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A PRIORI ESTIMATES AND EXISTENCE FOR QUASILINEAR
ELLIPTIC EQUATIONS WITH NONLINEAR NEUMANN
BOUNDARY CONDITIONS

ZHE HU, LI WANG, PEIHAO ZHAO

ABSTRACT. This article concerns the existence of positive solutions for a non-
linear Neumann problem involving the m-Laplacian. The equation does not
have a variational structure. We use a blow-up argument and a Liouville-
type theorem to obtain a priori estimates and obtain the existence of positive
solutions by the Krasnoselskii fixed point theorem.

1. INTRODUCTION AND STATEMENT OF MAIN RESULTS

In this work we consider the problem
Apu+ B(z,u,Vu) =0 in Q,

1.1
|Vu|m72% =g(z,u) on 0%, (1)

where  is a bounded domain with smooth boundary in RN (N > 2). B(z,u,p) :
OxRxRY — R is a continuous function. % denotes the outward normal derivative
respect to 99, g(z,u) : 02 x R — R is a continuous function.

A function u € WH™(Q) N C(Q) is said to be a weak solution for (1.1]) if

/ |Vu|""2Vu - Védz — / g(z,u)pdo = | B(z,u,Vu)pdz
Q o0 Q
for any ¢ € C°°(Q).

Similar problems have been studied in many articles, see e.g. [1]-[10]. When B
depends on Vu, variational methods are barely used to deal with equation (1.1). In
this case, the question of the existence of solutions can be handled by a priori esti-
mates and topological methods. Combining the blow-up (scaling) arguments with
suitable Liouville-type theorems, we can derive a priori estimates. The method was
introduced in [2], where Gidas and Spruck obtain a priori bounds for solutions of
nonlinear elliptic boundary value problem with the nonlinearity depending on =z
and wu. Later, the method was used to systems in [3]-[5] and more general cases
concerning a single equation were studied in [6]-[I2]. Ruiz[6] and Zou[7] consider
nonlinear Dirichlet problem involving the m-Laplacian with the nonlinearity de-
pending on z, u and Vu under different conditions. In []], the power of growth of
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u and Vu maybe critical or supercritical. In [9], the authors obtain similar results
of generalized mean curvature equations.

All articles mentioned before deal with the Dirichlet problems. We consider
the m-Laplacian with nonlinear Neumann boundary conditions. Throughout this
paper, we assume m € (1,N), p € (m — 1,m*), where m* = A],Vf”;l — 1. Let

o =222 and 0 < g < 2EL(;mm — 1). First, we list some conditions to the

nonlinear terms B and g.
We say B(z,u,p) satisfies a growth-limit condition (G-L) if there exist positive
constants p and K;,i = 1,2, 3, such that the following:
(1) There exists a bounded function F : R; — R, such that

|B(z,u,p)| < K1[1 +u? + F(|p|)|p|»#T]
for all (z,u,p) € 2 x Ry x RN and F(|p|) — 0 as |p| — .

(2) There exists a continuous function b : @ — R, such that for any sequences
{(My,,pr)} C Ry x RY satisfying My, — oo and py = O(M,. %), it holds

. B(Z7 Mk)a pk)
dm = e
uniformly on .

For the nonlinearity g on the boundary we assume the following conditions:

(A1) Assume that g € C(99 x R,R). There exist constants 0 < p1, 2 < 1 and
a nondecreasing continuous function I'(¢) : [0,00) — (0,00) with |T'(¢)] <
K5(1 4 t%) such that

l9(2,u) = g(y, v)| < T(max{[ul, [v[})[|z = y[** + |u—v[*?]
for all (z,u), (y,v) € 0 x R.
(A2) |g9(z,u)| < K3(1+ |u|?) for all (z,u) € 90 x R.
(A3) g(z,u) >0 for all (z,u) € 9Q x Ry and ¢(z,0) =0 for all z € IN.

The main ingredients of our arguments are a priori estimates on the pairs (u, A)
solving the problem

Apu+ B(z,u,Vu)+ A =0 in

1.2
|Vu|m_2% =g(z,u) on 9. (12)

By the blow-up method, we first suppose by contradiction that there exists a se-
quence of unbounded solutions. Then by suitable scaling argument and taking
advantage of the regularity results in [13] (see also [I4]) we obtain a subsequence
which converges to a nonnegative solution. That contradicts Liouville-type theorem
on the entire space RY or on the half-space Rf . Our main results can be stated as
follows.

Theorem 1.1. Let Q2 be a bounded smooth domain and assume that conditions
(G-L), (A1) and (A2) hold. Then there exists a positive constant C such that
sup,cq u(z) + A < C for all non-negative C'solutions u of (1.2).

By this a priori estimates we can derive the existence of solutions for . For
this purpose, we need some further hypotheses.
We say B satisfies a positivity condition:
(A4) There exists L > 0 such that B(z,u,p) + Llu/™"! > Ofor all (z,u,p) €
QO xRy xRV,
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We call B and g “super-linear” at the origin if
(A5) There exists L > 0 such that B(z,u,p) + Llu|™ ! = o(Ju|™"! + |p|™~1),
(z,u,p) € AxRy xRN g(z,u) = o(|u|™1), (z,u) € 0N xR; as (u,p) — 0
uniformly on Q.

Theorem 1.2. Let Q) be a bounded smooth domain and assume that B and g satisfy
conditions (G-L), (A1)-(Ab5). Then (1.1)) has a positive solution.

This paper is structured as follows. In section 2, we obtain the a priori estimates
for solutions of (1.2)). In section 3, we obtain the existence result of (1.1)) by the
Krasnoselskii fixed-point theorem.

2. A PRIORI ESTIMATES

In this section, we prove Theorem [I.I] the main part of this article. The regu-
larity for solutions and Liouville theorem play an important role in the proof. We
first list two lemmas which will be used later.

Lemma 2.1 (C"# Regularity [I3]). Let Q be a bounded domain in RN with smooth
boundary, B, p1, 2 € (0,1). Suppose B : Q x R x RV — R satisfy the condition

|B(z,u,p)| < Alul)(1+[p|™), V¥(z,u,p) € 2 xRxRY (2.1)
Suppose g € C(0Q x R, R) satisfy the condition
l9(2,9) = g(y, w)| < Almax{[J], |w|})[|z —y["* +[) —w[**], Vz,y € 02V, w € R,

where A : [0,00) — (0,00) is a nondecreasing continuous function.
If u € WHP(Q) N L*°(Q) is a bounded generalized solution of the boundary value
problem
Apu+ B(z,u,Vu) =0, z€Q,
2.2
|Vu|m_2% =g(z,u), =z€09Q, 22)
and satisfy supg |u| < My, then there is a positive constant
ﬁ = ﬂ(ma N, A(M0)7 Mo, H1, f2, Sup ‘g(aQ X [_MO7 MOD|a Q)
such that u is in C1P(0Q); moreover
|u‘cl,5(§) S C(ma Na A(Mo)7 M07 M1, M2, SUp |g(8Q X [_M07 MO])|a Q) (23)
Lemma 2.2. Let b > 0 be a constant. Then the problem

Apu+buP =0 in Rf
9]
|Vu|m_28—q: =0 onORY,

does not admit any non-negative non-trivial solutions when p € (m — 1, m*).

We sketch a proof of Lemma our approach is similar to the one used in [I5].
Assume that the equation has a non-negative non-trivial solution w. By reflection
with respect to the hyperplane zy = 0, we obtain @ which is a non-negative non-
trivial solution of corresponding equation on entire space, as the reader can see in
[7]. That is a contradiction and we prove Lemma
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Proof of Theorem[I.1. We argue by contradiction and suppose that the conclusion
is not true. Then there exists a sequence of positive solutions {ug, Ax} of (1.2)) such
that

klinolo(HUkHLw(Q) + )\k;) = OQ. (24)

For up € C(Q), there exists £¥ € Q, such that My = max,cqui(z) = up(€F),
k=1,2,... We introduce the transform
wi(y) = Ny tuk(2), y= (2= N (2.5)
where Ny, ¢* will be determined later. Denote Qi = {y € RV |z = N, “y+(* € Q}
being the image of Q after the transform (2.5). By direct calculations, wy, satisfies
Ay, + Ny Um0 B(N=ay 4 ¢ Npwg, N}V wg) + Al =0 inQy,

Ok _

5 Nk*(lJra)(mfl)g(Nkfay + <k7 Nk:wk) ondYy..

|Vwk|m_2

(2.6)
For convenience, we denote

Ok (y, wi, V) = N U070 B(N=ey 4 % Nypwy, NJFOVwg) + Ag] - in Qy,
orly,wi) = Ny T Vg ey + ¢ Nyw) - on 00
We divide the proof into two cases.

Case 1. For a subsequence, but still indexed by k, it holds
lim — =0,

which implies that M), — oo as k — oco. In the transform (2.5)), take Ny = My, ¢*F =
€%, then

. .Y
e e 7
and
0 <w(y) < Fk =1, ye; w(0)=1 (2.7)
2

Using the Part 1 of growth-limit condition (G-L) we obtain that (for k large
enough)
0% (y, wr, Vr)| < K1 (3 4 [V [™) + 1, (2.8)

p+1
m

In condition (A1), constant us € (0,1) can be replaced by ps € (0, min{ps,
1) — q}] such that

19(z,u) = g(y, v)| < KoL+ (max{|ul, [v]})) (|2 =y + |u—v]**) (2.9)
for all (z,u), (y,v) € 90 x R. by assumptions (Al) and (A2). Then we have
|Uk(.’E,W) - O-k:(yaﬁ)l
~ _prlm —a 1 3 13
< KoMy V14 M (max{|w], [9]) )M o — gl + MR w — 9]
< K1+ (max{lwl, 911 (|z =y + |w —9]"2),

(m—

(2.10)
By condition (A2), we have

_p+1 _p—(m-1)

. el
M o ( 1)9(Mk oy + &8 Mywy) < K3M, m 1)(1+|Mkwk|q)~ (2.11)
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The transform flatten the boundary 9, then for k large enough, ||0Qx||1,5, <
1092|1,5,- Now we use a C*# regularity result Lemma From [I3] (see also [14])
and (2.8), to conclude that there exist positive constants 3 = B(K1, N,m) €
(0, 80) and C = C (K1, K2, K3, N,m, (1), supgq 1,11 9(2, 1), 2) > 0 such that

lwkllore@ry < O, (2.12)

where C' is a constant independent of k.
Set dj, = dist(¢F,00), then dist(O,0Q;) = Mdy. Next we consider two sub-
cases:

Unbounded {M@dy}. The sequence {Md;,} is unbounded, we assume there exists
a subsequence {M2d,} — oo as k — oo. With the aid of (2.7) and (2.12)), we can
apply the Arzela-Ascoli theorem and the diagonal line argument to infer that there
exists w € C*(RY), such that
klim wi(y) = w(y) > 0,w(0) =1, (2.13)

uniformly on any compact subset of RY in C''—topology.

Multiplying (2.6)) by a test function ¢ € C>(RY) and integrating by parts on
Q, we obtain

p—(m—1)

D (M y 4 €8, Mywy)dds

p+1

/ |Vwe |2 Vwy, - Vody — M, ™
Q a0y,

_ _p=(m=1) pt1
:Mkp/ [B(M, ™ y+&" Mywy, M, ™ V) + \i]ody.
a0,

p+1(m71) _p—(m—

_ 1)
On account of (2.11)), we have limy,_.oc M, ™ g(M, ™ y+&F, Mywy) =
0. Combining the condition (G-L) part 2 with the above equality, we obtain
Aw + b(E0)wP = 0inRY,

where € = limy_o &% € Q, but w(0) = 1. This contradicts the Liouville-type
theorem on entire space RY [7l Therorem 1.1 ].

Bounded {M}}dy}. The sequence {Mdy} is bounded as k — co. So there exists a
subsequence such that {Mgdy} — € > 0. Denote z = (¢, 2n) = (21,...,2N-1,2N)
for any z € RN. With proper translation and rotation, one may assume &F =
(0, |€¥]), dp = dist(O, %) = |€F|, where O = (0,0) € 09 is the origin in RY and
€* is the positive zy-direction. By the transform for any y € ., we have
yn > —¢ and the sequence of the domains 2 converges to the half-space, namely
limg_ o0 O = Rév ={y e R"|lyy > —¢}.
By similar arguments as in 2.1.1, we deduce from — that there exists
w € C*(RY) such that
lim wi(y) =w(y) >0, w(0)=1, (2.14)

k—o0

uniformly on any compact subset of @ in C'—topology. By the same approach in
2.1.1, we have
Apw 40w =0 in RY,
ow

m—-2~" N
|Vw| 5 0 on JR.,
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where €0 = lim_, o £* € Q. On account of the Liouville-type theorem on half space
RY in Lemma this is a contradiction.

Case 2. There exists ¢g > 0 such that

1/p
lim inf =&
k—oo k

= Co,

which implies that Ay — oo as k — oo. Fix any zy €  and take N = /\Ilc/p,

¢* = g in (2.5), then we have

Ak
lim — =1
kLrI;oN]f ’
M, 1
0< < — = —,y € Q.
wk(y)ka Coy k

Now since dist(O, 0;) = N dist(zo,0Q) — oo as k — oo, then Qj converges
to the entire space RY. By similar procedure in 2.1, we obtain that there exists
w € CYRYN) such that

lim wg(y) =w(y) >0
k—o0
uniformly on any compact subset of RY in C'-topology and w satisfies
Apw +b(zo)w? +1 =0 in RV,
This contradicts the Liouville-type theorem on entire space RY [7, Lemma 2.8 Part
1].
In conclusion, the hypothesis (2.4]) is invalid. We completed the proof. ([

3. EXISTENCE

In this section, we prove the existence of a positive solution for (|1.1)). We use a
version of a fixed point theorem of Krasnoselskii [6]. In this procedure, the a priori
estimates Theorem [[.1] are crucial.

Lemma 3.1. Let C be a cone in a Banach X space and A : C — C a compact
operator such that A(0) = 0. Assume that there exists r > 0, satisfying:

(1) w# tA(u) for all ||ul| =r,t € 0,1].
Assume also that there exists a compact homotopy H : [0,1] x C — C, and R > r
such that

(2) A(u) = H(0,u) for allu € C;

(3) H(t,u) # ufor any |lul| = R,t € [0,1];

(4) H(1,u) # ufor any ||u|| < R.
Let D={ueC:r <|ul| <R}, then A has a fized point in D.
Proof of Theorem[I.3. We use Lemma For each f € C(Q),h € C7(99Q), we
denote by K(f,h) € C*#(Q) the unique weak solution of the problem

~Apu+ L™ ?u=f inQ,
|Vu|m*2@ =h on 09.
ov

The operator K : C(Q) x C7(99) — C#(Q) is bounded, continuous and positive,
that is K(f,h) > 0 provided f,h > 0 [I6, Proposition 2.7(3),(4)]. Define T :
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CH(Q) — C(Q) x C7(09), T(u) = (B(z,u, Vu) + L|u|™2u, g(x,u)). T is bounded
and continuous. Define A = K o T': C}(Q) — C1A(Q) — CH(Q).

It is clear that the fixed-point of operator A is a solution of (L.1). The operator A
is continuous and compact since Ko7' is continuous and bounded and the embedding
CHA(Q) — C1(Q) is compact.

Let X := C1(Q),C= {u € X|u > 0} is a cone in X. In the sequel, ||-|| denotes the
supremum C'-norm on Q. A(0) = 0 since K(0,0) = 0. By the weak comparison
principle for the m-Laplace operator with Neumann boundary condition (by the
Maximum principle in [I7]) and conditions (A4) and (A3), we have A : C — C.

First we verify condition (1) of Lemma Consider v = AA(u) in C\{0} for
certain A € [0, 1], that is, u satisfies the following equation

—Apu+ Liu|/™?u = A B(z,u, Vu) + Llu|™ 2u]  inQ,
3.1
% = A""lg(z,u) ondQ, (3.1)

By taking u as a test function and using the condition (A5), we have

/|Vu|mdz+/L|u|mdz

Q Q

:)\m_l/(B(z,u,Vu)u+L|u|m)dz+)\m_1/ g(z, u)uds
Q o0

|Vu|m72

= [ otfu™ + V)= + [ oful)as
Q o0
as ||u|| — 0. Hence we can choose r > 0 small enough such that equation v = AA(u)
has no positive solutions in B,.(0)\{0} for all A € [0, 1].
Now we verify (2)—(4) of Lemma By Theorem there exists a positive
constant Ag, such that problem has no solution. Define H : [0,1] x C — C as
H(t,u) = K o (T(u) 4+ t(Ao,0)). Clearly, u = H(t,u) is equivalent to

Apu+ B(z,u,Vu) +tAog =0 in Q,

3.2
|Vu|m72% =g(z,u) on 0. (3.2)
v

Obviously H(0,u) = A(u) for any u € C, namely, (2) holds. By Theorem [1.1
solutions of are a priori bounded in the uniform norm. There exists a constant
R > r, such that each solution of satisfies [|ul|c1 ) < R, and then (3) holds.
Whent =1, has no solution in view of the choice of the number Ay, this implies
(4) holds. Therefore the mapping A has a fixed point v € C and r < |ju|| < R,
which is a non-negative solution of . The proof is complete. (]
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