+m2)(σ + βρ+ 2m2)
R(t)σ+βρ+2m2 lp(t)

2
2α+1 lq(t)lx(t)β ,

as t→∞, which yields

x′′(t) ∼ m
2(α+1)
α(2α+1)
2

(−(σ + βρ+m2)(σ + βρ+ 2m2))1/α

×R(t)
σ+βρ+2m2−η

α lp(t)
1−2α

α(2α+1) lq(t)1/αlx(t)β/α, t→∞.

Integrability of x′′(t) on [t,∞] allows us to integrate the previous relation on [t,∞),
implying

−x′(t) ∼ m
2(α+1)
α(2α+1)
2

(−(σ + βρ+m2)(σ + βρ+ 2m2))1/α

×
∫ ∞
t

R(s)
σ+βρ+2m2−η

α lp(s)
1−2α

α(2α+1) lq(s)1/αlx(s)β/αds, t→∞,

(3.40)

where σ+βρ+2m2−η
α + m2 ≤ 0, because of the convergence of the last integral. We

distinguish two cases:
(2.b.1) σ+βρ+2m2−η

α +m2 = 0 and (2.b.2) σ+βρ+2m2−η
α +m2 < 0.

The case (2.b.1) is impossible because the left-hand side of (3.40) is integrable
on [t0,∞), while the right-hand side is not, because it is in this case slowly varying
with respect to R.

Assume now that (2.b.2) holds. Then, application of Lemma (3.1) in (3.40) and
integration of resulting relation on [t,∞) leads to

x(t) ∼ − m
(α+1)(α+2)
α(2α+1)

2

(−(σ + βρ+m2)(σ + βρ+ 2m2))1/α(σ+βρ+2m2−η
α +m2)

×
∫ ∞
t

R(s)
σ+βρ+2m2−η

α +m2 lp(s)
1−α

α(2α+1) lq(s)1/αlx(s)β/αds,

(3.41)
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as t → ∞, which brings us to the observation of two possible cases: (2.b.2.1)
σ+βρ+2m2−η

α + 2m2 = 0 and (2.b.2.2) σ+βρ+2m2−η
α + 2m2 < 0.

In the case (2.b.2.1) the integral in the right-hand side of relation (3.41) is slowly
varying with respect to R by Proposition 2.4 and so x ∈ SVR too.

In the case (2.b.2.2) an application of Lemma 3.1 gives

x(t) ∼ m
2(α+1)2

α(2α+1)
2 ÷

(
(−(σ + βρ+m2)(σ + βρ+ 2m2))1/α

×
(σ + βρ+ 2m2 − η

α
+m2

)(σ + βρ+ 2m2 − η
α

+ 2m2

))
×R(t)

σ+βρ+2m2−η
α +2m2 lp(t)

1
α(2α+1) lq(t)1/αlx(t)β/α, t→∞,

(3.42)

implying that x ∈ RVR

(
σ+βρ+2m2−η

α + 2m2

)
.

Suppose that x is a type (I1) solution of (1.1) belonging to ntr− RVR(m1). From
the above observations this is possible only when (2.a) holds, in which case (3.39)
is satisfied by x(t). Thus, ρ = m1, σ = −m1β − 2m2. Using x(t) = R(t)m1 lx(t),
(3.39) can be expressed as

lx(t) ∼ K1lp(t)
− 1
α(2α+1)S1(t)1/α, t→∞, (3.43)

where
K1 =

m2

m1(m1 −m2)
,

and S1 is defined by (3.37). Then (3.43) is transformed into the differential asymp-
totic relation for S1:

S1(t)−
β
α S′1(t) ∼ Kβ

1R(t)−m2 lp(t)
α−β

α(2α+1) lq(t), t→∞. (3.44)

From (3.39), since limt→∞ x(t)/ϕ1(t) =∞, we have limt→∞ S1(t) =∞. Integrating
(3.44) on [t0, t], since limt→∞ S1(t)

α−β
α =∞, in view of notation (3.24) and (3.23),

we find that the second condition in (3.13) is satisfied and

S1(t)1/α ∼
(α− β

α
Kβ

1 J1(t)
) 1
α−β

, t→∞,

implying with (3.43) that

x(t) ∼ R(t)m1 lp(t)
− 1
α(2α+1)

(α− β
α

Kα
1 J1(t)

) 1
α−β

, t→∞. (3.45)

Noting that in the proof of Lemma 3.5, using (3.2), (3.5) and (3.10), we have
obtained expression (3.25) for X1 given by (3.14), (3.45) in fact proves that x(t) ∼
X1(t), t→∞, completing the “only if” part of the proof of Theorem 3.2.

Next, suppose that x is a solution of (1.1) belonging to RVR(ρ), ρ ∈ (m1,−1).
This is possible only when (2.b.2.2) holds, in which case x satisfies the asymptotic
relation (3.42). Therefore,

ρ =
σ + βρ+ 2m2 − η

α
+ 2m2 ⇒ ρ =

σ +m2 − α
α− β

, (3.46)

which justifies (3.16). An elementary calculation shows that

m1 < ρ < −1 =⇒ −βm1 − 2m2 < σ < β −m2,
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which determines the range (3.15) of σ. In view of (3.26) and (3.46), we conclude
from (3.42) that x enjoys the asymptotic behavior x(t) ∼ X2(t), t→∞, where X2

is given by (3.17). This proves the ”only if” part of the Theorem 3.3.
Finally, suppose that x is a type-(I1) intermediate solution of (1.1) belonging

to ntr− RVR(−1). Then, the case (1) is the only possibility for x, which means
that σ = β − m2 and (3.35) is satisfied by x, with S3 defined by (3.33). Using
x(t) = R(t)−1lx(t), (3.35) can be expressed as

lx(t) ∼ K3 S3(t)1/α, t→∞, where K3 =
m2

m2 + 1
, (3.47)

implying the differential asymptotic relation

− S3(t)−
β
α S′3(t) ∼ Kβ

3R(t)−m2 lq(t), t→∞. (3.48)

From (3.35), since limt→∞ x(t)/R(t)−1 = 0, we have limt→∞ S3(t) = 0, implying
that the left-hand side of (3.48) is integrable over [t0,∞). This, in view of (3.28)
and the notation (3.29), implies the second condition in (3.18). Integrating (3.48)
on [t,∞) and combining result with (3.47), we find that

x(t) ∼ R(t)−1
(α− β

α
Kα

3 J3(t)
) 1
α−β

, t→∞,

which due to the expression (3.30) gives x(t) ∼ X3(t) as t → ∞. This proves the
“only if” part of Theorem 3.4.

Proof of the part “if” of Theorems 3.2, 3.3 and 3.4. Suppose that (3.13) or
(3.15) or (3.18) holds. From Lemmas 3.5, 3.6 and 3.7 it is known that Xi, i = 1, 2, 3,
defined by (3.14), (3.17) and (3.19) satisfy the asymptotic relation (3.22) for any
b ≥ a. We perform the simultaneous proof for Xi, i = 1, 2, 3 so the subscripts
i = 1, 2, 3 will be deleted in the rest of the proof. By (3.22) there exists T0 > a
such that
X(t)

2
≤
∫ ∞
t

s− t
p(s)1/α

(∫ s

T0

∫ ∞
r

q(u)X(u)β du dr
)1/α

ds ≤ 2X(t), t ≥ T0. (3.49)

Let such a T0 be fixed. Choose positive constants m and M such that

m1− βα ≤ 1
2
, M1− βα ≥ 2. (3.50)

Define the integral operator

Gx(t) =
∫ ∞
t

(s− t)
( 1
p(s)

∫ s

T0

∫ ∞
r

q(u)x(u)β du dr
)1/α

ds, t ≥ T0, (3.51)

and let it act on the set

X = {x ∈ C[T0,∞) : mX(t) ≤ x(t) ≤M X(t), t ≥ T0}. (3.52)

It is clear that X is a closed, convex subset of the locally convex space C[T0,∞)
equipped with the topology of uniform convergence on compact subintervals of
[T0,∞).

It can be shown that G is a continuous self-map on X and that the set G(X ) is
relatively compact in C[T0,∞).
(i) G(X ) ⊂ X : Let x(t) ∈ X . Using (3.49), (3.50) and (3.52) we obtain

Gx(t) ≤Mβ/α

∫ ∞
t

(s− t)
( 1
p(s)

∫ s

T0

∫ ∞
r

q(u)X(u)β du dr
)1/α

ds



EJDE-2016/129 ASYMPTOTIC BEHAVIOR OF INTERMEDIATE SOLUTIONS 17

≤ 2Mβ/α X(t) ≤M X(t), t ≥ T0,

and

Gx(t) ≥ mβ/α

∫ ∞
t

(s− t)
( 1
p(s)

∫ s

T0

∫ ∞
r

q(u)X(u)β du dr
)1/α

ds

≥ mβ/αX(t)
2
≥ mX(t), t ≥ T0.

This shows that Gx(t) ∈ X ; that is, G maps X into itself.
(ii) G(X ) is relatively compact. The inclusion G(X ) ⊂ X ensures that G(X ) is
locally uniformly bounded on [T0, T1], for any T1 > T0. From

Gx(t) =
∫ ∞
t

∫ ∞
s

( 1
p(r)

∫ r

T0

∫ ∞
u

q(ω)x(ω)β dωdu
)1/α

dr ds,

we have

(Gx)′ (t) = −
∫ ∞
t

( 1
p(s)

∫ s

T0

∫ ∞
r

q(u)x(u)β du dr
)1/α

ds, t ∈ [T0, T1].

From the inequality

−Mβ/α

∫ ∞
t

( 1
p(s)

∫ s

T0

∫ ∞
r

q(u)X(u)β du dr
)1/α

ds ≤ (Gx)′ (t) ≤ 0, t ∈ [T0, T1],

holding for all x ∈ X it follows that G(X ) is locally equicontinuous on [T0, T1] ⊂
[T0,∞). Then, the relative compactness of G(X ) follows from the Arzela-Ascoli
lemma.
(iii) G is continuous on X . Let {xn(t)} be a sequence in X converging to x(t) in
X uniformly on any compact subinterval of [T0,∞). Let T1 > T0 any fixed real
number. From (3.51) we have

|Gxn(t)− Gx(t)| ≤
∫ ∞
t

s− t
p(s)1/α

Gn(s) ds, t ∈ [T0, T1],

where

Gn(t) =
∣∣∣( ∫ t

T0

∫ ∞
t

q(s)xn(s)β ds
)1/α

−
(∫ t

T0

∫ ∞
s

q(s)x(s)β ds
)1/α∣∣∣.

Using the inequality |xλ − yλ| ≤ |x − y|λ, x, y ∈ R+ holding for λ ∈ (0, 1), we see
that if α ≥ 1, then

Gn(t) ≤
(∫ ∞

t

(s− t)q(s)|xn(s)β − x(s)β |ds
)1/α

.

On the other hand, using the mean value theorem, if α < 1 we obtain

Gn(t) ≤ 1
α

(
Mβ

∫ ∞
t

(s− t)q(s)X(s)βds
)α−1

α

∫ ∞
t

(s− t)q(s)|xn(s)β − x(s)β |ds.

Thus, using that q(t)
∣∣xn(t)β − x(t)β | → 0 as n→∞ at each point t ∈ [T0,∞) and

q(t)
∣∣xn(t)β − x(t)β | ≤ 2Mβq(t)X(t)β for t ≥ T0, while q(t)X(t)β is integrable on

[T0,∞), the uniform convergence Gn(t)→ 0 on [T0,∞) follows by the application of
the Lebesgue dominated convergence theorem. We conclude that Gxn(t) → Gx(t)
uniformly on any compact subinterval of [T0,∞) as n → ∞, which proves the
continuity of G.
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Thus, all the hypotheses of the Schauder-Tychonoff fixed point theorem are
fulfilled and so there exists a fixed point x ∈ X of G, which satisfies integral equation

x(t) =
∫ ∞
t

(s− t)
( 1
p(s)

∫ s

T0

∫ ∞
r

q(u)x(u)β du dr
)1/α

ds, t ≥ T0.

Differentiating the above expression four times shows that x(t) is a solution of
(1.1) on [T0,∞), which due to (3.52) is an intermediate solution of type (I1).
Therefore, the proof of our main results will be completed with the verification
that the intermediate solutions of (1.1) constructed above are actually regularly
varying functions with respect to R. We define the function

χ(t) =
∫ ∞
t

(s− t)
( 1
p(s)

∫ s

T0

∫ ∞
r

q(u)X(u)β du dr
)1/α

ds, t ≥ T0,

and put

l = lim inf
t→∞

x(t)
χ(t)

, L = lim sup
t→∞

x(t)
χ(t)

.

By Lemmas 3.5, 3.6 and 3.7 we have X(t) ∼ χ(t), t→∞. Since, x ∈ X , it is clear
that 0 < l ≤ L < ∞. We first consider L. Applying Lemma 3.8 four times, we
obtain

L ≤ lim sup
t→∞

x′(t)
χ′(t)

= lim sup
t→∞

∫∞
t

(
1
p(s)

∫ s
T0

∫∞
r
q(u)x(u)β du dr

)1/α

ds∫∞
t

(
1
p(s)

∫ s
T0

∫∞
r
q(u)X(u)β du dr

)1/α

ds

≤ lim sup
t→∞

( ∫∞
t

(s− t)q(s)x(s)β ds∫∞
t

(s− t)q(s)X(s)β ds

)1/α

≤
(

lim sup
t→∞

∫∞
t
q(s)x(s)β ds∫∞

t
q(s)X(s)β ds

)1/α

≤
(

lim sup
t→∞

q(t)x(t)β

q(t)X(t)β
)1/α

=
(

lim sup
t→∞

x(t)
X(t)

)β/α
=
(

lim sup
t→∞

x(t)
χ(t)

)β/α
= Lβ/α,

where we have used X(t) ∼ χ(t), t → ∞, in the last step. Since β/α < 1, the
inequality L ≤ Lβ/α implies that L ≤ 1. Similarly, repeated application of Lemma
3.8 to l leads to l ≥ 1, from which it follows that L = l = 1, that is,

lim
t→∞

x(t)
χ(t)

= 1 =⇒ x(t) ∼ χ(t) ∼ X(t), t→∞.

Therefore it is concluded that if p ∈ RVR(η) and q ∈ RVR(σ), then the type-(I1)
solution x under consideration is a member of RVR(ρ), where

ρ = m1 or ρ =
σ +m2 − α
α− β

∈ (m1,−1) or ρ = −1,

according to whether the pair (η, σ) satisfies (3.13), (3.15) or (3.18), respectively.
Needless to say, any such solution x ∈ RVR(ρ) enjoys one and the same asymptotic
behavior (3.14), (3.17) or (3.19), respectively. This completes the “if” parts of
Theorems 3.2, 3.3 and 3.4.
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3.2. Regularly varying solutions of type (I2). Let us turn our attention to
the study of intermediate solutions of type (I2) of equation (1.1); that is, those
solutions x such that 1 ≺ x(t) ≺ t as t → ∞. As in the preceding section use
is made of the expressions (3.2) and (3.12) for the coefficients p, q and solutions
x. Since ψ1 ∈ SVR, ψ1(t) = 1 and ψ2 ∈ RVR(m2(α, η)), ψ2(t) = t (cf. (3.7) and
(3.5)), the regularity index ρ of x must satisfy 0 ≤ ρ ≤ m2(α, η). If ρ = 0, then
since x(t) = lx(t)→∞, t→∞, x is a member of ntr− SVR, while if ρ = m2(α, η),
then x(t)/R(t)m2(α,η) → 0, t→∞, and so x is a member of ntr− RVR(m2(α, η)).
If 0 < ρ < m2(α, η), then x belongs to RVR(ρ) and clearly satisfies x(t)→∞ and
x(t)/R(t)m2(α,η) → 0 as t → ∞. Therefore, it is natural to divide the totality of
type-(I2) intermediate solutions of (1.1) into the following three classes

ntr− SVR, RVR(ρ), ρ ∈ (0,m2(α, η)), ntr− RVR(m2(α, η)).

Our purpose is to show that, for each of the above classes, necessary and sufficient
conditions for the membership are establish and that the asymptotic behavior at
infinity of all members of each class is determined precisely by a unique explicit
formula.

Main results.

Theorem 3.9. Let p ∈ RVR(η), q ∈ RVR(σ). Then (1.1) has intermediate solu-
tions x ∈ ntr− SVR satisfying (I2) if and only if

σ = α−m2(α, η) and
∫ ∞
a

t
( 1
p(t)

∫ t

a

(t− s) q(s) ds
)1/α

dt =∞. (3.53)

The asymptotic behavior of any such solution x is governed by the unique formula
x(t) ∼ Y1(t), t→∞, where

Y1(t) =
(α− β

α

∫ t

a

s

(
1
p(s)

∫ s

a

(s− r)q(r) dr
)1/α

ds
) α
α−β

. (3.54)

Theorem 3.10. Let p ∈ RVR(η), q ∈ RVR(σ). Then (1.1) has intermediate solu-
tions x ∈ RVR(ρ) with ρ ∈ (0, 2) if and only if

α−m2(α, η) < σ < η − (α+ β + 2)m2(α, η) (3.55)

in which case ρ is given by (3.16) and the asymptotic behavior of any such solution
x is governed by the unique formula x(t) ∼ Y2(t) t→∞, where

Y2(t) =
((m2(α, η)

(α+1)2

2α+1

α

)2 p(t)
1

2α+1 q(t)R(t)−2
α(α+1)
2α+1

(ρα(m2(α, η)− ρ))α (ρ−m1(α, η)) (ρ+ 1)

) 1
α−β

.

(3.56)

Theorem 3.11. Let p ∈ RVR(η), q ∈ RVR(σ). Then (1.1) has intermediate solu-
tions x ∈ ntr− RVR (m2(α, η)) satisfying (I2) if and only if

σ = η− (α+ β + 2)m2(α, η),
∫ ∞
a

( 1
p(t)

∫ t

a

(t− s) sβ q(s) ds
)1/α

dt <∞. (3.57)

The asymptotic behavior of any such solution x is governed by the unique formula
x(t) ∼ Y3(t), t→∞, where

Y3(t) = t
(α− β

α

∫ ∞
t

( 1
p(s)

∫ s

a

(s− r)rβq(r) dr
)1/α

ds
) α
α−β

. (3.58)
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Preparatory results. Let x be a type-(I2) intermediate solution of (1.1) defined
on [t0,∞). It is known that

lim
t→∞

x′(t) = 0,

lim
t→∞

(p(t)|x′′(t)|α−1x′′(t))′ = lim
t→∞

p(t)|x′′(t)|α−1x′′(t) = lim
t→∞

x(t) =∞ .
(3.59)

Integrating (1.1) twice on [t0, t], then on [t0,∞) and finally on [t0, t], we obtain, for
t ≥ t0 ≥ a,

x(t) = c0+
∫ t

t0

∫ ∞
s

1
p(r)1/α

(
c2+c3(r−t0)+

∫ r

t0

(r−u)q(u)x(u)β du
)1/α

dr ds, (3.60)

where c0 = x(t0), c2 = p(t0)(−x′′(t0))α, and c3 = (p(t0)(−x′′(t0))α)′. From (3.60)
we easily see that x(t) satisfies the integral asymptotic relation

x(t) ∼
∫ t

b

∫ ∞
s

( 1
p(r)

∫ r

b

(r − u)q(u)x(u)β du
)1/α

dr ds, t→∞, (3.61)

for some b ≥ a, which will play a central role in constructing generalized RV-
intermediate solutions of type (I2).

Lemma 3.12. Suppose that (3.53) holds. Then the function Y1 given by (3.54)
satisfies the asymptotic relation (3.61) for any b ≥ a and belongs to ntr− SVR.

Proof. First we give an expression for Y1(t) in terms of R(t), lp(t) and lq(t). Ap-
plying Lemma 3.1 twice we have∫ t

a

∫ s

a

q(u) du ds

=
∫ t

a

∫ s

a

R(u)α−m2 lq(u) du ds ∼ m
2 α+1

2α+1
2

α(α+m2)
R(t)α+m2 lp(t)

2
2α+1 lq(t), t→∞.

Using (3.2), (3.5) and (3.9)-(ii), we have

t
( 1
p(t)

∫ t

a

(t− s)q(s) ds
)1/α

∼ m
2α+2−α2

α(2α+1)
2

(α(α+m2))1/α
R(t)−m2 lp(t)

1−α
α(2α+1) lq(t)1/α. (3.62)

Integrating the above on [b, t] for any b ≥ a, we show that

Y1(t) ∼W
1

α−β
1

(α− β
α

Q1(t)
) α
α−β

(3.63)

where

Q1(t) =
∫ t

b

R(s)−m2 lp(s)
1−α

α(2α+1) lq(s)1/α ds ∈ SVR,

W1 =
m

2α+2−α2
2α+1

2

α(α+m2)
.

(3.64)

From (3.63) we conclude that Y1 ∈ ntr− SVR.
To verify the asymptotic relation (3.61) for Y1, we integrate q(t)Y1(t)β twice on

[b, t] and use Y1 ∈ ntr− SVR to obtain∫ t

b

∫ s

b

q(r)Y1(r)β dr ds ∼ m
2 α+1

2α+1
2

(σ +m2)(σ + 2m2)
R(t)σ+2m2 lp(t)

2
2α+1 lq(t)Y1(t)β
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as t→∞, which together with (3.63), by assumption (3.53) and (3.9)-(ii), yields( 1
p(t)

∫ t

b

(t− s)q(s)Y1(s)βds
)1/α

∼
( m 2α+2−αβ

2α+1
2

α(α+m2)

) 1
α−β

R(t)−2m2 lp(t)
1−2α

α(2α+1) lq(t)1/α
(α− β

α
Q1(t)

) β
α−β

,

(3.65)

as t→∞. Integration of (3.65) on [t,∞) gives∫ ∞
t

( 1
p(r)

∫ r

b

(r − u)q(u)Y1(u)β du
)1/α

dr

∼
( m 2α+2−αβ

2α+1
2

α(α+m2)

) 1
α−β

(α− β
α

) β
α−β

m
− α

2α+1
2 R(t)−m2 lp(t)

1−α
α(2α+1) lq(t)1/αQ1(t)

β
α−β ,

as t→∞, implying, by integration on [b, t],∫ t

b

∫ ∞
s

( 1
p(r)

∫ r

b

(r − u)q(u)Y1(u)β du
)1/α

dr ds

∼W
1

α−β
1

(α− β
α

) β
α−β

∫ t

b

R(s)−m2 lp(s)
1−α

α(2α+1) lq(s)1/αQ1(s)
β

α−β ds

∼W
1

α−β
1

(α− β
α

) β
α−β

∫ t

b

Q1(s)
β

α−β dQ1(s)

= W
1

α−β
1

(α− β
α

) α
α−β

Q1(t)
α

α−β , t→∞,

establishing, in view of (3.63), that Y1 satisfies the asymptotic relation (3.61). �

Lemma 3.13. Suppose that (3.55) holds and let ρ be defined by (3.16). Then the
function Y2 given by (3.56) satisfies the asymptotic relation (3.61) for any b ≥ a
and belongs to RVR(ρ).

Proof. Using (3.2) and (3.8), since η−2α(α+1)
2α+1 = m2 − α, we can express Y2(t) in

the form

Y2(t) ∼W2R(t)ρ
(
lp(t)

1
2α+1 lq(t)

) 1
α−β

, (3.66)

where

C = m
(α+1)2

2α+1
2 , ν =

(
ρ(m2 − ρ)

)α(ρ−m1)(ρ+ 1), W2 =
( C2

α2ν

) 1
α−β

. (3.67)

Therefore, Y2 ∈ RVR(ρ). Next we prove that Y2 satisfies the asymptotic relation
(3.61) and to that end we first integrate q(t)Y2(t)β twice on [b, t] for some b ≥ a
with application of Lemma 3.1 and equalities (3.9), (3.26):∫ t

b

∫ s

b

q(r)Y2(r)β dr ds

∼W β
2

∫ t

b

∫ s

b

R(r)σ+ρβ
(
lp(t)

β
2α+1 lq(t)α

) 1
α−β

drds

∼ W β
2

(σ + ρβ +m2)(σ + ρβ + 2m2)
m

2 α+1
2α+1

2 R(t)σ+ρβ+2m2

(
lp(t)

2α−β
2α+1 lq(t)α

) 1
α−β

=
W β

2

α2(ρ+ 1)(ρ−m1)
m

2 α+1
2α+1

2 R(t)α(ρ−m1)
(
lp(t)

2α−β
2α+1 lq(t)α

) 1
α−β
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=
W β

2

α2(ρ+ 1)(ρ−m1)
m

2 α+1
2α+1

2 R(t)α(ρ−2m2− ηα )
(
lp(t)

2α−β
2α+1 lq(t)α

) 1
α−β

, t→∞,

implying further that∫ t

b

∫ ∞
s

( 1
p(r)

∫ r

b

(r − u)q(u)Y2(u)β du
)1/α

dr ds

∼
( W β

2

α2(ρ+ 1)(ρ−m1)
m

2 α+1
2α+1

2

)1/α
∫ t

b

∫ ∞
s

R(r)ρ−2m2

(
lp(r)

2β−2α+1
2α+1 lq(r)

) 1
α−β

dr ds

∼ W
β/α
2 m

2
(α+1)2

α(2α+1)
2

(α2(ρ+ 1)(ρ−m1))1/α(m2 − ρ)ρ
R(t)ρ

(
lp(t)

1
2α+1 lq(t)

) 1
α(α−β)

= W
β/α
2

( C2

να2

)1/α

R(t)ρ
(
lp(t)

1
2α+1 lq(t)

) 1
α(α−β)

, t→∞,

which by (3.66) and (3.67) proves that Y2 satisfies the asymptotic relation (3.61).
�

Lemma 3.14. Suppose that (3.57) holds. Then the function Y3 given by (3.58)
satisfies the asymptotic relation (3.61) for any b ≥ a and belongs to RVR(1).

Proof. Using (3.5) and (3.57), application of Lemma 3.1 we have∫ t

b

∫ s

b

rβq(r) dr ds ∼ m−
αβ

2α+1
2

∫ t

b

∫ s

b

R(r)η−(α+2)m2 lp(s)
β

2α+1 lq(s)ds

∼ m
2(α+1)−αβ

2α+1
2

(η − (α+ 1)m2)(η − αm2)
R(t)η−αm2 lp(t)

β+2
2α+1 lq(t),

as t→∞. Since by (3.9)-(ii) we have that

η − (α+ 1)m2 = α(m2 + 1), (3.68)

from the last relation, we conclude that∫ ∞
t

( 1
p(s)

∫ s

b

(s− r)rβq(r)dr
)1/α

ds

∼
( m

2(α+1)−αβ
2α+1

2

α(m2 + 1)(α+ αm2 +m2)

)1/α
∫ ∞
t

R(s)−m2 lp(s)
β−2α+1
α(2α+1) lq(s)1/αds,

(3.69)

as t→∞. We denote by

Q3(t) =
∫ ∞
t

R(s)−m2 lp(s)
β−2α+1
α(2α+1) lq(s)1/αds ∈ SVR (3.70)

and combining (3.69) with (3.58) and (3.5), we obtain the following asymptotic
representation for Y3(t) in terms of R(t), lp(t) and lq(t):

Y3(t) ∼W
1

α−β
3 R(t)m2 lp(t)

1
2α+1

(α− β
α

Q3(t)
) α
α−β

, t→∞, (3.71)

where

W3 =
m
−α2+2α+2

2α+1
2

α(m2 + 1)(αm2 +m2 + α)
. (3.72)
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From (3.71) we conclude that Y3 ∈ RVR(m2) and compute with the help of Lemma
3.1,∫ t

b

∫ s

b

q(r)Y3(r)β dr ds

∼
(α− β

α
Q3(t)

) αβ
α−β

W
β

α−β
3

m
2(α+1)
2α+1

2 R(t)σ+m2β+2m2

(σ +m2β + 2m2)(σ +m2β +m2)
lp(t)

β+2
2α+1 lq(t),

as t→∞. Next, using (3.57) and (3.68) we obtain∫ ∞
t

( 1
p(s)

∫ s

b

(s− r)q(r)Y3(r)β dr
)1/α

ds

∼
(α− β

α

) β
α−β W

β
α(α−β)

3 m
2(α+1)
α(2α+1)
2

(α(m2 + 1)(αm2 +m2 + α))1/α

×
∫ ∞
t

R(s)−m2 lp(s)
β−2α+1
α(2α+1) lq(s)1/αQ3(s)

β
α−β ds

∼
(α− β

α

) β
α−β W

β
α(α−β)

3 m
2(α+1)
α(2α+1)
2

(α (m2 + 1)(αm2 +m2 + α))1/α

∫ ∞
t

Q3(s)
β

α−β d(−Q3(s))

=
(α− β

α
Q3(t)

) α
α−β W

β
α(α−β)

3 m
2(α+1)
α(2α+1)
2

(α (m2 + 1)(αm2 +m2 + α))1/α
, t→∞.

Noting that the last expression in the previous relation is slowly varying with respect
to R, integration of this relation over [b, t] leads to∫ t

b

∫ ∞
s

(
1
p(r)

∫ r

b

(r − u)q(u)Y3(u)β du
)1/α

dr ds

∼
(α− β

α
Q3(t)

) α
α−β W

β
α(α−β)

3 m
(α+2)(α+1)
α(2α+1)

2

(α(m2 + 1)(αm2 +m2 + α))1/α

R(t)m2

m2
lp(t)

1
2α+1

=
(α− β

α
Q3(t)

) α
α−β

W
β

α(α−β)
3 W

1/α
3 R(t)m2 lp(t)

1
2α+1 , t→∞,

and in view of (3.71) proves that the desired integral asymptotic relation (3.61) is
satisfied by Y3. �

Proof of main results.

Proof of the “only if” part of Theorems 3.9, 3.10 and 3.11. Suppose that
(1.1) has a type-(I2) intermediate solution x ∈ RVR(ρ), ρ ∈ [0,m2], defined on
[t0,∞). We begin by integrating (1.1) on [t0, t]. Using (3.2), (3.12), we have

(p(t)(−x′′(t))α)′ ∼
∫ t

t0

q(s)x(s)βds =
∫ t

t0

R(s)σ+βρlq(s)lx(s)β ds, (3.73)

and conclude by (3.59) that σ + βρ+m2 ≥ 0. Thus, we distinguish the two cases:
(1) σ + βρ+m2 = 0 and (2) σ + βρ+m2 > 0.

Let case (1) hold, so that

H4(t) =
∫ t

t0

R(s)σ+βρlq(s)lx(s)β ds =
∫ t

t0

R(s)−m2 lq(s)lx(s)β ds, (3.74)
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and H4 ∈ SVR. Integration of (3.73) on [t0, t] with (3.9)-(ii) yields

−x′′(t) ∼ m−
1

2α+1
2 R(t)

m2−η
α lp(t)−

2
2α+1H4(t)

1
α

= m
− 1

2α+1
2 R(t)−2m2−1lp(t)−

2
2α+1H4(t)1/α, t→∞,

Since −m2 − 1 < 0 we may integrate previous relation on [t,∞) and obtain via
Lemma 3.1 that

x′(t) ∼ m
α

2α+1
2

m2 + 1
R(t)−m2−1H4(t)1/α, t→∞.

The right hand side in the last relation is integrable on [t,∞), because −m2 − 1 <
−m2, but on the other hand in view of (3.59) the left hand side of last relation
isn’t integrable on [t,∞), so we conclude that this case is impossible.

Let case (2) hold. Then, from (3.73) it follows that

(p(t)(−x′′(t))α)′ ∼ m
α+1
2α+1
2

σ + βρ+m2
R(t)σ+βρ+m2 lp(t)

1
2α+1 lq(t)lx(t)β

which, integrated on [t0, t] and the fact that σ + βρ+ 2m2 > 0, gives

−x′′(t) ∼
( m

2(α+1)
2α+1

2

(σ + βρ+m2)(σ + βρ+ 2m2)

)1/α

×R(t)
σ+βρ+2m2−η

α lp(t)
1−2α

α(2α+1) lq(t)1/αlx(t)β/α,

as t→∞, implying in view of (3.59) by integration on [t,∞),

x′(t) ∼
( m

2(α+1)
2α+1

2

(σ + βρ+m2)(σ + βρ+ 2m2)

)1/α

×
∫ ∞
t

R(s)
σ+βρ+2m2−η

α

(
lp(s)

1−2α
2α+1 lq(s)lx(s)β

)1/α

ds.

(3.75)

Thus, we further consider the following two possible cases:
(2.a) σ+βρ+2m2−η

α +m2 = 0 and (2.b) σ+βρ+2m2−η
α +m2 < 0.

Suppose that (2.a) holds, and let

H3(t) =
∫ ∞
t

R(s)−m2 lp(s)
1−2α

α(2α+1) lq(s)1/αlx(s)β/α ds. (3.76)

Using (3.68) and (3.9)-(ii), since we have σ + ρβ +m2 = α(m2 + 1), integration of
(3.75) on [t0, t] implies

x(t) ∼
( m

−α2+2(α+1)
2α+1

2

α(m2 + 1)(α(m2 + 1) +m2)

)1/α

R(t)m2 lp(t)
1

2α+1H3(t), t→∞. (3.77)

Since H3 ∈ SVR, we conclude that x ∈ RVR(m2).
Suppose that (2.b) holds. Application of Lemma 3.1 in (3.75) implies

x′(t) ∼ − m
(α+1)(α+2)
α(2α+1)

2

((σ + βρ+m2)(σ + βρ+ 2m2))1/α(σ+βρ+2m2−η
α +m2)

×R(t)
σ+βρ+2m2−η

α +m2 lp(t)
1−α

α(2α+1) lq(t)1/αlx(t)β/α, t→∞.

(3.78)
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Integrating (3.78) on [t0, t] using (3.59) we obtain

x(t) ∼ m
(α+1)(α+2)
α(2α+1)

2

((σ + βρ+m2)(σ + βρ+ 2m2))1/α(−(σ+βρ+2m2−η
α +m2))

×
∫ t

t0

R(s)
σ+βρ+2m2−η

α +m2 lp(s)
1−α

α(2α+1) lq(s)1/αlx(s)β/αds, t→∞.

(3.79)

Thus, since x(t) → ∞ as t → ∞, from the previous relation we conclude that two
possibilities may hold:
(2.b.1) σ+βρ+2m2−η

α + 2m2 = 0 and (2.b.2) σ+βρ+2m2−η
α + 2m2 > 0.

In the case (2.b.1), using (3.9)-(ii) we obtain σ + βρ + m2 = α. Application of
Lemma 3.1 in (3.79) leads us to

x(t) ∼
(m−α2+2(α+1)

2α+1
2

α(α+m2)

)1/α

H1(t), t→∞, (3.80)

where

H1(t) =
∫ t

t0

R(s)−m2 lp(s)
1−α

α(2α+1) lq(s)1/αlx(s)β/αds, H1 ∈ SVR . (3.81)

Thus, x ∈ SVR.
Application of Lemma 3.1 in (3.79) in the case (2.b.2) gives

x(t) ∼
(
m

2(α+1)2

α(2α+1)
2

)
÷
(

((σ + βρ+m2)(σ + βρ+ 2m2))1/α

×
(
− (

σ + βρ+ 2m2 − η
α

+m2)
)(σ + βρ+ 2m2 − η

α
+ 2m2

))
×R(t)

σ+βρ+2m2−η
α +2m2 lp(t)

1
α(2α+1) lq(t)1/αlx(t)β/αds, t→∞.

(3.82)

This implies that x ∈ RV
(
σ+βρ+2m2−η

α + 2m2

)
.

Now, let x be a type-(I2) intermediate solution of (1.1) belonging to ntr− SVR.
Then, from the above observations it is clear that only the case (2.b.1) is admissible,
in which case σ = α−m2, and (3.80) is satisfied by x(t). Using x(t) = lx(t), from
(3.80) we have

lx(t) ∼W 1/α
1 H1(t), t→∞, (3.83)

where W1 is given by (3.64) and H1 is defined by (3.81). Then, (3.83) is transformed
into the following differential asymptotic relation for H1,

H1(t)−
β
α H ′1(t) ∼W β/α

1 R(t)−m2 lp(t)
1−α

α(2α+1) lq(t)1/α, t→∞. (3.84)

From (3.59), since limt→∞ x(t) = ∞, we have limt→∞H1(t) = ∞. Integrating
(3.84) on [t0, t], using that limt→∞H1(t)

α−β
α = ∞, in view of notation (3.64) and

(3.62), we find that the second condition in (3.53) is satisfied and

H1(t) ∼
(
W

β/α
1

α− β
α

Q1(t)
) α
α−β

, t→∞

which with (3.83) implies

x(t) ∼W
1

α−β
1

(α− β
α

Q1(t)
) α
α−β

, t→∞. (3.85)
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Note that in Lemma 3.12 we have obtained expression (3.63) for Y1(t) given by
(3.54). Therefore, (3.85) in fact proves that x(t) ∼ Y1(t), t → ∞, completing the
“only if” part of Theorem 3.9.

Next, let x be a type-(I2) intermediate solution of (1.1) belonging to RVR(ρ)
for some ρ ∈ (0,m2). Clearly, only case (2.b.2) can hold and hence x satisfies the
asymptotic relation (3.82). This means that

ρ =
σ + βρ+ 2m2 − η

α
+ 2m2 ⇔ ρ =

σ +m2 − α
α− β

, (3.86)

verifying that the regularity index ρ is given by (3.16). An elementary computation
shows that

0 < ρ < m2 ⇒ α−m2 < σ < α+m2(α− β − 1),

showing that the range of σ is given by (3.55). In view of (3.26) and (3.86), we
conclude from (3.82) that x enjoys the asymptotic behavior x(t) ∼ Y2(t), t → ∞,
where Y2 is given by (3.56). This proves the “only if” part of the Theorem 3.10.

Finally, let x is a type-(I2) intermediate solution of (1.1) belonging to RVR(m2).
Since only the case (2.a) is possible for x, it satisfies (3.77), where H3 is defined by
(3.76), implying ρ = m2 and σ = α + m2(α − β − 1). Using x(t) = R(t)m2 lx(t),
(3.77) can be expressed as

lx(t) ∼W 1/α
3 lp(t)

1
2α+1H3(t), t→∞, (3.87)

where W3 is defined by (3.72), implying the differential asymptotic relation

−H3(t)−
β
α H ′3(t) ∼W

β

α2
3 R(t)−m2 lp(t)

β+1−2α
α(2α+1) lq(t)1/α, t→∞. (3.88)

From (3.77), since limt→∞R(t)−m2x(t) = 0, we have that limt→∞H3(t) = 0,
implying that the left-hand side od (3.88) is integrable over [t,∞). This, in view
of (3.69) and notation (3.70) implies the second condition in (3.57). Integrating
(3.88) on [t,∞) and combining result with (3.87), using the expression (3.71), we
find that

x(t) ∼W
1

α−β
3 R(t)m2 lp(t)

1
2α+1

( α

α− β
Q3(t)

) α
α−β ∼ Y3(t), t→∞,

where Q3 is defined with (3.70). Thus the “only if” part of the Theorem 3.11 has
been proved.

Proof of the “if” part of Theorem 3.9, 3.10 and 3.11. Suppose that (3.53)
or (3.55) or (3.57) holds. From Lemmas 3.12, 3.13 and 3.14 it is known that Yi,
i = 1, 2, 3, defined by (3.54), (3.56) and (3.58) satisfy the asymptotic relation (3.61).
We perform the simultaneous proof for Yi, i = 1, 2, 3 so the subscripts i = 1, 2, 3
will be deleted in the rest of the proof. By (3.61) there exists T0 > a such that∫ t

T0

∫ ∞
s

( 1
p(r)

∫ r

T0

(r − u)q(u)Y (u)β du
)1/α

dr ds ≤ 2Y (t), t ≥ T0.

Let such a T0 be fixed. We may assume that Y is increasing on [T0,∞). Since
(3.61) holds with b = T0, there exists T1 > T0 such that∫ t

T0

∫ ∞
s

( 1
p(r)

∫ r

T0

(r − u)q(u)Y (u)β du
)1/α

dr ds ≥ Y (t)
2

, t ≥ T1.
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Choose positive constants k and K such that

k1− βα ≤ 1
2
, K1− βα ≥ 4, 2kY (T1) ≤ KY (T0).

Considering the integral operator

Hy(t) = y0 +
∫ t

T0

∫ ∞
s

( 1
p(r)

∫ r

T0

(r − u)q(u) y(u)β du
)1/α

dr ds, t ≥ T0,

where y0 is a constant such that kY (T1) ≤ y0 ≤ K
2 Y (T0), we may verify that H is

continuous self-map on the set

Y = {y ∈ C[T0,∞) : kY (t) ≤ y(t) ≤ KY (t), t ≥ T0},

and that H sends Y into relatively compact subset of C[T0,∞). Thus, H has a fixed
point y ∈ Y, which generates a solution of equation (1.1) of type (I2) satisfying the
above inequalities and thus yields that

0 < lim inf
t→∞

y(t)
Y (t)

≤ lim sup
t→∞

y(t)
Y (t)

<∞.

Denoting

L(t) =
∫ t

a

∫ ∞
s

( 1
p(r)

∫ r

a

(r − u)q(u)Y (u)β du
)1/α

dr ds

and using Y (t) ∼ L(t) as t→∞ we obtain

0 < lim inf
t→∞

y(t)
L(t)

≤ lim sup
t→∞

y(t)
L(t)

<∞.

Then, proceeding exactly as in the proof of the ”if” part of Theorems 3.2–3.4, with
application of Lemma 3.8, we conclude that y(t) ∼ L(t) ∼ Y (t), t → ∞. There-
fore, y is a generalized regularly varying solution with respect to R with requested
regularity index and the asymptotic behavior (3.54), (3.56), (3.58) depending on if
q ∈ RVR(σ) satisfies, respectively, (3.53) or (3.55) or (3.57). Thus, the “if part” of
Theorems 3.9, 3.10 and 3.11 has been proved.

4. Corollaries

The final section is concerned with equation (1.1) whose coefficients p(t) and
q(t) are regularly varying functions (in the sense of Karamata). It is natural to
expect that such equation may possess. Our purpose here is to show that the prob-
lem of getting necessary and sufficient conditions for the existence of intermediate
solutions which are regularly varying in the sense of Karamata, can be embedded
in the framework of generalized regularly varying functions, so that the results of
the preceding section provide full information about the existence and the precise
asymptotic behavior of intermediate regularly varying solutions of (1.1).

We assume that p(t) and q(t) are regularly varying functions of indices η and σ,
respectively, i.e.,

p(t) = tηlp(t), q(t) = tσlq(t), lp, lq ∈ SV, (4.1)

and seek regularly varying solutions x(t) of (1.1) expressed in the from

x(t) = tρlx(t), lx ∈ SV. (4.2)
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We begin by noticing that in order that the condition (1.2) be satisfied we have
to assume that η ≥ 1 + 2α. Since R(t) defined by (3.1) due to (4.1) takes the form

R(t) =
(∫ ∞

t

s1+ 1
α−

η
α lp(s)−1/αds

)−1

,

it is easy to see that

R ∈ RV
(η − 1− 2α

α

)
. (4.3)

An important remark is that the possibility η = 2α + 1 should be excluded. If
this equality holds, then R(t) is slowly varying by (4.3), and this fact prevents p(t)
from being a generalized regularly varying function with respect to R. In fact, if
p ∈ RVR(η∗) for some η∗, then there exists f ∈ RV(η∗) such that p(t) = f(R(t)),
which implies that p ∈ SV. But this contradicts the hypothesis that p ∈ RV(η) =
RV(2α + 1). Thus, the case η = 2α + 1 is impossible, and so η must be restricted
to

η > 1 + 2α, (4.4)

in which case R satisfies

R(t) ∼ η − 2α− 1
α

t
η−2α−1

α lp(t)1/α, t→∞, (4.5)

implying that R ∈ RV
(
η−2α−1

α

)
. Since R is monotone increasing, its inverse func-

tion R−1(t) is a regularly varying of index α/(η− 2α− 1). Therefore, any regularly
varying function of index λ is considered as a generalized regularly varying function
with respect to R which regularity index is αλ/(η − 2α − 1), and conversely any
generalized regularly varying function with respect to R of index λ∗ is regarded as a
regularly varying function in the sense of Karamata of index λ = λ∗(η− 2α− 1)/α.
It follows form (4.1) and (4.2) that

p ∈ RVR

( αη

η − 2α− 1

)
, q ∈ RVR

( ασ

η − 2α− 1

)
, x ∈ RVR

( αρ

η − 2α− 1

)
.

Put
η∗ =

αη

η − 2α− 1
, σ∗ =

ασ

η − 2α− 1
, ρ∗ =

αρ

η − 2α− 1
.

Note that (4.4) implies η > α because α > 0 and that the two constants given by
(3.8) are reduced to

m1(α, η∗) =
2α− η

η − 2α− 1
, m2(α, η∗) =

α

η − 2α− 1
.

It turns out therefore that any type-(I1) intermediate regularly varying solution of
(1.1) is a member of one of the three classes

ntr− RV
(2α− η

α

)
, RV(ρ), ρ ∈

(2α− η
α

,
1 + 2α− η

α

)
, ntr− RV

(1 + 2α− η
α

)
,

while any type-(I2) intermediate regularly varying solution belongs to one of the
three classes

ntr− SV, RV(ρ), ρ ∈ (0, 1), ntr− RV(1).

Based on the above observations we are able to apply our main results in Section
3, establishing necessary and sufficient conditions for the existence of intermediate
regularly varying solutions of (1.1) and determining the asymptotic behavior of all
such solutions explicitly.
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First, we state the results on type-(I1) intermediate solutions that can be derived
as corollaries of Theorems 3.2, 3.3 and 3.4.

Theorem 4.1. Assume that p ∈ RV(η) and q ∈ RV(σ). Equation (1.1) possess
intermediate solutions belonging to ntr− RV( 2α−η

α ) if and only if

σ =
β

α
η − 2β − 2 and

∫ ∞
a

tq(t)ϕ1(t)β dt =∞.

Any such solution x enjoys one and the same asymptotic behavior x(t) ∼ X1(t) as
t→∞, where X1(t) is given by (3.14).

Theorem 4.2. Assume that p ∈ RV(η) and q ∈ RV(σ). Equation (1.1) possess
intermediate regularly varying solutions of index ρ with ρ ∈

(
2α−η
α , 1+2α−η

α

)
if and

only if
β

α
η − 2β − 2 < σ <

β

α
(η − 1)− 2β − 1,

in which case ρ is given by

ρ =
2α− η + σ + 2

α− β
(4.6)

and any such solution x enjoys one and the same asymptotic behavior

x(t) ∼
( t2 p(t)−1 q(t)

(ρ(ρ− 1))α (2α− η) (ρα+ η − 1− 2α)

) 1
α−β

, t→∞.

Theorem 4.3. Assume that p ∈ RV(η) and q ∈ RV(σ). Equation (1.1) possess
intermediate solutions belonging to ntr− RV

(
1+2α−η

α

)
if and only if

σ =
β

α
(η − 1)− 2β − 1 and

∫ ∞
a

q(t)ϕ2(t)β dt <∞.

Any such solution x enjoys one and the same asymptotic behavior x(t) ∼ X3(t) as
t→∞, where X3(t) is given by (3.19).

Proof. To prove Theorem 4.1 and 4.3 we need only to check that

σ∗ = −m1(α, η∗)β − 2m2(α, η∗) ⇔ σ =
β

α
η − 2β − 2,

σ∗ = β −m2(α, η∗) ⇔ σ =
β

α
(η − 1)− 2β − 1,

and to prove Theorem 4.2 it suffices to note that

ρ∗ =
σ∗ +m2(α, η∗)− α

α− β
⇔ ρ =

2α+ σ − η + 2
α− β

,

and to combine the relation (4.5) with the equality

α2m2(α, η∗)−
2(α+1)2

2α+1

[
(m1(α, η∗)− ρ∗)(ρ∗ + 1)

(
(ρ∗ −m2(α, η∗)ρ∗

)α]
= (2α− η)(ρα+ η − 1− 2α)(ρ(ρ− 1))α.

�

Similarly, we are able to gain a through knowledge of type-(I2) intermediate
regularly varying solutions of (1.1) from Theorems 3.9, 3.10 and 3.11.
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Theorem 4.4. Assume that p ∈ RV(η) and q ∈ RV(σ). Equation (1.1) possess
intermediate nontrivial slowly varying solutions if and only if

σ = η − 2α− 2 and
∫ ∞
a

t
( 1
p(t)

∫ t

a

(t− s) q(s) ds
)1/α

dt =∞.

The asymptotic behavior of any such solution x is governed by the unique formula
x(t) ∼ Y1(t), t→∞, where Y1(t) is given by (3.54).

Theorem 4.5. Assume that p ∈ RV(η) and q ∈ RV(σ). Equation (1.1) possess
intermediate regularly varying solutions of index ρ with ρ ∈ (0, 1) if and only if

η − 2α− 2 < σ < η − α− β − 2,

in which case ρ is given by (4.6) and the asymptotic behavior of any such solution
x is governed by the unique formula

x(t) ∼
( t2 p(t)−1 q(t)(
ρ(1− ρ)

)α (η − 2α) (ρα+ η − 1− 2α)

) 1
α−β

, t→∞.

Theorem 4.6. Assume that p(t) ∈ RV(η) and q(t) ∈ RV(σ). Equation (1.1)
possess intermediate nontrivial regularly varying solutions of index 1 if and only if

σ = η − α− β − 2 and
∫ ∞
a

( 1
p(t)

∫ t

a

(t− s)sβq(s)ds
)1/α

dt <∞.

The asymptotic behavior of any such solution x is governed by the unique formula
x(t) ∼ Y3(t), t→∞, where Y3(t) is given by (3.58).

The above corollaries combined with Theorems 1.1–1.4 enable us to describe
in full details the structure of RV-solutions of equation (1.1) with RV-coefficients.
Denote with R the set of all regularly varying solutions of (1.1) and define the
subsets

R(ρ) = R∩RV(ρ), tr−R(ρ) = R∩ tr− RV(ρ), ntr−R(ρ) = R∩ntr− RV(ρ).

Corollary 4.7. Let p ∈ RV(η), q ∈ RV(σ).
(i) If σ < β

αη − 2β − 2, or σ = β
αη − 2β − 2 and J3 <∞, then

R = tr−R
(2α− η

α

)
∪ tr−R

(1 + 2α− η
α

)
∪ tr−R(0) ∪ tr−R(1).

(ii) If σ = β
αη − 2β − 2 and J3 =∞, then

R = ntr−R
(2α− η

α

)
∪ tr−R

(1 + 2α− η
α

)
∪ tr−R(0) ∪ tr−R(1).

(iii) If σ ∈
(
β
αη − 2β − 2, βα (η − 1)− 2β − 1

)
, then

R = R
(σ + 2α+ 2− η

α− β
)
∪ tr−R

(1 + 2α− η
α

)
∪ tr−R(0) ∪ tr−R(1).

(iv) If σ = β
α (η − 1)− 2β − 1 and J4 <∞, then

R = tr−R
(1 + 2α− η

α

)
∪ ntr−R

(1 + 2α− η
α

)
∪ tr−R(0) ∪ tr−R(1).

(v) If σ = β
α (η−1)−2β−1 and J4 =∞, or σ ∈

(
β
α (η−1)−2β−1, η−2α−2

)
,

or σ = η − 2α− 2 and J1 <∞, then

R = tr−R(0) ∪ tr−R(1).
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(vi) If σ = η − 2α− 2 and J1 =∞, then

R = ntr−R(0) ∪ tr−R(1).

(vii) If σ ∈ (η − 2α− 2, η − α− β − 2), then

R = R
(σ + 2α+ 2− η

α− β
)
∪ tr−R(1).

(viii) If σ = η − α− β − 2 and J2 <∞, then

R = tr−R(1) ∪ ntr−R(1).

(ix) If σ = η − α− β − 2 and J2 =∞, or σ > η − α− β − 2, then R = ∅.
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[6] J. Jaroš, T. Kusano; On strongly monotone solutions of a class of cyclic systems of nonlinear

differential equations, J. Math. Anal. Appl. 417 (2014), 996–1017.
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[25] J. Milošević, J. V. Manojlović; Asymptotic analysis of fourth order quasilinear differential

equations in the framework of regular variation, Taiwanese Journal of Mathematics, vol. 19,

(2015), no. 5, pp. 1415–1456.
[26] M. Naito, F. Wu; A note on the existance and asymptotic behavior of nonoscillatory solutions

of fourth order quasilinear differential equations, Acta Math. Hungar 102(3) (2004), 177–

202.
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E-mail address: aleksandra.trajkovic@pmf.edu.rs

Jelena V. Manojlović
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