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INTEGRABILITY OF THE LIMIT MODEL FOR A VACUUM
DIODE AND A SOLUTION TO THE SINGULAR

BOUNDARY-VALUE PROBLEM

ALEXANDER A. KOSOV, EDWARD I. SEMENOV, ALEXANDER V. SINITSYN

Abstract. This article concerns singular boundary-value problems for a vac-

uum diode model. We prove the integrability of a system of nonlinear differ-

ential equations and construct a complete system of the first integrals; thus
developing a method for solving singular boundary value problems. Also we

study the asymptotic behavior of the solution in a neighborhood of the singular

point.

1. Introduction

Modeling a plasma as a flow of charged particles interacting in a vacuum usually
needs the application of the Vlasov-Maxwell or Vlasov-Poisson equations [1, 3, 4, 6].
When solving these nonlinear systems of partial differential equations (PDEs) with
initial and boundary conditions, it is necessary to find the solutions and ascertain
their properties in a number of conditions (positiveness, monotonicity, singularity,
etc.).

We study a simpler model described by a system of ordinary differential equations
with boundary conditions that retains the principal physical properties of the initial
model, and is a more efficient way to overcome possible mathematical difficulties.
This approach allows us to obtain a limit model for plane vacuum diode magnetic
insulation. This model is given by a system of two singular second-order ODEs [2].

Related results to this limit model and the boundary-value problem are found
in [2, 8] where analytical and numerical methods are combined. In this article,
we concentrate on exact analytical methods to integrate the corresponding nonlin-
ear systems and transform the singular boundary value problem into a system of
nonlinear equations.

This article is structured as follows. Section 2 presents the description of the
model, the formulation of the corresponding singular boundary-value problem, and
the definition of a solution taht differs from the classical solution. Section 3 presents
the mathematical model in Hamiltonian form. Using Liouville theorem, we prove
the system integrability and construct a complete system of four first integrals. Here
the Hamiltonian form of equations allows us to apply the classic integration methods
for nonlinear systems developed in analytical mechanics [10]. Section 4 describes the
method of constructing a solution of the singular boundary value problem, which is
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based on the use of the complete system of first integrals. Section 5 presents another
method of integrating nonlinear systems, which is based on the replacement of the
variables represented in a special form proposed by the authors in [7]. This method
reduces the problem of integration to the same quadratures described in Section 3.
The quadratures are represented by some combinations of elementary and elliptic
functions. Section 6 describes a class of exact solutions for the nonlinear system
in explicit form. The cases, when the explicit solutions imply exact solutions of
non-singular boundary-value problems, and the cases, when a sequence of explicit
solutions approximate a solution of the initial singular boundary-value problem
(in some sense), are given. Section 7 shows an asymptotic representation of the
solution for the boundary value problem in the vicinity of the singular point. In such
representations, in particular, the electric potential approximation up to O(x4/3),
agree with the estimates of the upper and lower solutions (obtained by a different
method) to the boundary-value problem formulated by the authors [8]. Section 8
gives examples illustrating the numerical results obtained.

2. Model and problem statement

The limit model of a plane vacuum diode was proposed in [2]. The model consists
of the two second-order nonlinear ordinary differential equations:

d2ϕ

dx2
= j

(1 + ϕ)√
(1 + ϕ)2 − a2 − 1

,
d2a

dx2
= j

a√
(1 + ϕ)2 − a2 − 1

, (2.1)

where the independent variable x ∈ [0, 1] denotes a relative distance from the cath-
ode (x = 1 corresponds to the anode). The function ϕ(x) describes the distribution
of the electric potential in the process of moving from the cathode to anode; a(x) is
the potential of the magnetic field; the model’s parameter j denotes the density of
current through the diode. System (2.1) describes the electric and magnetic fields
inside the diode, and its solution shall satisfy the following boundary conditions:

ϕ(0) = 0, a(0) = 0, ϕ′(0) =
dϕ

dx
(0) = 0, (2.2)

ϕ(1) = ϕ1, a(1) = a1. (2.3)

The boundary-value problem (2.1)–(2.3) is singular: after substituting conditions
(2.2) into equations (2.1) for x = 0, the denominator vanishes. Therefore, the clas-
sical definition of the solution as a pair of functions (ϕ(x), a(x)) satisfying (2.2)
and (2.3) and converting (2.1) into an identity on an interval x ∈ [0, 1] (the deriva-
tives at the ends of the interval are considered as unilateral) cannot be applied to
this problem. So, it is necessary to define the concept of a solution for (2.1)–(2.3).
The parameter j is free, see [2], and must be found together with the solution of a
boundary value problem (2.1)–(2.3).

Let Ω = {(ϕ, a) : (1+ϕ)2−a2−1 > 0}. On each compact subset Ω the right sides
of (2.1) have bounded partial derivatives. Therefore, the conditions of existence and
uniqueness of solutions for the initial-value problem (2.1) are satisfied. Furthermore,
due to obvious symmetry we may confine our consideration to investigation of only
the solutions with positive values of 1 + ϕ(x), a(x), i.e., consider the problem only
in domain Ω+ = Ω ∩ {(ϕ, a) : 1 + ϕ > 0, a > 0}.

Let the conditions of the theorem on existence and uniqueness be satisfied for
the right end, i.e. Θ1 = (1 + ϕ1)2 − 1− a2

1 > 0.
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Definition 2.1. A pair (ϕ(x), a(x)) of twice differentiable functions in ]0, 1] as-
suming values on Ω+ is a solution of (2.1)–(2.3) when

(1) ϕ(1) = ϕ1, a(1) = a1;
(2) on each interval x ∈ [ε, 1], 0 < ε < 1 – after the substitution – (ϕ, a) satisfies

(2.1);
(3) there are limits limε→+0 ϕ(ε) = 0, limε→+0 a(ε) = 0, limε→+0 ϕ

′(ε) = 0.

At x = 0 this function is redefined by the first two relations in its property (3).

Properties of the above definition:

(a) This definition does not necessitate substitution of the boundary conditions
at the interval’s left end into the system, what allows us to avoid the division
by zero;

(b) It does not impose any restrictions on the behavior of the first derivative
a′(x) and the second derivatives at the interval’s left end;

(c) It may obviously be upgraded also for the case, when Θ1 = (1 +ϕ1)2− 1−
a2

1 = 0 and when there is a singularity at the right end of the interval.
Furthermore, this definition allows for limε→+0 a

′(ε) not to exist or to
be infinity.

The principal objective of the work initiated by the authors is to develop a
method for constructing a solution of the singular boundary-value problem (2.1)–
(2.3) in terms of Definition 2.1. To this end it is necessary to show that system
(2.1) is integrable in quadratures and to construct a complete system of the first
integrals. Furthermore, formulas in explicit form, which approximate the solution
of the boundary-value problem at x = 0, are obtained.

3. Representation of the problem in Hamiltonian form and its
integrability

Let

t = x, q1 = ϕ(x), q2 = a(x), p1 = −ϕ′(x),

p2 = a′(x), q = col(q1, q2) ∈ R2, p = col(p1, p2) ∈ R2,

H(q, p) =
1
2

(−p2
1 + p2

2) + j
√

(1 + q1)2 − q2
2 − 1.

Hence (2.1) is equivalent to

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
. (3.1)

In terms of the new variables the boundary conditions may be rewritten as

q1(0) = 0, q2(0) = 0, p1(0) = 0, (3.2)

q1(1) = Q1 ≡ ϕ1, q2(1) = Q2 ≡ a1. (3.3)

The new boundary-value problem (3.1)–(3.3) is equivalent to the initial problem
(2.1)–(2.3). It differs from the initial system only by the Hamiltonian form of
the system of differential equations. The Hamiltonian form of (3.1)–(3.3) allows
one to apply the integration technique developed for solving problems of analytical
mechanics [10].
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The Hamiltonian system (3.1) has the energy integral

J1 ≡ H(q, p) =
1
2

(−p2
1 + p2

2) + j
√

(1 + q1)2 − q2
2 − 1 = c1 =: const. (3.4)

It can readily be seen that another first integral of system (3.1) has the form

J2 = (1 + q1)p2 + q2p1 = c2 =: const. (3.5)

The first integrals J1, J2 do not depend explicitly on time. The rank of the
Jacobi matrix for the first integrals J1, J2 in D = {(q1, q2, p1, p2) : (q1, q2) ∈ Ω+,
(p1, p2) ∈ R2} becomes less than 2 only for the set

M =
{

(q1, q2, p1, p2) : (q1, q2) ∈ Ω+, p1 = ±
√
jq2

((1 + q1)2 − q2
2 − 1)1/4

,

p2 = ±
√
j(1 + q1)

((1 + q1)2 − q2
2 − 1)1/4

}
.

This set M is two-dimensional, and it does not separate the four-dimensional set
D into sub-domains. The first integrals J1, J2 are functionally independent in
D \M. So, due to the Liouville theorem [10], the diode model (3.1) is integrable
in this domain. To construct the two necessary first integrals, let us express the
momentum from (3.4) and (3.5) in terms of the coordinates

p1 = −c2q2

w2
∓

√
c22 − 2w2(c1 − j

√
w2 − 1)

w2
(1 + q1), (3.6)

p2 =
c2(1 + q1)

w2
±

√
c22 − 2w2(c1 − j

√
w2 − 1)

w2
q2, (3.7)

where w2 = (1 + q1)2 − q2
2 . These formulas may be written in the form p1 = ∂Φ

∂q1
,

p2 = ∂Φ
∂q2

, where function Φ(q1, q2, c1, c2) is given by the formula

Φ(q1, q2, c1, c2)

=
c2
2

ln
∣∣1 + q1 + q2

1 + q1 − q2

∣∣± ∫ √(1+Q1)2−Q2
2

√
(1+q1)2−q22

√
c22 − 2s2(c1 − j

√
s2 − 1)

s
ds.

(3.8)

The integral in (3.8) may be reduced to elementary and elliptic functions. By the
Liouville theorem, the two other necessary first integrals J3, J4 are expressed via
function Φ(q1, q2, c1, q2):

J3 ≡
∂Φ
∂c2

=
1
2

ln
∣∣1 + q1 + q2

1 + q1 − q2

∣∣± ∫ √(1+Q1)2−Q2
2

√
(1+q1)2−q22

c2ds

s
√
c22 − 2s2(c1 − j

√
s2 − 1)

= c3,
(3.9)

J4 ≡
∂Φ
∂c1

= ∓
∫ √(1+Q1)2−Q2

2

√
(1+q1)2−q22

sds√
c22 − 2s2(c1 − j

√
s2 − 1)

= t+ c4, (3.10)

where c3 and c4 are constants. Integrals in (3.9) and (3.10) are used only when the
radicals in the denominators are nonzero. Since the identity (1 + q1)p1 + q2p2 ≡ 0
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holds on the whole set M, and equality

(1 + q1)p1 + q2p2 = ∓
√
c22 − 2w2(c1 − j

√
w2 − 1)

follows from (3.6), (3.7), the nonzero radicals in the denominators of (3.9), (3.10)
provide for independence of the first integrals J1 and J2. The system of four first
integrals (3.4), (3.5), (3.9) and (3.10) obtained may be used in domain Ω+ for the
purpose of solving initial and boundary-value problems, while including problem
(3.1)–(3.3).

4. Solving the singular boundary-value problem

Taking t = 1 in (3.10) and applying conditions (3.3) to the right end of the
interval, one obtains c4 = −1. Similarly, from (3.9) we have c3 = 1

2 ln
∣∣ 1+Q1+Q2

1+Q1−Q2

∣∣.
At t = 0, from conditions (2.2) and (3.2) for the right end of the interval and
from integrals (3.4), (3.5) one obtains p1(0) = 0, p2(0) = c2, c22 = 2c1. Thus, we
introduce the following functions

F (u, v,Q1, Q2) =
∫ √(1+Q1)2−Q2

2

1

sds√
u2(1− s2) + 2vs2

√
s2 − 1

,

G(u, v,Q1, Q2) =
∫ √(1+Q1)2−Q2

2

1

uds

s
√
u2(1− s2) + 2vs2

√
s2 − 1

.

These functions may be represented as combinations of elementary and elliptic
functions of their arguments. So, basing on (3.9) and (3.10), by the relations
between the arbitrary constants derived from the boundary conditions, we have the
following statement.

Theorem 4.1. If c2 = u∗ and j = v∗ represent a solution of the system of two
nonlinear equations

F (u, v,Q1, Q2) = 1, G(u, v,Q1, Q2) =
1
2

ln
∣∣1 +Q1 +Q2

1 +Q1 −Q2

∣∣, (4.1)

then the solution of the boundary-value problem (3.1)–(3.3) exists and represents a
solution of the initial-value problem for (3.1) with the initial conditions at the right
end of the interval assigned by

q1(1) = Q1, p1(1) = −u∗Q2

Z2
−

√
u2
∗(1− Z2) + 2v∗Z2

√
Z2 − 1

Z2
(1 +Q1), (4.2)

q2(1) = Q2, p2(1) =
u∗(1 +Q1)

Z2
+

√
u2
∗(1− Z2) + 2v∗Z2

√
Z2 − 1

Z2
Q2, (4.3)

from (3.6) and (3.7), where Z2 = (1 +Q1)2 −Q2
2.

If (4.1) is inconsistent, this does not mean that the boundary-value problem
(3.1)–(3.3) does not possess any solution. There are situations when equalities
(4.1) are violated. This takes place when the signs change in the expressions (3.6)
and (3.7) describing the momentum expressed via the coordinates in the solution
of boundary value problem.
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5. Integration by replacement of the variables

System (2.1) has solutions of the form [7]:

ϕ(x) =
1

2γ
z(x)[eω(x) + γ2e−ω(x)]− 1,

a(x) =
1

2γ
z(x)[eω(x) − γ2e−ω(x)].

(5.1)

Here, z(x), ω(x) are functions to be defined; γ 6= 0 is an arbitrary constant. To this
end we substitute the ansatz (5.1) into (2.1) and, after simple transformations, we
obtain the system

A
[ 1
2γ
eω(x) +

γ

2
e−ω(x)

]
+B

[ 1
2γ
eω(x) − γ

2
e−ω(x)

]
= 0,

A
[ 1
2γ
eω(x) − γ

2
e−ω(x)

]
+B

[ 1
2γ
eω(x) +

γ

2
e−ω(x)

]
= 0,

(5.2)

where

A := z′′(x) + z(x)ω′
2
(x)− j z(x)√

z2(x)− 1
, B := 2z′(x)ω′(x) + z(x)ω′′(x).

Hence, A = 0, B = 0, i.e.

z′′(x) + z(x)ω′
2
(x)− j z(x)√

z2(x)− 1
= 0, (5.3)

2z′(x)ω′(x) + z(x)ω′′(x) = 0. (5.4)

Integrating (5.4), we obtain

ω′(x) =
C1

z2(x)
, (5.5)

where C1 > 0 is an arbitrary constant. Substituting (5.5) in (5.3), we obtain a
single nonlinear second-order ODE for the function z(x)

z′′(x) +
C2

1

z3(x)
− j z(x)√

z2(x)− 1
= 0, (5.6)

with the initial-boundary conditions
1

2γ
z(0)

[
eω(0) + γ2e−ω(0)

]
= 1,

1
2γ
z(0)

[
eω(0) − γ2e−ω(0)

]
= 0, (5.7)

1
2γ
z′(0)

[
eω(0) + γ2e−ω(0)

]
+

1
2γ
z(0)

[
eω(0) − γ2e−ω(0)

]
ω′(0) = 0, (5.8)

1
2γ
z(1)

[
eω(1) + γ2e−ω(1)

]
= ϕ1 + 1,

1
2γ
z(1)

[
eω(1) − γ2e−ω(1)

]
= a1. (5.9)

Conditions (5.7)–(5.9) have been borrowed from (2.2) and (2.3) for the ansatz (5.1).
Now by (5.5) we have ω′(0) = C1

z2(0) . Multiplication of equation (5.6) by the function
z′(x) 6= 0 and subsequent integration allow one to obtain

z′
2
(x)− C2

1

z2(x)
− 2j

√
z2(x)− 1 = C2. (5.10)

Here C2 is an integration constant, which is chosen on account of the initial bound-
ary conditions (5.7), (5.8). From conditions (5.7), one obtains z(0) = 1. Hence
ω(0) = ln γ, γ > 0. Therefore, from (5.10) we have z′2(0) − C2

1 = C2, and from
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(5.8) we have z′(0) = 0, hence C2 = −C2
1 . So, function z(x), which satisfies the

conditions z(0) = 1, z′(0) = 0, may represent a solution of equation

z′(x) = ±

√
C2

1 (1− z2(x)) + 2jz2(x)
√
z2(x)− 1

z(x)
,

from which it follows that

x = ±
∫ z

1

sds√
C2

1 (1− s2) + 2js2
√
s2 − 1

. (5.11)

So, we obtain z as an implicit function of x. Now, using (5.5), (5.11) and condition
ω(x) = ln γ at x = 0, it is possible to find ω as a function of z:

ω(z) = ln γ ±
∫ z

1

C1ds

s
√
C2

1 (1− s2) + 2js2
√
s2 − 1

.

Now it is time to substitute conditions (2.3) at the right end into this equality and
into (5.11). Taking into account the inequality Θ(1) > 0 to choose signs before
integrals, we return to the system of equations (4.1), what allows to define the
values C1 and j.

Therefore, the integration by the technique of replacement of variables lead us to
the solvability conditions for the boundary value problem similar to those obtained
with the application of the Liouville theorem.

It should be noted that integration (2.1) by means of replacements of the vari-
ables similar (5.1), was already carried out earlier by a number of authors. In [5]
replacement with a hyperbolic sine and a cosine is used for separation of variables
and the solution for (2.1) singular initial value problem on the left end of [0, 1]

ϕ(0) = 0, a(0) = 0, ϕ′(0) ≡ dϕ

dx
(0) = 0, a′(0) ≡ da

dx
(0) = β ∈ R. (5.12)

J. Batt stated the original approach to the solution of a singular boundary value
problem in several lectures at Irkutsk in August, 2009 (The authors do not know,
whether these results were published or not). In a preprint [9] replacement (5.1) is
used with γ = 1 and also the above-stated singular initial value problem on the left
end of a piece [0, 1] is considered.

This article differs from [9] and others by two main stands: We give strict def-
inition of the solution of a singular BVP, and we use an IVP only on the right
end of the interval, at x = 1 where conditions for existence and uniqueness are
satisfied. We will show the fundamental difference of our approach from that of [9]
on a simple example.

Example 5.1. Let us consider a singular BVP

d2ϕ(x)
dx2

=
2

a(x)
,

d2a(x)
dx2

= − 1
ϕ(x)

,

ϕ(0) = 0, a(0) = 0, ϕ′(0) ≡ dϕ

dx
(0) = 0,

ϕ(1) = ϕ1 = 3, a(1) = a1 = 3/2.

The exact solution of this BVP in terms of Definition 2.1 is given by the functions

ϕ(x) = 3x4/3, a(x) =
3
2
x2/3. (5.13)
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Here we have a′(x) = x−1/3, therefore limx→+0 a
′(x) = +∞. So there is no number

β ∈ R such that (5.13) would be the solution of corresponding [9] the IVP (5.12).

This example shows that transition from a BVP with singularity on the left end
of a piece to an IVP on the left end of a piece isn’t correct and can lead to loss
of the solution of the BVP. We will note also that singular BVP can have not less
than two solutions [5] in certain cases.

6. Constant solution z(x)

In this section we consider the solutions of the initial system (2.1), which are
constant in terms of variable z. Substituting z = z(x) ≡ const into (5.5) and (5.6),
we obtain the following equations:

ω′(x) =
C1

z2
,

C2
1

z
− j z√

z − 1
= 0, z ≡ const. (6.1)

Let us show that the assumption of equality of z(x) ≡ const is not compatible with
the boundary conditions at the interval’s left end for any value of parameter γ;
there is no compatibility already with the first two equalities of (2.2). Adding the
first two equalities from (5.8), one obtains γ−1z(0)eω(0) = 1. When subtracting
one of these equalities from the other, one obtains γz(0)e−ω(0) = 1. The result of
multiplication of the two equalities obtained yields z2(0) = 1. The latter is the
initial condition, and function z(x), which is constant, shall satisfy this condition.
Hence z(x) ≡ 1, what makes the denominator in (5.6) vanish. Therefore, constant
solutions of the form z(x) ≡ const are not compatible with the boundary conditions
(2.2) at the interval’s left end, when x = 0.

Now introduce the condition x1 = 1 and verify the condition of compatibility
of constant solutions z(x) ≡ const with the boundary conditions (2.3) at the right
end of the interval, when x = x1. Adding equalities (5.9), one obtains

γ−1z(x1)eω(x1) = 1 + ϕ1 + a1. (6.2)

The result of subtraction of one of these equalities from the other yields γz(x1)e−ω(x1) =
1 + ϕ1 − a1. Similarly, the product of the two equalities obtained gives z2(x1) =
(1 + ϕ1)2 − a2

1 = Θ(x1) + 1, and this is a positive number, which shall satisfy the
condition z2(x1) 6= 1. Let Θ(x) = (1 + ϕ(x))2 − a2(x)− 1. Since (ϕ1, a1) ∈ Ω+, it
is obvious that Θ(x1) > 0, and condition z2(x1) 6= 1 holds.

It is also obvious from (5.12) that C2
1Θ1/2(x1) − j(Θ(x1) + 1)2 = 0. Therefore,

on account of parity and oddness of, respectively, (5.5) and (5.6) with respect to ar-
gument z, an arbitrary constant C1 must be fixed, i.e. C1 =

√
jΘ−1/4(x1)(Θ(x1) +

1), and z(x1) =
√

Θ(x1) + 1. Now, from (5.5), it is possible to obtain ω′ =√
jΘ−1/4(x1), whence ω(x) =

√
jΘ−1/4(x1)(x − x1) + ω1. The value of the ar-

bitrary constant ω1 is found from equality (5.13): ω1 = ln γ(1+ϕ1+a1)√
Θ(x1)+1

.

Now, substituting the obtained values of z(x) and ω(x) in (5.1), we can formulate
the solution of system (2.1) in terms of the initial variables

ϕ(x) = (1 + ϕ1) coshλ(x) + a1 sinhλ(x)− 1,

a(x) = (1 + ϕ1) sinhλ(x) + a1 coshλ(x),
(6.3)

where λ(x) =
√
jΘ−1/4(x1)(x − x1). Note that (6.1) gives an exact solution of

(2.1). It satisfies conditions (2.3) at the right end of the interval, where x = x1 =
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1, and does not satisfy conditions (2.2) at the interval’s left end, where x = 0.
Furthermore, equality x1 = 1 is not obligatory, so, solution (6.1) may be used also
in assigning the boundary conditions at any point different from 1.

The parameter j remains arbitrary. So, we have to choose this parameter to
satisfy not only (2.3) but also the following additional boundary conditions:

ϕ(x0) = ϕ0, a(x0) = a0, 0 < x0 < x1 = 1. (6.4)

Substituting (6.1) into (6.2) and resolved the linear system of equations with respect
to coshλ(x0) and sinhλ(x0), one obtains

coshλ(x0) =
(1 + ϕ0)(1 + ϕ1)− a1a0

Θ(x1) + 1
,

sinhλ(x0) =
(1 + ϕ1)a0 − a1(1 + ϕ0)

Θ(x1) + 1
.

By the procedures of addition and subtraction of these identities, one can find

eλ(x0) =
1 + ϕ0 + a0

1 + ϕ1 + a1
, e−λ(x0) =

1 + ϕ0 − a0

1 + ϕ1 − a1
. (6.5)

Multiplying (6.3), one obtains the condition of solvability for (6.2)

Θ(x0) ≡ (1 + ϕ0)2 − a2
0 − 1 = (1 + ϕ1)2 − a2

1 − 1 ≡ Θ(x1). (6.6)

When condition (6.4) is satisfied, the value of the parameter j, which provides for
satisfaction of the boundary condition (6.2), may be found from (6.3):

j =
Θ1/2(x1)

(x0 − x1)2
ln2
(1 + ϕ0 + a0

1 + ϕ1 + a1

)
.

Therefore, the class of constant solutions (considered in this section) with z(x) ≡
const allows us to obtain explicit solutions of non-singular boundary-value prob-
lems with the same values of effective potential (Θ(x0) = Θ(x1)) at the interval’s
endpoints.

The Θ(x), known as the effective potential [2], be the first integral for the solu-
tions having the form (6.1), i.e.

Θ(x)
∣∣∣
(6.1)
≡ ((1 + ϕ(x))2 − a2(x)− 1)

∣∣∣
(6.1)

= (1 + ϕ1)2 − a2
1 − 1 ≡ Θ(x1) = const.

Since Θ(1) > 0, and conditions (2.2) correspond to Θ(0) = 0, variables (6.1) do
not represent a solution of the boundary-value problem (2.1)–(2.3). We intend
to demonstrate that under some additional conditions imposed on the solution
obtained not at the endpoints of interval [0, 1] but rather on a countable set of its
interior points one can obtain a solution of the boundary-value problem (in the
sense of Definition 2.1) with the aid of (6.1). However, system (2.1) describes the
functions ϕ(x) and a(x) not on the whole interval (0, 1) but only on a sequence of
subintervals.

Let there be given three numerical sequences xk, α2k, β2k (k = 1, 2, . . .) such
that

1 = x1 > x2 > · · · > xk > xk+1 > · · · > 0, lim
k→+∞

xk = 0,

0 < α2k < α∗ < 1, 0 < β2k < β∗ < 1.
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Consider system (2.1) with condition (2.3) on the interval [x2, x1] for the case
when x = x1 (we try to obtain a solution of this problem in the form (6.1)).
Compute the values ϕ(x2), a(x2) by formulas (6.1). With regard to the next interval
[x3, x2] let us assume that ϕ(x), a(x) satisfy the perturbed system (2.1) with some
unknown additive perturbations in the right-hand side. This may be caused, for
example, by the presence of some contamination inside the diode or by an external
disturbed field.

Let functions ϕ(x), a(x) remain unknown within the interval [x3, x2], but we
know the relation between the values at the endpoints

ϕ(x3) = α2ϕ(x2), a(x3) = β2a(x2). (6.7)

In accordance with the previous computations of ϕ(x2) and a(x2), it is possible to
use (6.5) to find values of ϕ(x3), a(x3), and to employ (6.1) in order to construct
functions ϕ(x), a(x) on the next interval [x4, x3] (implying the replacement of
x1 with x3). Continuing this process sequentially, it is possible to obtain exact
solutions of (2.1) in the form (6.1) for the intervals [x2k, x2k−1] (k = 1, 2, . . .), while
functions ϕ(x), a(x) remain unknown on the intervals (x2k−1, x2k−2) (k = 2, 3, . . .).

Since functions cosh(·), sinh(·) are bounded on the restricted interval x ∈ [0, 1],
conditions 0 < α∗ < 1 and 0 < β∗ < 1 presume that functions ϕ(x), a(x) tend
to zero on intervals [x2k, x2k−1] (k = 1, 2, . . .), when k → +∞. This property is
characterized by derivatives ϕ′(x), a′(x). If additional perturbations in the right-
hand sides of (2.1), which are effective on the intervals (x2k−1, x2k−2) (k = 2, 3, . . .),
are bounded uniformly in all cases (k = 2, 3 . . .), then functions ϕ(x), ϕ′(x) and
a(x) vanish, when k → +∞ also on the intervals (x2k−1, x2k−2). Consequently,
functions ϕ(x), a(x) constructed in the process of successive application of formulas
(6.1) give a solution of the boundary-value problem (2.2) in the sense of Definition
2.1. The diagrams representing the functions ϕ(x), a(x) in the case, when j = 1

2 ,
ϕ1 = a1 = 1, α2k = β2k = 1

2 , x2 = 1
2 , x3 = 1

4 , x4 = 1
8 , x5 = 1

16 , . . ., are shown
below in Figures 1 and 2.

Figure 1. Function ϕ(x). Solid line corresponds to formula (6.1).
Dashed straight line connects the points where the exact behavior
of the function is unknown
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Figure 2. Function a(x). Solid line shows the solution obtained
by formula (6.1). Dashed shows where the exact form of the func-
tion is unknown

7. Asymptotic behavior

Consider the function Θ(x) = (1+ϕ(x))2−a(x)2−1. Differentiating this function
several times and using (2.1), we obtain the following identities

Θ(x) ≡ (1 + ϕ(x))2 − a(x)2 − 1,

Θ′(x) ≡ 2(1 + ϕ(x))ϕ′(x)− 2a(x)a′(x),

Θ′′(x) ≡ 2(ϕ′(x))2 − 2(a′(x))2 + 2j
(
Θ1/2(x) + Θ−1/2(x)

)
, (7.1)

Θ′′′(x) ≡ j
(
3Θ−1/2(x)−Θ−3/2(x)

)
Θ′(x). (7.2)

Integrating the differential equation (7.1), we reduce its order by a unit

Θ′′(x) + c = 2j(3Θ1/2(x) + Θ−1/2(x)). (7.3)

Here c is an arbitrary constant. If we multiply equation (7.3) by Θ′(x) 6= 0 and
integrate the expression, we obtain

Θ′(x) = ±
√

8j
√

Θ3/2(x)− c

4j
Θ(x) + Θ1/2(x) + C̃.

Here C̃ is an arbitrary constant. It is possible to transform this equation by the
replacement H(x) = Θ1/2(x)

H(x)H ′(x) = ±
√

2j
√
H3(x)− c

4j
H2(x) +H(x) + C̃.
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On account of the initial condition Θ(0) = 0 we have H(0) = 0 and C̃ = 0. And
finally we obtain ∫ H

0

√
sds√

s2 − c
4j s+ 1

= ±
√

2jx. (7.4)

This formula determines Θ(x) as a function of argument x, where the integral in
the left hand side of (7.2) is reduced to elliptic functions. And in the case, when
c2 − 16j2 = 0, the integral in (7.2) is computed in terms of elementary functions.
From (7.2) it is hardly ever possible to understand the nature and the behavior of
function H(x) (i.e. Θ(x)). So, it is necessary to conduct asymptotic analysis. The
arbitrary constant c in (7.1) may be taken according to the boundary conditions
(2.2) and (2.3). To this end, we take an arbitrary small positive number ε > 0 and
consider the initial value problem for (2.1) under the following conditions:

ϕ(ε) = ε, ϕ′(ε) = ε, a(ε) = ε, a′(ε) = c2

where c2 = p2(0) is the value of the constant in the first integral J2 in the solution
of boundary-value problem (2.1)–(2.3). Let us denote the solution of this initial-
value problem as (ϕ̄(x), ā(x)), and function Θ taken along the solution is denoted
as Θ(x). Note, for any sufficiently small ε > 0 the initial point lies in domain
Ω+, hence function Θ(x) is defined at least on some interval [ε, ε+ δ) and satisfies
identities (6.6), (7.1). Here δ > 0 is a positive number. From (6.6) we have

Θ
′′
(ε) = 2ε2 − 2c22 + 2j(

√
2ε+

1√
2ε

).

Substituting this value into (7.1) one can find c = 2c22−2ε2 +4j
√

2ε. It is important
that this representation of constant c contains only positive powers of parameter ε.

Now, passing to the limit with ε→ +0, we can state that function Θ(x) satisfies
equation (7.1) on the solution of the boundary-value problem (2.1)–(2.3), when
c = 2c22 and Θ(0) = 0.

So, we shall look for an approximate solution of (7.1) in the form Θ(x) = kxα,
where the positive parameters, i.e. α and k, are to be defined. By equating (after
the substation into (7.1)) the main terms in the left-hand and right-hand sides, and
next by separating the variables, we obtain α = 4

3 and k =
(

9j
2

)2/3. Therefore,
when values of x > 0 are small, function Θ(x) taken along the solution of the
boundary-value problem may be approximated by the formula

Θ̃(x) =
(9j

2
)2/3

x4/3. (7.5)

Substituting (7.3) into (2.1), it is possible to decompose this system into two inde-
pendent scalar equations, for which the following approximate solutions

ϕ̃(x) =
1
2
(9j

2
)2/3

x4/3, (7.6)

ã(x) = c2x
(

1 +
1
14
(9j

2
)2/3

x4/3
)
. (7.7)

may be obtained similarly, on account of the conditions at the left end of the
interval, where x = 0.

As obvious from (7.4) and (7.5), the curve, which maps the solution of the
boundary-value problem onto the plane (ϕ, a), may be approximated in the vicinity
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of the origin by the function

a = c223/4
(9j

2
)−1/2

ϕ3/4
(
1 +

1
7
ϕ
)
. (7.8)

Given by equation (7.6), the curve passes from inside of domain Ω+ to its boundary
at the origin. It has a vertical tangent at this point, which touches also the boundary
of domain Ω+. It is incorrect to consider the initial-value problem (2.1) with the
conditions (2.2) and a′(0) = c2 because the conditions of the theorem on existence
are violated under these initial conditions, and the substitution of these initial
conditions into the equation implies division by zero. Meanwhile, using (7.4), (7.5),
it is possible to correctly state the initial-value problem for an arbitrary small
positive value of the independent variable x = x0 = ε > 0.

8. Examples

Consider problem (2.1)–(2.3) with the following conditions for the right end of
the interval: q1(1) = q2(1) = Q1 = Q2 = 1. When solving the corresponding system
of equations (4.1) with the aid of the iterative method, one finds its approximate so-
lution c2 = u∗ = 0.8798287042, j = v∗ = 0.5337203307. This solution corresponds
to the following values of momentum p1(1) = −1.444231410, p2(1) = 1.162030057
computed at the right end of the interval by formulas (6.5) and (6.6). The Figures 3
and 4 represent diagrams demonstrating components of the boundary-value prob-
lem solution (bold red line) obtained by numerical right to left integration from
t = 1 to t = 0, and the solution asymptotics in the vicinity of the interval’s left end
(thin blue line) computed by formulas (7.3)–(7.6) at t = 1.

Figure 3. Solution of the boundary-value problem for the first
coordinate q1(t) (bold red line) and its asymptotic computed by
formula (7.4) (blue).

Consider now the boundary-value problem (2.1)–(2.3) with the values, which
substantially differ at the right end of the interval, i.e. q1(1) = Q1 = 10, q2(1) =
Q2 = 1. Solving system (4.1) by the iteration method, one can find its approximate
solution c2 = u∗ = 0.5404932672, j = v∗ = 12.14221503. It corresponds to the fol-
lowing values of momentum at the right end of the interval: p1(1) = −16.33935466,
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Figure 4. Solution of the boundary value problem on the sec-
ond coordinate q2(t) (red) and it asymptotic by formula (7.5)
(blue). The asymptotic behavior almost coincided with solution,
the curves merge

Figure 5. Solution of boundary value problem on the first coor-
dinate q1(t) (red) and its asymptotic by formula (7.4) (blue) for
q1(1) = 10, q2(1) = 1

p2(1) = 1.534531629. Consider only the following two diagrams of coordinate vari-
ations for the given variant of initial data.

In this variant, the curves do not merge completely as we see in figure 4. Like-
wise for all other diagrams, we obviously see high precision of the solution for the
boundary-value problem in the vicinity of the left end of the interval, represented
by formulas (7.3)–(7.6).
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Figure 6. Solution of the boundary value problem on the second
coordinate q2(t) (red) and its asymptotic by formula (7.5) (blue)
for q1(1) = 10, q2(1) = 1
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