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INVARIANT REGIONS AND EXISTENCE OF GLOBAL
SOLUTIONS TO REACTION-DIFFUSION SYSTEMS WITHOUT

CONDITIONS ON THE GROWTH OF NONLINEARITIES

SAMIR BENDOUKHA, SALEM ABDELMALEK

Abstract. This article concerns the existence of global solutions for a cou-
pled 2-component reaction diffusion system with a full matrix diffusion and

exponential nonlinearities. We show that some results of global and bounded

solutions are established via invariant regions and the Lyapunov functional. A
numerical example is used to illustrate our results.

1. Introduction

Reaction-diffusion systems have received considerable attention from mathemati-
cians and other scientists and engineers alike because of their ability to model real-
life phenomena in a wide variety of fields. The study of these systems has allowed
for a deeper understanding of the dynamics and characteristics of the phenomena.
In this article, we study the generic reaction-diffusion system with a full diffusion-
matrix,

∂u

∂t
− a∆u− b∆v = f(u, v) in R+ × Ω

∂v

∂t
− c∆u− d∆v = g(u, v) in R+ × Ω,

(1.1)

with the boundary conditions

∂u

∂η
=
∂v

∂η
= 0, (1.2)

and initial data

u(0, x) = u0(x), v(0, x) = v0(x), in Ω. (1.3)

Here Ω is an open bounded domain of class C1 in RN , with boundary ∂Ω and ∂
∂η

denotes the outward normal derivative on ∂Ω. We will assume that the nonlinear-
ities f and g are continuously differentiable functions on R+. The constants a, b, c
and d are positive and satisfying the condition

(b+ c)2 < 4ad, (1.4)
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which reflects the parabolicity of the system and implies at the same time that the
diffusion matrix:

A =
(
a b
c d

)
(1.5)

is positive definite. That means the eigenvalues λ1 and λ2 (λ1 < λ2) of AT are
positive.

One of the earliest works on this subject is that of Kanel and Kirane [4], where
they proved the existence of global solutions given g(u; v) = −f(u; v) = −uvn with
n being an odd integer subject to

‖b− c‖ < Cp,

where Cp contains a constant from Solonnikov’s estimate. They further improved
their work in [6] and relaxed the conditions on the diffusion matrix. They showed
the existence of global solutions subject to

(H1) d < a+ c,
(H2) b < ε0 ≡ ( ad(a+c−d)

ad+(a+c−d) ) if a ≤ d < a+ c,
(H3) b < min{ 1

2 (a+ c), ε0}, and

‖F (v)‖ ≤ CF (1 + ‖v‖1+ε),

where ε and CF are positive constants with ε < 1 being sufficiently small
and g(u; v) = −f(u; v) = uF (v).

Kouachi [10] considered the case where the nonlinearities f(u, v) ≥ 0 and g(u, v) ≥ 0
are continuously differentiable polynomially bounded functions satisfying

µ2g(µ2s, s) ≤ f(µ2s, s), and f(µ1s, s) ≤ µ1g(µ1s, s),

for all s ≥ 0, and
f(u, v) + Cg(u, v) ≤ C1(u+ αv + 1),

for positive C,α > −µ2 and C1 a positive constant and with

µ1 =
min{a, d} − λ1

c
> 0 > µ2 =

min{a, d} − λ2

c
. (1.6)

The author was able to determine the invariant regions of the system and establish
the existence of global solutions through an appropriate Lyapunov functional.

Kouachi [9] again considered the case that f(u, v) = − ρ
σ g(u, v) with g(u, v) ≥ 0,

and a full diffusion-matrix with a balance law. The study established the invariant
regions of the system as well as the existence of global solutions. The reaction term
was assumed to be of polynomial or sub-exponential growth. This work was later
extended by Rebiai and Benachour [13], where the authors relaxed the conditions
on the nonlinearities.

In our work, we will distinguish between the following two main cases for the
diffusion matrix A and the corresponding invariant regions.
Case 1: c = 0. We assume that a < d and that the initial data is in the region

Σ1 = {(u0, v0) ∈ R2 such that 0 ≤ b

d− a
v0 ≤ u0}. (1.7)

If w = u− b
d−av is uniformly bounded, we can suppose that for all positive constants

M , the nonlinearity g is controlled for v being sufficiently large

0 ≤ g(u, v) ≤ H(v), for 0 ≤ u− b

d− a
v ≤M, (1.8)
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where H is a continuously differentiable function satisfying

lim
v→∞

H ′(v)
f(u, v)− b

d−ag(u, v)
= 0, for all (u, v) ∈ Σ1, (1.9)

f(u, v) ≤ b

d− a
g(u, v) for all (u, v) ∈ Σ1, (1.10)

f(
b

d− a
v, v) ≤ b

d− a
g(

b

d− a
v, v), (1.11)

with g(u, 0) ≥ 0 for all u ≥ 0 and v ≥ 0.
Case 2: c 6= 0. The initial data are assumed to be in one of the following regions:

Σ2 = {(u0, v0) ∈ R2 such that µ2v0 ≤ u0 ≤ µ1v0}
Σ3 = {(u0, v0) ∈ R2 such that µ1v0 ≤ u0 ≤ µ2v0}
Σ4 = {(u0, v0) ∈ R2 such that min(µ2v0, µ1v0) ≥ u0}
Σ5 = {(u0, v0) ∈ R2 such that u0 ≥ max(µ2v0, µ1v0)},

(1.12)

with µ1 and µ2 as defined in (1.6).
In our work we will only deal with the first case (Σ2). Generalization to the

remaining regions is trivial and can be looked up in the appendix. We suppose that
the reaction terms f and g satisfy:

µ1g(µ2s, s) ≥ f(µ2s, s) for all s ≥ 0, (1.13)

f(r,
1
µ1
r) ≥ µ2g(r,

1
µ1
r), for all r ≥ 0, (1.14)

f(r, s) ≤ µ2g(r, s), for all (r, s) ∈ Σ2 . (1.15)

If w = u−µ2v is uniformly bounded, we know that for all positive constants M , the
nonlinearity g is controlled for v being sufficiently large, i.e. for 0 ≤ (µ1−µ2)p−s ≤
M ,

µ1g(µ1p− s, s)− f(µ1p− s, p) ≤ H(s), (1.16)
where H is a continuously differentiable function satisfying

lim
s→∞

H ′(s)
f(µ1p− s, p)− µ2g(µ1p− s, p)

= 0. (1.17)

This class of systems motivates us to construct the type of functionals considered
in this paper with the aim of proving the existence of global solutions.

2. Invariant regions

In this section, we are concerned with the invariant regions of the proposed
system. We will prove that if the pair (f, g) points into one of the previously defined
regions Σ (either Σ1, Σ2, Σ3, Σ4, or Σ5) on ∂Σ, then Σ is an invariant region for
problem (1.1)–(1.3), i.e the solution remains in Σ for any initial data in Σ. Once
the invariant regions are constructed, one can apply the Lyapunov technique in
order to establish the global existence of unique solutions for the proposed problem
(1.1)–(1.3) as will be shown later on in Section 4 (see for related examples the work
of Kirane and Kouachi in [7] and [8]).

Proposition 2.1. Suppose that the functions f and g point into the region Σ on
∂Σ, then for any (u0, v0) in Σ, the solution (u(t, ·), v(t, ·)) of problem (1.1)–(1.3)
remains in Σ for any time t ∈ [0, T ∗].
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Proof. We will approach the two cases discussed in Section 1 separately. In the
first case, c = 0. Multiplying the second equation in (1.1) by b

a−d and adding the
result to the first equation in (1.1) yields the equivalent system

∂w

∂t
− a∆w = F (w, v) = f(u, v) +

b

a− d
g(u, v)

∂v

∂t
− d∆v = g(u, v),

(2.1)

where

w = u+
b

a− d
v,

and the initial data

w(0, x) = w0(x) ≥ 0, v(0, x) = v0(x) ≥ 0 in Ω,

with the Neuman boundary conditions

∂w

∂η
=
∂v

∂η
= 0.

Using (1.11), the first property is assured by the quasi-positivity of the nonlineari-
ties; that is:

F (0, v) ≥ 0 and g(u, 0) ≥ 0 for all w ≥ 0 and v ≥ 0. (2.2)

In the second case, c 6= 0. It suffices to show that region Σ2 is invariant. The
proof can be trivially extended to the other regions. We construct a new system,
which is equivalent to (1.1). The first equation is formed by multiplying the second
equation in (1.1) by µ1 and subtracting the second equation from it. The second is
obtained by multiplying the second equation in (1.1) by −µ2 and adding it to the
first one. Then, assuming without loss of generality that a < d and with the fact
that λ1 and λ2 are the eingenvalues of A, we can write

∂w

∂t
− λ2∆w = k(w, z),

∂z

∂t
− λ1∆z = h(w, z),

(2.3)

where
w = −µ2v + u ≥ 0
z = µ1v − u ≥ 0,

(2.4)

the eigenvalues of A are given by

λ1 =
1
2

(a+ d−
√

(a− d)2 + 4bc)

λ2 =
1
2

(a+ d+
√

(a− d)2 + 4bc),
(2.5)

and
k(w, z) = −µ2g(u, v) + f(u, v)

h(w, z) = µ1g(u, v)− f(u, v).
(2.6)

Using (1.13) and (1.14), the first property is assured by the quasi-positivity of
the nonlinearities; that is:

k(0, z) ≥ 0, h(w, 0) ≥ 0 for all w ≥ 0 and z ≥ 0. (2.7)
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Now using (1.16), we can suppose that for all positive constants M , the nonlinearity
g is controlled for v being sufficiently large

h(w, z) ≤ H(z), for 0 ≤ w ≤M, (2.8)

where H is a continuously differentiable function satisfying

lim
z→∞

H ′(z)
k(w, z)

= 0, for 0 ≤ w ≤M. (2.9)

This concludes the proof of the proposition for regions Σ1 and Σ2. �

3. Existence of local solutions

In this section, we prove the existence of local solutions using basic existence
theory. First of all, let us define the usual norms in spaces Lp(Ω), L∞(Ω), and
C(Ω) as

‖u‖pp =
1
‖Ω‖

∫
Ω

‖u(x)‖pdx, ‖u‖∞ = esssup
x∈Ω

‖u(x)‖,

‖u‖C(Ω) = max
x∈Ω
‖u(x)‖,

respectively.
Now, for any initial data in C(Ω)×C(Ω) or in Lp(Ω)×Lp(Ω) with p ∈ (1,+∞),

the existence and uniqueness of local solutions to (1.1)–(1.3) follow from the basic
existence theory for abstract semilinear differential equations (see Henry [2]). Also
note that the solutions are classical on [0, Tmax) where Tmax denotes the eventual
blowing-up time in L∞(Ω).

4. Existence of global solutions

In this section, we prove the existence of global solutions for the diagonalized
system (2.3)-(2.5). Our main results are summarized in the following theorem and
corollary.

Theorem 4.1. Let (w(t, ·), z(t, ·)) be any positive solution of the diagonal problem
(2.3)-(2.5) on the interval [0, T ] f or some T < T ∗. Then, assuming Neumann
boundary conditions, the functional

t→ L(t) =
∫

Ω

(M − w)−γHp(z)dx, (4.1)

is uniformly bounded on [0, T ) for any positive constants γ, M and p satisfying

0 < γ <
4ab

(λ2 − λ1)2
, ‖w(t, x)‖∞ < M for all 0 < t ≤ T, (4.2)

with

p >
4(γ + 1)λ1λ2

4λ1λ2 − γ(λ2 − λ1)2
. (4.3)

Proof. Differentiating the functional L with respect to t yields:

L′(t) =
d

dt

∫
Ω

(M − w)−γHp(z) dx

=
∫

Ω

[
Hp(z)

d

dt
(M − w)−γ + (M − w)−γ

d

dt
Hp(z)

]
dx
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=
∫

Ω

{
γ(M − w)−γ−1Hp(z)[λ2∆w + k(w, z)]

+ p(M − w)−γHp−1H ′[λ1∆z + h(w, z)]
}
dx

= I + J,

where

I =
∫

Ω

{
λ2γ(M − w)−γ−1Hp(z)∆w + λ1p(M − w)−γHp−1H ′∆z

}
dx,

J =
∫

Ω

(M − w)−γ−1Hp(z)
{
γk(w, z) + p(M − w)

H ′

H
h(w, z)

}
dx.

A simple application of Green’s formula in (1.2) to I yields

I := I1 + I2.

Simplifying the first part of I leads to

I1 = −
∫

Ω

∇[λ2γ(M − w)−γ−1Hp(z)]∇w dx

= −λ2γ

∫
Ω

{
(γ + 1)(M − w)−γ−2Hp(z)‖∇w‖2

+ p(M − w)−γ−1Hp−1(z)H ′∇z∇w
}
dx,

and similarly, the second part can be simplified to produce

I2 = −
∫

Ω

∇[λ1p(M − w)−γHp−1H ′]∇z dx

= −λ1p

∫
Ω

{
γ(M − w)−γ−1Hp−1H ′∇w∇z + (M − w)−γHp−1H ′′‖∇z‖2

+ (p− 1)(M − w)−γHp−2(H ′)2‖∇z‖2
}
dx.

Hence, we can write

I = −
∫

Ω

{
λ2γ(γ + 1)‖∇w‖2 +

(
λ2γp(M − w)

H ′

H
+ λ1pγ(M − w)

H ′

H

)
∇z∇w

+ λ1p
(

(p− 1)(
H ′

H
)2 +

H ′′

H

)
(M − w)2‖∇z‖2}(M − w)−γ−2Hp dx.

The formula can be rearranged in the form

I = −
∫

Ω

(T (∇w,∇z))Hp(M − w)−γ−2dx, (4.4)

where

T (∇w,∇z) = γ(γ + 1)λ2‖∇w‖2 + (λ2 + λ1)pγ(M − w)
H ′

H
∇w∇z

+ λ1

[
p
H ′′

H
+ (p2 − p)(H

′

H
)2
]
(M − w)2‖∇z‖2.

The discriminant D of T is given by
D

(M − w)2
= γp[((λ2 − λ1)2γ − 4λ1λ2)p+ 4λ2λ1(γ + 1)]

(H ′
H

)2
− 4λ2γ(γ + 1)p

H ′′

H
.
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If γ and p are chosen so as to satisfy conditions (4.2) and (4.3), then D < 0 and
consequently

I ≤ 0. (4.5)
Now, let us examine the second part of the derivative. We have

J =
∫

Ω

(M − w)−γ−1Hp(z)
{
γk(w, z) + p(M − w)

H ′

H
h(w, z)

}
dx

=
∫

Ω

[
p(M − w)(−H

′

k
)
h

H
− γ
]
(−k(w, z))Hp(M − w)−γ−1dx.

This is along to (2.9), and (1.15) yields

lim
z→∞

(−H
′

k
) <

2γ
nM

.

Hence, there exists z̃ > 0 such that

[(M − w)(−pH
′

k
)− γ]Hp(M − w)−γ−1 ≤ 0,

for all z ≥ z and 0 ≤ w ≤M . Rearranging the inequality and simplifying yields

(−H
′

k
) ≤ 2γ

nM
(0 ≤ w ≤M).

Since the function in J is continuous, it is uniformly bounded for z ≥ 0 and 0 ≤
w ≤M . Therefore, there exists C1 > 0 such that

J ≤ C1, (4.6)

and the proof is complete. �

Corollary 4.2. For any initial data (u0, v0) in L∞(Ω) × L∞(Ω) and any func-
tions f and g pointing into the region Σ2 on ∂Σ2 and satisfying either (1.7)–(1.11)
or (1.12)–(1.14), the solutions of the problem (1.1)-(1.2) are global in time and
uniformly bounded on (0,+∞)× Ω.

Proof. From (2.8), we easily deduce that h(w) ∈ L∞([0, T ∗), Lp(Ω)) for all p ≥ 1
and consequently w ∈ L∞([0, T ∗), L∞(Ω)) (see [2] and [1]). It follows that the
solutions of the system (2.1)-(2.2) are global in time and uniformly bounded on
(0,+∞)× Ω. �

5. Numerical Example

This section will present numerical solutions for an example drawn from the
proposed model and satisfying the conditions for the existence of global solutions.
The results are obtained through the finite difference method with appropriately
chosen descritization intervals in space and time. Let us consider the case where
c = 0 and

f(u, v) = −
(
u+

b

a− d
v
)k
e(εv+ev)

g(u, v) =
(
u+

b

a− d
v
)l
ee

v

,

(5.1)

with ε > 1 and k, l > 0. Note that taking b = 0, we obtain

f(u, v) = −uke(εv+ev)

g(u, v) = g(u, v) = ulee
v

,
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which is the same example considered by Kouachi in [11]. However, let us consider
the non-diagonal case with b 6= 0. Consider the diffusion matrix

A =
(
a b
c d

)
=
(

4 6
0 5

)
,

with eigenvalues λ1 = 4 and λ2 = 5. Since c = 0, we have the invariant region Σ1

defined as
Σ1 = {(u0, v0) ∈ R2 such that 6v0 ≤ u0}.

Let us choose (u0, v0) = (1.5, 0.15) and ε = 3 > 1, (k, l) = (0.6, 0.8). The system
can now be written as

∂w

∂t
− 4∆w = F (u, v) = f(u, v)− 6g(u, v)

∂v

∂t
− 5∆v = g(u, v),

(5.2)

where w = u − 6v ≥ 0. We can easily verify that the resulting system satisfies
conditions (1.10) and (1.11). Solving the resulting system (5.2) numerically yields
the solutions shown in Figure 1 for the one-dimensional diffusion case.

6. Appendix

In the main result of this article, we proved the existence of global solutions for
the proposed system (1.1)–(1.3) in the region Σ2 using an appropriate Lyapunov
functional. The work can be triavially extended to the remaining regions. Recall
that we started by finding an equivalent system in the region in question, then we
used this equivalent system to prove the existence of global solutions. The proof of
Theorem 4.1 in the region Σ2 can be extended to the remaining regions, i.e. Σ1,
Σ3, Σ4, and Σ5, in a similar fashion using the following equivalent systems.
Case 3. For Σ3, a new system of two equations is formed. The first equation is
the result of multiplying the second equation of (1.1) by µ2 and subtracting the
first from it. The second equation is formed by multiplying the second equation of
(1.1) by (−µ1) and adding the first. Hence,

∂(µ2v − u)
∂t

−∆[(cµ2 − a)u+ (dµ2 − b)v] = µ2g(u, v)− f(u, v)

∂(−µ1v + u)
∂t

−∆[(a− cµ1)u+ (−dµ1 + b)v] = −µ1g(u, v) + f(u, v).
(6.1)

Assuming without loss that a < d and with the fact that λ1 and λ2 are the eingen-
values of A, we obtain

∂w

∂t
− λ2∆w = k(w, z)

∂z

∂t
− λ1∆z = h(w, z),

(6.2)

where
w = µ2v − u ≥ 0
z = −µ1v + u ≥ 0,

(6.3)

and
k(w, z) = µ2g(u, v)− f(u, v)

h(w, z) = −µ1g(u, v) + f(u, v).
(6.4)

The rest is trivial.
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Figure 1. Solutions of (5.1) in the one-dimensional case. The top
half depicts solutions of the equivalent diagonal system (w, v) and
the bottom half depicts the raw solutions (u, v).

Case 4. For Σ4, we form a new system of equations based on (1.1). The second
equation is multiplied by µ1 and the first is subtracted from it to yield the first
equation. The second is obtained by multiplying the second equation of (1.1) by
µ2 and subtracting the first from it. Thus we obtain

∂(µ2v − u)
∂t

+ (a− cµ2)∆u+ (b− dµ2)∆v = µ2g(u, v)− f(u, v)

∂(µ1v − u)
∂t

+ (a− cµ1)∆u+ (b− dµ1)∆v = µ1g(u, v)− f(u, v).
(6.5)

Then, if we assume without loss that a < d and with the fact that λ1 and λ2 are
the eingenvalues of A, we have

∂w

∂t
− λ2∆w = k(w, z)

∂z

∂t
− λ1∆z = h(w, z),

(6.6)
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where
w = µ2v − u ≥ 0
z = µ1v − u ≥ 0,

(6.7)

and
k(w, z) = µ2g(u, v)− f(u, v)

h(w, z) = µ1g(u, v)− f(u, v).
(6.8)

Again, the remainder of the proof is trivial.
Case 5. For Σ5, we multiply the second equation of (1.1) by (−µ1) and add the
first to it, and separately multiply it by (−µ2) and add the first to it. This yields
a new system of equations:

∂(−µ2v + u)
∂t

+ (cµ2 − a)∆u+ (dµ2 − b)∆v = f(u, v)− µ2g(u, v)

∂(−µ1v + u)
∂t

+ (cµ1 − a)∆u+ (dµ1 − b)∆v = f(u, v)− µ1g(u, v).
(6.9)

Then, assuming without loss that a < d and with the fact that λ1 and λ2 are the
eingenvalues of A, we can write:

∂w

∂t
− λ2∆w = k(w, z)

∂z

∂t
− λ1∆z = h(w, z),

(6.10)

where
w = −µ2v + u ≥ 0
z = −µ1v + u ≥ 0,

(6.11)

and
k(w, z) = f(u, v)− µ2g(u, v)

h(w, z) = f(u, v)− µ1g(u, v).
(6.12)

The rest follows in the same way as the proof for region Σ2.
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