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A PRIORI ESTIMATES AND EXISTENCE FOR QUASILINEAR
ELLIPTIC EQUATIONS WITH NONLINEAR NEUMANN

BOUNDARY CONDITIONS

ZHE HU, LI WANG, PEIHAO ZHAO

Abstract. This article concerns the existence of positive solutions for a non-

linear Neumann problem involving the m-Laplacian. The equation does not

have a variational structure. We use a blow-up argument and a Liouville-
type theorem to obtain a priori estimates and obtain the existence of positive

solutions by the Krasnoselskii fixed point theorem.

1. Introduction and statement of main results

In this work we consider the problem
∆mu+B(z, u,∇u) = 0 in Ω,

|∇u|m−2 ∂u

∂ν
= g(z, u) on ∂Ω,

(1.1)

where Ω is a bounded domain with smooth boundary in RN (N ≥ 2). B(z, u,p) :
Ω×R×RN → R is a continuous function. ∂u

∂ν denotes the outward normal derivative
respect to ∂Ω, g(z, u) : ∂Ω× R→ R is a continuous function.

A function u ∈W 1,m(Ω) ∩ C(Ω̄) is said to be a weak solution for (1.1) if∫
Ω

|∇u|m−2∇u · ∇φdz −
∫
∂Ω

g(z, u)φdσ =
∫

Ω

B(z, u,∇u)φdz

for any φ ∈ C∞(Ω̄).
Similar problems have been studied in many articles, see e.g. [1]-[10]. When B

depends on ∇u, variational methods are barely used to deal with equation (1.1). In
this case, the question of the existence of solutions can be handled by a priori esti-
mates and topological methods. Combining the blow-up (scaling) arguments with
suitable Liouville-type theorems, we can derive a priori estimates. The method was
introduced in [2], where Gidas and Spruck obtain a priori bounds for solutions of
nonlinear elliptic boundary value problem with the nonlinearity depending on x
and u. Later, the method was used to systems in [3]-[5] and more general cases
concerning a single equation were studied in [6]-[12]. Ruiz[6] and Zou[7] consider
nonlinear Dirichlet problem involving the m-Laplacian with the nonlinearity de-
pending on x, u and ∇u under different conditions. In [8], the power of growth of
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u and ∇u maybe critical or supercritical. In [9], the authors obtain similar results
of generalized mean curvature equations.

All articles mentioned before deal with the Dirichlet problems. We consider
the m-Laplacian with nonlinear Neumann boundary conditions. Throughout this
paper, we assume m ∈ (1, N), p ∈ (m − 1,m∗), where m∗ = Nm

N−m − 1. Let

α = p−(m−1)
m and 0 < q < p+1

m (m − 1). First, we list some conditions to the
nonlinear terms B and g.

We say B(z, u,p) satisfies a growth-limit condition (G-L) if there exist positive
constants p and Ki, i = 1, 2, 3, such that the following:

(1) There exists a bounded function F : R+ → R+ such that

|B(z, u,p)| ≤ K1[1 + up + F (|p|)|p|
mp
p+1 ]

for all (z, u,p) ∈ Ω× R+ × RN , and F (|p|)→ 0 as |p| → ∞.
(2) There exists a continuous function b : Ω̄→ R+ such that for any sequences
{(Mk,pk)} ⊂ R+ × RN satisfying Mk →∞ and pk = O(M1+α

k ), it holds

lim
k→∞

B(z,Mk,pk)
Mp
k

= b(z)

uniformly on Ω.
For the nonlinearity g on the boundary we assume the following conditions:
(A1) Assume that g ∈ C(∂Ω × R,R). There exist constants 0 < µ1, µ2 < 1 and

a nondecreasing continuous function Γ(t) : [0,∞) → (0,∞) with |Γ(t)| ≤
K2(1 + tq) such that

|g(z, u)− g(y, v)| ≤ Γ(max{|u|, |v|})[|z − y|µ1 + |u− v|µ2 ]

for all (z, u), (y, v) ∈ ∂Ω× R.
(A2) |g(z, u)| ≤ K3(1 + |u|q) for all (z, u) ∈ ∂Ω× R.
(A3) g(z, u) ≥ 0 for all (z, u) ∈ ∂Ω× R+ and g(z, 0) = 0 for all z ∈ ∂Ω.
The main ingredients of our arguments are a priori estimates on the pairs (u, λ)

solving the problem
∆mu+B(z, u,∇u) + λ = 0 in Ω,

|∇u|m−2 ∂u

∂ν
= g(z, u) on ∂Ω.

(1.2)

By the blow-up method, we first suppose by contradiction that there exists a se-
quence of unbounded solutions. Then by suitable scaling argument and taking
advantage of the regularity results in [13] (see also [14]) we obtain a subsequence
which converges to a nonnegative solution. That contradicts Liouville-type theorem
on the entire space RN or on the half-space RN+ . Our main results can be stated as
follows.

Theorem 1.1. Let Ω be a bounded smooth domain and assume that conditions
(G-L), (A1) and (A2) hold. Then there exists a positive constant C such that
supz∈Ω u(z) + λ ≤ C for all non-negative C1solutions u of (1.2).

By this a priori estimates we can derive the existence of solutions for (1.1). For
this purpose, we need some further hypotheses.

We say B satisfies a positivity condition:
(A4) There exists L > 0 such that B(z, u,p) + L|u|m−1 ≥ 0for all (z, u,p) ∈

Ω× R+ × RN .
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We call B and g “super-linear” at the origin if

(A5) There exists L > 0 such that B(z, u,p) + L|u|m−1 = o(|u|m−1 + |p|m−1),
(z, u,p) ∈ Ω×R+×RN , g(z, u) = o(|u|m−1), (z, u) ∈ ∂Ω×R+ as (u,p)→ 0
uniformly on Ω.

Theorem 1.2. Let Ω be a bounded smooth domain and assume that B and g satisfy
conditions (G-L), (A1)–(A5). Then (1.1) has a positive solution.

This paper is structured as follows. In section 2, we obtain the a priori estimates
for solutions of (1.2). In section 3, we obtain the existence result of (1.1) by the
Krasnoselskii fixed-point theorem.

2. A priori estimates

In this section, we prove Theorem 1.1, the main part of this article. The regu-
larity for solutions and Liouville theorem play an important role in the proof. We
first list two lemmas which will be used later.

Lemma 2.1 (C1,β Regularity [13]). Let Ω be a bounded domain in RN with smooth
boundary, β, µ1, µ2 ∈ (0, 1). Suppose B : Ω× R× RN → R satisfy the condition

|B(x, u,p)| ≤ Λ(|u|)(1 + |p|m), ∀(x, u,p) ∈ Ω× R× RN (2.1)

Suppose g ∈ C(∂Ω× R,R) satisfy the condition

|g(x, ϑ)− g(y, ω)| ≤ Λ(max{|ϑ|, |ω|})[|x−y|µ1 + |ϑ−ω|µ2 ], ∀x, y ∈ ∂Ω,∀ϑ, ω ∈ R,

where Λ : [0,∞)→ (0,∞) is a nondecreasing continuous function.
If u ∈ W 1,p(Ω) ∩ L∞(Ω) is a bounded generalized solution of the boundary value
problem

∆mu+B(z, u,∇u) = 0, z ∈ Ω,

|∇u|m−2 ∂u

∂ν
= g(z, u), z ∈ ∂Ω,

(2.2)

and satisfy supΩ |u| ≤M0, then there is a positive constant

β = β(m,N,Λ(M0),M0, µ1, µ2, sup |g(∂Ω× [−M0,M0])|,Ω)

such that u is in C1,β(∂Ω); moreover

|u|C1,β(Ω) ≤ C(m,N,Λ(M0),M0, µ1, µ2, sup |g(∂Ω× [−M0,M0])|,Ω) (2.3)

Lemma 2.2. Let b > 0 be a constant. Then the problem

∆mu+ bup = 0 in RN+

|∇u|m−2 ∂u

∂ν
= 0 on ∂RN+ ,

does not admit any non-negative non-trivial solutions when p ∈ (m− 1,m∗).

We sketch a proof of Lemma 2.2, our approach is similar to the one used in [15].
Assume that the equation has a non-negative non-trivial solution ω. By reflection
with respect to the hyperplane zN = 0, we obtain ω̃ which is a non-negative non-
trivial solution of corresponding equation on entire space, as the reader can see in
[7]. That is a contradiction and we prove Lemma 2.2.
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Proof of Theorem 1.1. We argue by contradiction and suppose that the conclusion
is not true. Then there exists a sequence of positive solutions {uk, λk} of (1.2) such
that

lim
k→∞

(‖uk‖L∞(Ω) + λk) =∞. (2.4)

For uk ∈ C(Ω̄), there exists ξk ∈ Ω, such that Mk = maxz∈Ω uk(z) = uk(ξk),
k = 1, 2, . . . We introduce the transform

wk(y) = N−1
k uk(z), y = (z − ζk)Nα

k (2.5)

where Nk, ζk will be determined later. Denote Ωk = {y ∈ RN |z = N−αk y+ ζk ∈ Ω}
being the image of Ω after the transform (2.5). By direct calculations, wk satisfies

∆mwk +N
−(1+α)(m−1)−α
k [B(N−αk y + ζk, Nkwk, N

1+α
k ∇wk) + λk] = 0 inΩk,

|∇wk|m−2 ∂wk
∂ν

= N
−(1+α)(m−1)
k g(N−αk y + ζk, Nkwk) on∂Ωk.

(2.6)
For convenience, we denote

θk(y, wk,∇wk) = N
−(1+α)(m−1)−α
k [B(N−αk y + ζk, Nkwk, N

1+α
k ∇wk) + λk] in Ωk,

σk(y, wk) = N
−(1+α)(m−1)
k g(N−αk y + ζk, Nkwk) on ∂Ωk.

We divide the proof into two cases.

Case 1. For a subsequence, but still indexed by k, it holds

lim
k→∞

λk
Mp
k

= 0,

which implies that Mk →∞ as k →∞. In the transform (2.5), take Nk = Mk, ζ
k =

ξk, then

lim
k→∞

λk
Np
k

= lim
k→∞

λk
Mp
k

= 0

and
0 < wk(y) ≤ Mk

Nk
= 1, y ∈ Ωk; wk(0) = 1. (2.7)

Using the Part 1 of growth-limit condition (G-L) we obtain that (for k large
enough)

|θk(y, wk,∇wk)| ≤ K1(3 + |∇wk|m) + 1, (2.8)
In condition (A1), constant µ2 ∈ (0, 1) can be replaced by µ3 ∈ (0,min{µ2,

p+1
m (m−

1)− q}] such that

|g(z, u)− g(y, v)| ≤ K̃2[1 + (max{|u|, |v|})q](|z − y|µ1 + |u− v|µ3) (2.9)

for all (z, u), (y, v) ∈ ∂Ω× R. by assumptions (A1) and (A2). Then we have

|σk(x, ω)− σk(y, ϑ)|

≤ K̃2M
− p+1

m (m−1)

k [1 +Mq
k (max{|ω|, |ϑ|})q](M−αµ1

k |x− y|µ1 +Mµ3
k |ω − ϑ|

µ3)

≤ K̃2[1 + (max{|ω|, |ϑ|})q](|x− y|µ1 + |ω − ϑ|µ3),
(2.10)

By condition (A2), we have

M
− p+1

m (m−1)

k g(M−
p−(m−1)

m

k y + ξk,Mkwk) ≤ K3M
− p+1

m (m−1)

k (1 + |Mkwk|q). (2.11)
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The transform (2.5) flatten the boundary ∂Ω, then for k large enough, ‖∂Ωk‖1,β0 ≤
‖∂Ω‖1,β0 . Now we use a C1,β regularity result Lemma 2.1. From [13] (see also [14])
and (2.8), (2.10) to conclude that there exist positive constants β = β(K1, N,m) ∈
(0, β0) and C = C(K1,K2,K3, N,m,Γ(1), sup∂Ω×[−1,1] g(z, t),Ω) > 0 such that

‖wk‖C1,β(Ωk) ≤ C, (2.12)

where C is a constant independent of k.
Set dk = dist(ξk, ∂Ω), then dist(O, ∂Ωk) = Mα

k dk. Next we consider two sub-
cases:

Unbounded {Mα
k dk}. The sequence {Mα

k dk} is unbounded, we assume there exists
a subsequence {Mα

k dk} → ∞ as k →∞. With the aid of (2.7) and (2.12), we can
apply the Arzela-Ascoli theorem and the diagonal line argument to infer that there
exists w ∈ C1(RN ), such that

lim
k→∞

wk(y) = w(y) ≥ 0, w(0) = 1, (2.13)

uniformly on any compact subset of RN in C1−topology.
Multiplying (2.6) by a test function φ ∈ C∞(RN ) and integrating by parts on

Ωk, we obtain∫
Ωk

|∇wk|m−2∇wk · ∇φdy −
∫
∂Ωk

M
− p+1

m (m−1)

k g(M−
p−(m−1)

m

k y + ξk,Mkwk)φds

= M−pk

∫
∂Ωk

[B(M−
p−(m−1)

m

k y + ξk,Mkwk,M
p+1
m

k ∇wk) + λk]φdy.

On account of (2.11), we have limk→∞M
− p+1

m (m−1)

k g(M−
p−(m−1)

m

k y+ξk,Mkwk) =
0. Combining the condition (G-L) part 2 with the above equality, we obtain

∆mw + b(ξ0)wp = 0inRN ,

where ξ0 = limk→∞ ξk ∈ Ω̄, but w(0) = 1. This contradicts the Liouville-type
theorem on entire space RN [7, Therorem 1.1 ].

Bounded {Mα
k dk}. The sequence {Mα

k dk} is bounded as k →∞. So there exists a
subsequence such that {Mα

k dk} → ε ≥ 0. Denote z = (z′, zN ) = (z1, . . . , zN−1, zN )
for any z ∈ RN . With proper translation and rotation, one may assume ξk =
(0′, |ξk|), dk = dist(O, ξk) = |ξk|, where O = (0′, 0) ∈ ∂Ω is the origin in RN and
ξk is the positive zN -direction. By the transform (2.5) for any y ∈ Ωk, we have
yN > −ε and the sequence of the domains Ωk converges to the half-space, namely
limk→∞ Ωk = RNε := {y ∈ Rn|yN > −ε}.

By similar arguments as in 2.1.1, we deduce from (2.5)-(2.12) that there exists
w ∈ C1(RNε ) such that

lim
k→∞

wk(y) = w(y) ≥ 0, w(0) = 1, (2.14)

uniformly on any compact subset of RNε in C1−topology. By the same approach in
2.1.1, we have

∆mw + b(ξ0)wp = 0 in RNε ,

|∇w|m−2 ∂w

∂ν
= 0 on ∂RNε ,
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where ξ0 = limk→∞ ξk ∈ Ω. On account of the Liouville-type theorem on half space
RNε in Lemma 2.2, this is a contradiction.

Case 2. There exists c0 > 0 such that

lim inf
k→∞

λ
1/p
k

Mk
= c0,

which implies that λk → ∞ as k → ∞. Fix any x0 ∈ Ω and take Nk = λ
1/p
k ,

ζk = x0 in (2.5), then we have

lim
k→∞

λk
Np
k

= 1,

0 < wk(y) ≤ Mk

Nk
=

1
c0
, y ∈ Ωk.

Now since dist(O, ∂Ωk) = Nα
k dist(x0, ∂Ω) → ∞ as k → ∞, then Ωk converges

to the entire space RN . By similar procedure in 2.1, we obtain that there exists
w ∈ C1(RN ) such that

lim
k→∞

wk(y) = w(y) ≥ 0

uniformly on any compact subset of RN in C1-topology and w satisfies

∆mw + b(x0)wp + 1 = 0 in RN .

This contradicts the Liouville-type theorem on entire space RN [7, Lemma 2.8 Part
1].

In conclusion, the hypothesis (2.4) is invalid. We completed the proof. �

3. Existence

In this section, we prove the existence of a positive solution for (1.1). We use a
version of a fixed point theorem of Krasnoselskii [6]. In this procedure, the a priori
estimates Theorem 1.1 are crucial.

Lemma 3.1. Let C be a cone in a Banach X space and Λ : C → C a compact
operator such that Λ(0) = 0. Assume that there exists r > 0, satisfying:

(1) u 6= tΛ(u) for all ‖u‖ = r, t ∈ [0, 1].
Assume also that there exists a compact homotopy H : [0, 1] × C → C, and R > r
such that

(2) Λ(u) = H(0, u) for all u ∈ C;
(3) H(t, u) 6= ufor any ‖u‖ = R, t ∈ [0, 1];
(4) H(1, u) 6= ufor any ‖u‖ ≤ R.

Let D = {u ∈ C : r < ‖u‖ < R}, then Λ has a fixed point in D.

Proof of Theorem 1.2. We use Lemma 3.1. For each f ∈ C(Ω), h ∈ Cγ(∂Ω), we
denote by K(f, h) ∈ C1,β(Ω) the unique weak solution of the problem

−∆mu+ L|u|m−2u = f in Ω,

|∇u|m−2 ∂u

∂ν
= h on ∂Ω.

The operator K : C(Ω)×Cγ(∂Ω)→ C1,β(Ω) is bounded, continuous and positive,
that is K(f, h) ≥ 0 provided f, h ≥ 0 [16, Proposition 2.7(3),(4)]. Define T :
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C1(Ω)→ C(Ω)×Cγ(∂Ω), T (u) = (B(z, u,∇u) +L|u|m−2u, g(x, u)). T is bounded
and continuous. Define Λ = K ◦ T : C1(Ω)→ C1,β(Ω) ↪→ C1(Ω).

It is clear that the fixed-point of operator Λ is a solution of (1.1). The operator Λ
is continuous and compact sinceK◦T is continuous and bounded and the embedding
C1,β(Ω) ↪→ C1(Ω) is compact.

Let X := C1(Ω), C= {u ∈ X|u ≥ 0} is a cone in X. In the sequel, ‖·‖ denotes the
supremum C1-norm on Ω. Λ(0) = 0 since K(0, 0) = 0. By the weak comparison
principle for the m-Laplace operator with Neumann boundary condition (by the
Maximum principle in [17]) and conditions (A4) and (A3), we have Λ : C → C.

First we verify condition (1) of Lemma 3.1. Consider u = λΛ(u) in C\{0} for
certain λ ∈ [0, 1], that is, u satisfies the following equation

−∆mu+ L|u|m−2u = λm−1[B(z, u,∇u) + L|u|m−2u] inΩ,

|∇u|m−2 ∂u

∂ν
= λm−1g(x, u) on∂Ω,

(3.1)

By taking u as a test function and using the condition (A5), we have∫
Ω

|∇u|mdz +
∫

Ω

L|u|mdz

= λm−1

∫
Ω

(B(z, u,∇u)u+ L|u|m)dz + λm−1

∫
∂Ω

g(z, u)uds

=
∫

Ω

o(|u|m + |∇u|m)dz +
∫
∂Ω

o(|u|m)ds

as ‖u‖ → 0. Hence we can choose r > 0 small enough such that equation u = λΛ(u)
has no positive solutions in Br(0)\{0} for all λ ∈ [0, 1].

Now we verify (2)–(4) of Lemma 3.1. By Theorem 1.1, there exists a positive
constant λ0, such that problem (1.2) has no solution. Define H : [0, 1]× C → C as
H(t, u) = K ◦ (T (u) + t(λ0, 0)). Clearly, u = H(t, u) is equivalent to

∆mu+B(z, u,∇u) + tλ0 = 0 in Ω,

|∇u|m−2 ∂u

∂ν
= g(z, u) on ∂Ω.

(3.2)

Obviously H(0, u) = Λ(u) for any u ∈ C, namely, (2) holds. By Theorem 1.1
solutions of (3.2) are a priori bounded in the uniform norm. There exists a constant
R > r, such that each solution of (3.2) satisfies ‖u‖C1(Ω) < R, and then (3) holds.
When t = 1, (3.2) has no solution in view of the choice of the number λ0, this implies
(4) holds. Therefore the mapping Λ has a fixed point u ∈ C and r < ‖u‖ < R,
which is a non-negative solution of (1.1). The proof is complete. �
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