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INVERSE PROBLEM OF A HYPERBOLIC EQUATION WITH
AN INTEGRAL OVERDETERMINATION CONDITION

TAKI-EDDINE OUSSAEIF, ABDELFATAH BOUZIANI

Abstract. In this article we study the inverse problem of a hyperbolic equa-

tion with an integral overdetermination condition. The existence, uniqueness
and continuous dependence of the solution of the solution upon the data are

established.

1. Introduction

In this article we study the unique solvability of the inverse problem of deter-
mining a pair of functions {u, f} satisfying the equation

utt −∆u+ βut = f(t)g(x, t), x ∈ Ω, t ∈ [0, T ], (1.1)

with the initial conditions

u(x, 0) = ϕ(x), x ∈ Ω, (1.2)

ut(x, 0) = ψ(x), x ∈ Ω, (1.3)

the boundary condition

u(x, t) = 0, (x, t) ∈ ∂Ω× [0, T ], (1.4)

and the nonlocal condition∫
Ω

v(x)u(x, t)dx = θ(t), t ∈ [0, T ]. (1.5)

Here Ω is a bounded domain in Rn with smooth boundary ∂Ω. The functions g, ϕ,
ψ, θ are known functions and β is a positive constant.

Inverse problems for hyperbolic PDEs arise naturally in geophysics, oil prospect-
ing, in the design of optical devices, and in many other areas where the interior of
an object is to be imaged using the response of the object to acoustic waves (satis-
fying hyperbolic PDEs). Additional information about the solution to the inverse
problem is given in the form of integral observation condition (1.5).

The parameter identification in a partial differential equation from the data of
integral overdetermination condition plays an important role in engineering and
physics [4, 5, 6, 8, 9, 13]. From the physical point of view, these conditions may be
interpreted as measurements of the temperature u(x, t) by a device averaging over
the domain of spatial variables.
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Note that inverse problems with integral overdetermination are closely related
to nonlocal problems [2, 11]. Studies have shown that classical methods often do
not work when we deal with nonlocal problems [1, 7]. To date, several methods
have been proposed for overcoming the difficulties arising from nonlocal conditions.
The choice of method depends on the kind of nonlocal conditions.

We note that the inverse problem for a parabolic equation with integral condition
(1.5) and its unique solubility have been studied by many authors (see for example
[3, 10, 14, 15]).

Also, there are some papers devoted to the study of existence and uniqueness of
solutions of inverse problems for various parabolic equations with unknown source
functions. Inverse problems of determining the right-hand side of a parabolic equa-
tion under a final overdetermination condition were studied in papers [11, 12, 15, 16].

In the present work, new studies are presented for the inverse problem for a
hyperbolic equation. The existence and uniqueness of the classical solution of the
problem (1.1)-(1.5) is reduced to a fixed point problem.

2. Functional space

Let us introduce certain notation used below. We set

g∗(t) =
∫

Ω

v(x)g(x, t)dx, QT = Ω× [0, T ]. (2.1)

The spaces W 1
2 (Ω), C((0, T ), L2(Ω)) and W 2,1

2 (QT ) with corresponding norms are
understood as follows: The Banach space W 1

2 (Ω) consists of all functions from
L2(Ω) having all weak derivatives of the first order that are square integrable over
with norm

‖u‖W 1
2 (Ω) = (‖u‖2L2(Ω) + ‖ux‖2L2(Ω))

1/2,

We denote by C((0, T ), L2(Ω)) the space comprises of all continuous functions on
(0, T ) with values in L2(Ω). The corresponding norm is given by

‖u‖C((0,T ),L2(Ω)) = max
(0,T )

‖u‖L2(Ω) <∞.

Let us also introduce the Sobolev space W 2,1
2 (QT ) of functions u(x, t) with finite

norm

‖u‖W 2,1
2 (QT ) =

(
‖u‖2L2(QT ) + ‖ux‖2L2(QT ) + ‖Dtu‖2L2(QT )

)1/2

where

‖u‖ ≡ ‖u‖L2(Ω),

We note that the weighted arithmetic-geometric mean inequality (Cauchy’s ε-
inequality) is:

2|ab| 6 εa2 +
1
ε
b2, for ε > 0.

Also, we use the notation

‖∇u‖ =
(∫

Ω

n∑
i=1

u2
xi
dx
)1/2

and ‖∆u‖ =
(∫

Ω

n∑
i,j=1

u2
xi,xj

dx
)1/2

.
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3. Existence and uniqueness of the solution to the inverse problem

We seek a solution of the original inverse problem in the form {u, f} = {z, f}+
{y, 0} where y is the solution of the direct problem

ytt −∆y + βyt = 0, (x, t) ∈ QT , (3.1)

y(x, 0) = ϕ(x), x ∈ Ω, (3.2)

yt(x, 0) = ψ(x), x ∈ Ω, (3.3)

y(x, t) = 0, (x, t) ∈ ∂Ω× [0, T ], (3.4)

while the pair {z, f} is the solution of the inverse problem

ztt −∆z + βzt = f(t)g(x, t), (x, t) ∈ Q, (3.5)

z(x, 0) = 0, x ∈ Ω, (3.6)

zt(x, 0) = 0, x ∈ Ω, (3.7)

z(x, t) = 0, (x, t) ∈ ∂Ω× [0, T ], (3.8)∫
Ω

v(x)z(x, t) dx = E(t), t ∈ [0, T ], (3.9)

where
E(t) = θ(t)−

∫
Ω

v(x)y(x, t) dx.

We shall assume that the functions appearing in the data for the problem are
measurable and satisfy the following conditions:

(H1) g ∈ C((0, T ), L2(Ω)), v ∈ W 1
2 (Ω), E ∈ W 2

2 (0, T ), ‖g(x, t)‖ 6 m, |g∗(t)| >
p > 0, for p ∈ R, (x, t) ∈ QT , ϕ(x), ψ(x) ∈W 1

2 (Ω)
The correspondence between f and z may be viewed as one possible way of speci-
fying the linear operator

A : L2(0, T )→ L2(0, T, L2(Ω)). (3.10)

with the values
(Af)(t) =

1
g∗

{∫
Ω

∇z∇vdx
}
. (3.11)

In this view, it is reasonable to refer to the linear equation of the second kind for
the function f over the space L2(0, T ):

f = Af +W, (3.12)

where

W =
E′′ + βE

g∗
.

Remark 3.1. As {u, f} = {z, f} + {y, 0} where y is the solution of the direct
problem (3.1)–(3.4). Obviously, y exists and is unique, so instead of proving the
solvability of the original problem (1.1)–(1.5), we prove the existence and uniqueness
of the solution of the inverse problem (3.5)–(3.9).

Theorem 3.2. Suppose the input data of the inverse problem (3.5)-(3.9) satisfies
(H1). Then the following assertions are valid: (i) if the inverse problem (3.5)–(3.9)
is solvable, then so is equation (3.12). (ii) if equation (3.12) possesses a solution
and the compatibility condition

E(0) = 0, E′(0) = 0, (3.13)
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holds, then there exists a solution of the inverse problem (3.5)-(3.9).

Proof. (i) Assume that the inverse problem (3.5)–(3.9) is solvable. We denote its
solution by {z, f}. Multiplying both sides of (3.5) by the function v scalarly in
L2(Ω), we obtain the relation

d

dt

∫
Ω

ztvdx+
∫

Ω

∇z∇vdx+ β

∫
Ω

ztvdx = f(t)g∗(x, t). (3.14)

With (3.9) and (3.11), it follows from (3.14) that f = Af + E′′+βE
g∗ . This means

that f solves equation (3.12).
(ii) By the assumption, equation (3.12) has a solution in the space L2(0, T ), say

f .
When inserting this function in (3.5), the resulting relations (3.5)–(3.8) can be

treated as a direct problem having a unique solution z ∈ W 2,1
2,0 (QT ). Let us show

that the function z satisfies also the integral overdetermination condition (3.9).
Equation (3.14) yields

d

dt

∫
Ω

ztvdx+
∫

Ω

∇z∇vdx+ β

∫
Ω

ztvdx = f(t)g∗(x, t). (3.15)

On the other hand, being a solution of (3.12), the function z is subject to relation

E′′ + βE′ +
∫

Ω

∇z∇v dx = f(t)g∗(x, t). (3.16)

Subtracting (3.15) from (3.16), we obtain

d

dt

∫
Ω

ztvdx+ β

∫
Ω

ztvdx = E′′ + βE′.

Integrating the preceding differential equation and taking into account the compat-
ibility condition (3.13), we find that the function z satisfies the overdetermination
condition (3.9) and the pair of functions {z, f} is a solution of the inverse problem
(3.5)–(3.9). This completes the proof. �

Now, we state some properties of the operator A.

Lemma 3.3. Let condition (H1) hold. Then there exist a positive ε for which A is
a contracting operator in L2(0, T ).

Proof. Obviously, (3.11) yields the estimate

‖Af‖L2(0,t) ≤
k

p

(∫ t

0

‖∇z(., τ)‖2L2(Ω)dτ
)1/2

, (3.17)

where k = ‖∇v‖L2(Ω). Multiplying both sides of (3.5) by zt scalarly in L2(Ω) and
integrating the resulting expressions by parts, we obtain the identity

1
2
d

dt
‖zt(·, t)‖2L2(Ω) +

1
2
d

dt
‖∇z(·, t)‖2L2(Ω) + β‖zt(·, t)‖2L2(Ω) = f(t)

∫
Ω

g(x, t)ztdx.

So, by using the Cauchy’s ε-inequality, we obtain the relation

1
2
d

dt
‖zt(·, t)‖2L2(Ω) +

1
2
d

dt
‖∇z(·, t)‖2L2(Ω) + β‖zt(·, t)‖2L2(Ω)

≤ m2

2ε
|f(t)|2 +

ε

2
‖zt(·, t)‖2L2(Ω),

(3.18)
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Choosing 0 < ε < 2β, and integrating (3.18) over (0, t), and using (3.6) and (3.7)),
we obtain

1
2
‖zt(·, t)‖2L2(Ω) +

1
2
‖∇z(·, t)‖2L2(Ω) + (β − ε

2
)
∫ t

0

‖zt(., τ)‖2L2(Ω)

≤ m2

2ε

∫ t

0

|f(τ)|2.
(3.19)

Omitting some terms on the left-hand side (3.19) and integrating over (0, t), and
using (3.6), leads to∫ t

0

‖∇z(., τ)‖2L2(Ω)dτ ≤
m2

ε

∫ t

0

‖f(τ)‖2L2(0,T )dτ. (3.20)

So, according to (3.17) and (3.20), we obtain the estimate

‖Af‖L2(0,t) ≤ δ
(∫ t

0

‖f(τ)‖2L2(0,T )dτ
)1/2

, 0 6 t 6 T, (3.21)

where

δ =
km

p
√
ε
.

So, we obtain
‖Af‖L2(0,T ) ≤ δ‖f‖L2(0,T,L2(0,T )). (3.22)

It follows from the foregoing that there exists a positive ε such that

δ < 1. (3.23)

Inequality (3.23) shows that the linear operator A is a contracting mapping on
L2(0, T, L2(0, T )) and completes the proof. �

Regarding the unique solvability of the inverse problem, the following result will
be useful.

Theorem 3.4. Let condition (H1) and the compatibility condition (3.13) hold.
Then the following assertions are valid: (i) a solution {z, f} of the inverse problem
(3.5)-(3.9) exists and is unique, and (ii) with any initial iteration f0 ∈ L2(0, T, L2(0, T ))
the successive approximations

fn+1 = Ãfn . (3.24)

converge to f in the L2(0, T, L2(0, T ))-norm (for Ã see below).

Proof. (ii) We use the nonlinear operator Ã : L2(0, T ) → L2(0, T, L2(0, T )) acting
in accordance to the rule

Ãf = Af +
E′′ + βE

g∗
, (3.25)

where the operator A and the function g∗ arise from (3.11). From (3.24) it follows
that (3.12) can be written as

f = Ãf. (3.26)

Hence it is sufficient to show that operator Ã has a fixed point in the space
L2(0, T, L2(0, T )). By the relations

Ãf1 − Ãf2 = Af1 −Af2 = A(f1 − f2),
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from estimate (3.22) we deduce that

‖Ãf1 − Ãf2‖L2(0,T ) = ‖A(f1 − f2)‖L2(0,T )

≤ δ‖(f1 − f2)‖L2(0,T,L2(0,T )).
(3.27)

From (3.23) and (3.26), we find that Ã is a contracting mapping on L2(0, T, L2(0, T )).
Therefore Ã has a unique fixed point f in L2(0, T, L2(0, T )) and the successive

approximations (3.24) converge to f in the L2(0, T, L2(0, T ))-norm irrespective of
the initial iteration f0 ∈ L2(0, T, L2(0, T )).

(i) This shows that, equation (3.26) and, in turn, equation (3.12) have a unique
solution f in L2(0, T, L2(0, T )).

According to Theorem 3.2, this confirms the existence of solution to the inverse
problem (3.5)–(3.9).

It remains to prove the uniqueness of this solution. Assume to the contrary that
there were two distinct solutions {z1, f1} and {z2, f2} of the inverse problem under
consideration.

We claim that in that case f1 6= f2 almost everywhere on (0, T ). If f1 = f2, then
applying the uniqueness theorem to the corresponding direct problem (3.1)–(3.4)
we would have z1 = z2 almost everywhere in QT .

Since both pairs satisfy identity (3.14), the functions f1 and f2 give two distinct
solutions to equation (3.26). But this contradicts the uniqueness of the solution to
equation (3.26) just established and proves the theorem. �

Corollary 3.5. Under the conditions of Theorem 3.4, the solution f to equation
(3.12) depends continuously upon the data W .

Proof. Let W and V be two sets of data, which satisfy the assumptions of Theorem
3.4. Let f and g be solutions of the equation (3.12) corresponding to the data W
and V , respectively. According to (3.12), we have

f = Af +W,

g = Ag + V.

First, let us estimate the difference f − g. It is easy to see by using (3.22), that

‖f − g‖L2(0,T,L2(0,T )) = ‖(Af +W )− (Ag + V )‖L2(0,T )

= ‖A(f − g) + (W − V )‖L2(0,T )

6 δ‖f − g‖L2(0,T,L2(0,T )) + ‖(W − V )‖L2(0,T );

so, we obtain

‖f − g‖L2(0,T,L2(0,T )) 6
1

(1− δ)
‖(W − V )‖L2(0,T ).

The proof is complete. �
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