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BOUNDED SOLVABILITY OF MIXED-TYPE FUNCTIONAL
DIFFERENTIAL OPERATORS FOR FIRST ORDER

BÜLENT YILMAZ, ZAMEDDIN I. ISMAILOV

Abstract. In this article, we study all boundedly solvable extensions gener-
ated by linear mixed-type (forward-backward) functional differential-operator

expressions of first order in the Hilbert space of vector-functions on a finite

interval. Our main tools are methods of operator theory. Also we study the
structure of the spectrum of these extensions.

1. Introduction

Mixed-type (forward-backward) differential equations are a large class of func-
tional differential equations in which time derivative may depend both on past and
future values of the argument. The fundamental interest and analysis to such equa-
tions are motivated by applications in different fields, for example in control the-
ory, population genetics, population growth, epidemiology, nerve conduction theory,
economy, physics, electrodynamics, observer theory, spatial lattice and etc.(see [3]
and references therein). The qualitative analysis of mixed-type functional differen-
tial equations is quite complicated. On the other hand the analysis of considered
boundary or initial value problem for mixed-type functional differential equations
for even order is really complicated.

Mallet-Paret [6] established an existence theory for such equations using a Fred-
holm theory and the implicit function theory. Some spectral investigations of such
equations can be found in [6, 7, 9], and references therein. The numerical approach
to these problems can be seen in Ford, Lumb, Teodoro, Lima et al [1].

Since analytical expression of solutions, eigenvalues and corresponding eigenfunc-
tions is very difficult (they are ill-posed), then the methods of numerical analysis
play significant role in this theory. It is known that an operator

A : D(A) ⊂ H → H

in a Hilbert space H is called boundedly solvable, if A is one-to-one,

AD(A) = H and A−1 ∈ L(H).

Firstly using methods of operator theory, we describe all boundedly solvable ex-
tensions of minimal operator generated by some mixed-type differential operator
expression for first order in the Hilbert space of vector-functions on a finite interval.
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This is done in terms of the boundary values. Lastly, the structure of spectrum of
these extensions is investigated.

2. Description of boundedly solvable extensions

Consider the simplest scalar mixed type functional differential equation in non-
homogeneous form

ẋ(t) = ax(t) + bx(t− α) + cx(t+ τ) + h(t)

α, τ ≥ 0, a, b, c ∈ C, t ∈ [t1, t2]

x(t) = ϕ(t), t ∈ [t1 − α, t1], x(t) = ψ(t), t ∈ [t2, t2 + τ ]
(2.1)

Note that without loss of generality it can be assumed a = 0. For this it is sufficient
to use the substitution v(t) = eatu(t), t ∈ [a, b] .

In addition to the above boundary problem functions ϕ and ψ can be chosen as

ϕ(t) = 0, t ∈ [t1 − α, t1],

ψ(t) = 0, t ∈ [t2, t2 + τ ]

For this it is sufficient to use the substitution

v(t) =


ϕ(t), t1 − α ≤ t < t1

u(t), t1 ≤ t ≤ t2
ψ(t), t2 < t ≤ t2 + τ

−


ϕ(t), t1 − α ≤ t < t1

0, t1 ≤ t ≤ t2
ψ(t), t2 < t ≤ t2 + τ

Hence in this situation it is sufficient to consider the following nonhomogeneous
mixed type functional differential equation

u′(t) = bu(t− α) + cu(t+ τ) + h(t), t ∈ [t1, t2]

with boundary conditions

u(t) = 0, t ∈ [t1 − α, t1) ∪ (t2, t2 + τ ]

Now consider the mixed-type differential-operator expression of the form

l(u) = u′(t) +A(t)u(t− α) +B(t)u(t+ τ)

in the Hilbert space of vector-functions on a finite interval L2(H, (a, b)), where
(1) α ≥ 0, τ ≥ 0;
(2) H is a separable Hilbert space with inner product (., .)H and norm ‖ · ‖H ;
(3) the operator- functions A : [a, b] → L(H) and B : [a, b] → L(H) are

continuous on the uniform operator topology.
We remark that when
(1) α > 0 and τ = 0,
(2) α = 0 and τ > 0,
(3) α > 0 and τ > 0

the differential expression l(.) is expressed as a retarded, advanced and mixed-type
delay differential expression in L2(H, (a, b)).

Now let us introduce the special operators: S−α : L2(H, (a, b))→ L2(H, (a, b)),

S−α u(t) =

{
0 if a < t < a+ α,

u(t− α), if a+ α < t < b
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and S+
τ : L2(H, (a, b))→ L2(H, (a, b)),

S+
τ u(t) =

{
u(t+ τ), if a < t < b− τ,
0, if b− τ < t < b.

According to differential expression l(·) we will consider the differential-operator-
expression in a direct sum

H = L2(H, (a− α, a))⊕ L2(H, (a, b))⊕ L2(H, (b, b+ τ))

k(u) = (u1, l(u2), u3), u = (u1, u2, u3) (2.2)
where

l(u2) = u′2(t) +A(t)S−α u2(t) +B(t)S+
τ u2(t)

On the other hand here we will consider also the simply differential expression

m(v) = v′(t) (2.3)

in L2(H, (a, b)). By the standard way minimal M0 and maximal M operators
corresponding to differential expression (2.3) can be defined in L2(H, (a, b)) (see
[2]).

For the operators S−α and S+
τ we have

‖S−α u‖2L2(H,(a,b)) =
∫ b

a

(Sαu(t), Sαu(t))Hdt

=
∫ b

a+α

(u(t− α), u(t− α))Hdt

=
∫ b−α

a

(u(t), u(t))Hdt

≤
∫ b

a

‖u(t)‖2Hdt = ‖u‖2L2(H,(a,b))

and

‖S+
τ u‖2L2(H,(a,b)) =

∫ b

a

(Sτu(t), Sτu(t))Hdt

=
∫ b−τ

a

(u(t+ τ), u(t+ τ))Hdt

=
∫ b

a+τ

(u(t), u(t))Hdt

≤
∫ b

a

‖u(t)‖2Hdt = ‖u‖2L2(H,(a,b))

for all u ∈ L2(H, (a, b)). Then ‖S−α ‖ ≤ 1, ‖S+
τ ‖ ≤ 1. That is,

S−α , S
+
τ ∈ L(L2(H, (a, b))), α, τ ≥ 0 .

In this work we define

Cατ (t) = A(t)S−α +B(t)S+
τ , a < t < b;

L0 := M0 + Cατ (t),

L0 : W̊ 1
2 (H, (a, b)) ⊂ L2(H, (a, b))→ L2(H, (a, b));

L := M + Cατ (t),
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D(L) : W 1
2 (H, (a, b)) ⊂ L2(H, (a, b))→ L2(H, (a, b)).

Then the operators

K0 := E1 ⊕ L0 ⊕ E2,

K := E1 ⊕ L⊕ E2

are called the minimal and maximal operators corresponding to differential expres-
sions (2.2) respectively. Here E1 and E2 are identity operators in L2(H, (a−α, a))
and L2(H, (b, b+ τ)) respectively.

It is important to note that the solvability of boundary value problem (2.1) is
equivalent to a solvability of operator equation

k(u) = H

where u = (u1, u2, u3), H = (ϕ, h, ψ) in the direct sum of Hilbert spaces

L2(t1 − α, t1)⊕ L2(t1, t2)⊕ L2(t2, t2 + τ)

In this paper the solvability of problem (2.1) will be investigated from this point of
view in more general case of equation and space.

Now let U(t, s), t, s ∈ [a, b], be the family of evolution operators corresponding
to the homogeneous differential equation

U ′t(t, s)f + Cατ (t)U(t, s)f = 0, t, s ∈ (a, b)

U(s, s)f = f, f ∈ H

The operator U(t, s), t, s ∈ [a, b] is a linear continuous boundedly invertible in H
and

U−1(t, s) = U(s, t), s, t ∈ [a, b]
(for more detail analysis of this concept see [5]).

Let us introduce the operator

Uz(t) := U(t, a)z(t), U : L2(H, (a, b))→ L2(H, (a, b)).

In this case, it is easy to see that the following relation for the differentiable vector-
function z ∈ L2(H, (a, b)), z : [a, b]→ H is valid

l(Uz) = Uz′(t) + (U
′

t + Cατ (t)U)z(t) = Um(z)

From this U−1lU(z) = m(z). Hence it is clear that if L̃ is an extension of the
minimal operator L0; that is, L0 ⊂ L̃ ⊂ L, then

U−1L0U = M0, M0 ⊂ U−1LU = M̃ ⊂M, U−1LU = M.

For example, one can easily prove the validity of last relation. It is known that

D(M) = W 1
2 (H(a, b), D(M0) = W̊ 1

2 (H(a, b)).

If u ∈ D(M), then
l(Uz) = Um(z) ∈ L2(H, (a, b));

that is, Uu ∈ D(L). From last relation M ⊂ U−1LU . Contrary, if a vector-function
u ∈ D(L), then

m(U−1v) = U−1l(v) ∈ L2(H, (a, b));
that is, U−1v ∈ D(M). From last relation U−1L ⊂ MU ; that is U−1LU ⊂ M .
Hence U−1LU = M .

Theorem 2.1. kerL0 = {0} and R(L0) 6= L2(H, (0, 1)).
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Theorem 2.2. Each boundedly solvable extension L̃ of the minimal operator L0 in
L2(H, (a, b)) is generated by the differential-operator expression l(.) and boundary
condition

(B + E)u(a) = BU(a, b)u(b), (2.4)

where B ∈ L(H) and E is a identity operator in H. The operator B is determined
uniquely by the extension L̃, i.e L̃ = LB.

On the contrary, the restriction of the maximal operator L0 to the manifold of
vector-functions satisfy the condition (2.4) for some bounded operator B ∈ L(H) is
a boundedly solvable extension of the minimal operator L0 in the L2(H, (a, b)).

Proof. Firstly, it is described all boundedly solvable extensions M̃ of the minimal
operator M0 in L2(H, (a, b)) in terms of boundary values.

Consider the following so-called Cauchy extension Mc,

Mcu = u′(t),

Mc : D(Mc) = {u ∈W 1
2H(a, b) : u(a) = 0} ⊂ L2(H, (a, b))→ L2(H, (a, b))

of the minimal operator M0. It is clear that Mc is a boundedly solvable extension
of M0 and

M−1
c := L2(H, (a, b))→ L2(H, (a, b)), M−1

c f(t) =
∫ t

a

f(x)dx, f ∈ L2(H, (a, b)).

Now we assume that M̃ is a solvable extension of the minimal operator M0 in
L2(H, (a, b)). In this case it is known that domain of M̃ can be written in direct
sum in form

D(M̃) = D(M0)⊕ (M−1
c +B)V,

where V = kerM = H, B ∈ L(H) (see [10]). Therefore for each u(t) ∈ D(M̃) it
holds

u(t) = u0(t) +M−1
c f +Bf, u0 ∈ D(M0), f ∈ H.

That is,
u(t) = u0(t) + tf +Bf, u0 ∈ D(M0), f ∈ H.

Hence
u(a) = Bf, u(b) = f +Bf = (B + E)f

and from these relations it follows that

(B + E)u(a) = Bu(b). (2.5)

On the other hand uniqueness of operator B ∈ L(H) is clear from the work [10].
Therefore M̃ = MB . This completes the necessary part of this assertion.

On the contrary, if MB is a operator generated by differential expression (2.3)
and boundary condition (2.5), then MB is boundedly invertible and

M−1
B := L2(H, (a, b))→ L2(H, (a, b)),

M−1
B f(t) =

∫ t

a

f(x)dx+B

∫ b

a

f(x)dx, f ∈ L2(H, (a, b))

Consequently, all boundedly solvable extensions of the minimal operator M0 in
L2(H, (0, 1)) are generated by differential expression (2.3) and boundary condition
(2.5) with any linear bounded operator B.
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Now consider the general case. For the this in the L2(H, (a, b)) introduce an
operator U : L2(H, (a, b))→ L2(H, (a, b)), by

(Uz)(t) := U(t, a)z(t), z ∈ L2(H, (a, b))

From the properties of family of evolution operators U(t, s), t, s ∈ [a, b] imply that
a operator U is a linear continuous boundedly invertible and

(U−1z)(t) = U(a, t)z(t).

On the other hand from the relations

U−1L0U = M0, U−1L̃U = M̃, U−1LU = M

it implies that an operator U is one-to-one between of sets of boundedly solvable
extensions of minimal operators L0 and M0 in L2(H, (a, b)).

Extension L̃ of the minimal operator L0 is boundedly solvable in L2(H, (a, b))
if and only if the operator M̃ = U−1L̃U is an extension of the minimal M0 in
L2(H, (a, b)). Then u ∈ D(L̃) if and only if

(B + E)U(a, a)u(a) = BU(a, b)u(b);

that is,
(B + E)u(a) = BU(a, b)u(b).

�

This proves the validity of the claims in theorem.
From the above theorem, we have following assertion.

Theorem 2.3. Every boundedly solvable extension K̃ of the minimal operator K0

in H is generated by differential-operator expression (2.2) and boundary condition

(B + E)u2(a) = BU(a, b)u2(b)

where B ∈ L(H) and E are a identity operators in H. The operator B is determined
uniquely by the extension K̃, i.e. K̃ = KB And vice versa.

Corollary 2.4. The resolvent operator Rλ(KB), λ ∈ ρ(KB) of any boundedly solv-
able operator KB of the minimal operator K0, generated by differential expression
(2.2) with boundary condition

(B + E)u2(a) = BU(a, b)u2(b), B ∈ L(H)

is of the form
Rλ(KB) = (E1, Rλ(LB), E2),

where Rλ(KB) : H → H ,

Rλ(LB)f(t) = U(t, a)(E +B(1− eλ))−1B

∫ b

a

eλ(b−s)U(a, s)f(s)ds

+
∫ t

a

eλ(b−s)U(a, s)f(s)ds, f ∈ L2(H, (a, b)).

Example 2.5. Consider the forward-backward differential equation

u = (u1, u2, u3) ∈ L2(t1 − 1, t1)⊕ L2(t1, t2)⊕ L2(t2, t2 + 1)

u′2(t) = au2(t) + bu2(t− 1) + cu2(t+ 1), t ∈ [t1, t2], a, b, c ∈ C



EJDE-2016/181 BOUNDED SOLVABILITY 7

with boundary conditions

u2(t) = ϕ(t), t1 − 1 ≤ t ≤ t1,
u2(t) = ψ(t), t2 ≤ t ≤ t2 + 1,

where ϕ ∈ C[t1 − 1, t1] and ψ ∈ C[t2, t2 + 1] (see [1]).

It is clear that from Theorem 2.2, that all L2-boundedly solvable boundary value
problem in this case can be written in the form

u′2(t) = au2(t) + bu2(t− 1) + cu2(t+ 1) + f2(t)

(γ + 1)U2(t1) = γU(t2, t1)u2(t2)

and in this case solutions have the form

u = (ϕ, u2, ψ), u2(t) = U(t, t1)γ
∫ t2

t1

U(t1, s)f2(s)ds+
∫ t

t1

U(t1, s)f2(s)ds,

where: γ ∈ C, U(t, s) = exp(aE + bS−1 + cS+
1 )(t − s), t1 ≤ t, s ≤ t2, and f2 ∈

L2(t1, t2).

3. Spectrum of boundedly solvable extensions

In this section we study the spectrum structure of boundedly solvable extension
KB = E1 ⊕ LB ⊕E2 of the minimal operator K0 = E1 ⊕ L0 ⊕E2 in Hilbert space

H =L2(H, (a− α, a))⊕ L2(H, (a, b))⊕ L2(H, (b, b+ τ)) .

Firstly, note that as in [4] for the spectrum σ(LB) of any boundedly solvable
extension LB of L0 the following assertion can be proved.

Theorem 3.1. If LB is a boundedly solvable extension of the minimal operator L0

in the Hilbert space L2(H, (a, b)), then spectrum set of LB has the form

σ(LB) =
{
λ ∈ C : λ = ln |µ+ 1

µ
|+ i arg(

µ+ 1
µ

) + 2nπi,

µ ∈ σ(B)\{0,−1}, n ∈ Z
}

The following assertion follows from a result in [8].

Theorem 3.2. If α, τ ≥ 0, α + τ > 0 and KB = E1 ⊕ LB ⊕ E2 is any boundedly
solvable extension on of the minimal operator K0 = E1 ⊕ L0 ⊕ E2 in H, then

σp(KB) = σp(LB) ∪ {1},

σc(KB) =
[(

(σp(LB))c ∩ σc(LB) ∩ σr(LB)
)c]\{1},

σr(KB) = [(σp(LB))c ∩ σr(LB)]\{1},
ρ(KB) = ρ(LB)\{1},

where: σp(.), σc(.), σr(.), and ρ(.) denote point, continuous, residual and resolvent
sets of an operator respectively.

We remark that when ατ = 0, i.e.
(1) α = 0 and τ > 0, advanced type,
(2) α > 0 and τ = 0, retarded type,
(3) α = 0 and τ = 0, ordinary type

the differential expression spectrum of boundedly solvable extensions is easy to be
investigated as in the above theorem.
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