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SENSITIVITY ANALYSIS OF STOCHASTICALLY FORCED
QUASIPERIODIC SELF-OSCILLATIONS

IRINA BASHKIRTSEVA, LEV RYASHKO

Abstract. We study a problem of stochastically forced quasi-periodic self-

oscillations of nonlinear dynamic systems, which are modelled by an invariant

torus in the phase space. For weak noise, an asymptotic of the stationary
distribution of random trajectories is studied using the quasipotential. For

the constructive analysis of a probabilistic distribution near a torus, we use

a quadratic approximation of the quasipotential. A parametric description
of this approximation is based on the stochastic sensitivity functions (SSF)

technique. Using this technique, we create a new mathematical method for

the probabilistic analysis of stochastic flows near the torus. The construction
of SSF is reduced to a boundary value problem for a linear differential matrix

equation. For the case of the two-torus in the three-dimensional space, a
constructive solution of this problem is given. Our theoretical results are

illustrated with an example.

1. Introduction

It is well known that complex multifrequency self-oscillations are basic operat-
ing modes for many real systems. Recent studies have shown that the variety ob-
served in the behavior of nonlinear dynamical models under transition from order to
chaos, is connected with a chain of bifurcations: equilibrium - periodic oscillations -
quasiperiodic regime - chaos. Mathematically, each such transition is explained by
the loss of stability of a simple attractor and the birth of a new, more complicated
stable attractor. Here, an invariant manifold is a general mathematical model.
Limit cycle is a corresponding invariant manifold for periodic oscillations. Quasi-
periodic oscillations are modeled by invariant tori. Stability analysis of invariant
manifolds and the study of their response on various perturbations (stochastic, for
instance) is a key point in the understanding of the basic mechanisms of complex
phenomena in real dynamical processes. An interplay of nonlinearity and stochas-
ticity attract attention of many researchers [18, 26, 27].

An influence of random disturbances is widely studied both for ordinary dif-
ferential equations [1, 16, 21], and for evolution and fractional dynamic systems
[7, 9, 11, 14].
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While stochastic cycles and equilibria are well-investigated objects of modern
stability theory, appropriate analysis of randomly forced toroidal invariant mani-
folds is far from complete. After the investigations of Poincare, Denjoy and Arnold,
the toroidal invariant manifolds are classical object of the modern qualitative the-
ory of the deterministic differential equations [2, 15, 17, 20, 33]. New nonlinear
phenomena connected with torus canards are actively investigated in [6, 23].

A probabilistic analysis of the noise-induced regimes in nonlinear systems with
complex mixed-mode oscillations requires a study of corresponding stochastic at-
tractors. A comprehensive mathematical description of stochastic attractors is
given by the Kolmogorov-Fokker-Planck equation [13]. However, for systems with
dimensions two and higher, a direct use of these equations is very difficult. To avoid
this complexity, various asymptotic and numerical approximations can be consid-
ered [25, 36]. For a weak noise, asymptotics based on the quasipotential function are
widely used [12]. The quasipotential is a solution of the corresponding Hamilton-
Jacobi equation. A development of the quasipotential approach has resulted in the
elaboration of the theory for viscosity solutions of the Hamilton-Jacobi equation
[8, 28, 30, 34]. The quasipotential method continues to be actively developed (see,
e.g. [10, 19, 29]).

In many cases, it is important to describe a behavior of the stochastic system
near the attractor of the initial deterministic system. A constructive method for
the approximation of random states dispersion near limit cycles of nonlinear sto-
chastic systems has been proposed in [3, 32]. This method is based on the quadratic
approximation of the quasipotential with the help of stochastic sensitivity function
(SSF). SSF technique has been successfully used for the analysis of noise-induced
transitions between attractors (limit cycles and equilibria) in [4], and for the sup-
pression of noise-induced chaos in [5]. An extension of the SSF theory to the
stochastic systems with toroidal attractors is an open novel problem even in the
three-dimensional case.

The aim of our work is to elaborate the stochastic sensitivity functions method
for the analysis of randomly forced two-torus.

In Section 2, for the constructive analysis of probabilistic distribution of ran-
domly forced quasiperiodic oscillations, we present a new approach using a qua-
dratic approximation of the quasipotential. A parametric description of this ap-
proximation is based on the SSF technique. Using this technique, we create a new
mathematical model which specifies a dispersion of stochastic flows near the torus.
The corresponding stochastic sensitivity matrix is a solution of the linear differential
matrix equation. For the two-torus of a nonlinear system of stochastic differential
equations, a parametric description of stochastic sensitivity function is derived.

In Section 3, a case of the two-torus in three-dimensional space is studied in
details. Here, SSF is scalar, and its construction is reduced to the solution of some
functional equation. For the calculation of the stochastic sensitivity of two-torus,
a constructive computer-oriented algorithm is suggested.

The general theoretical results are illustrated on the example in Section 4,
wherein a detailed parametric analysis of stochastic sensitivity of two-torus is given.

2. Stochastic sensitivity of torus

Consider the system
ẋ = f(x), (2.1)



EJDE-2016/240 QUASIPERIODIC SELF-OSCILLATIONS 3

where x is n-vector, f is a sufficiently smooth vector-function.
It is supposed that (2.1) has an invariant two-dimensional toroidal manifold Γ.

Our analysis is based on the following parametrization of 2-torus Γ.
Suppose that some closed sufficiently smooth curve α (equator) lies on the Γ (see

Figure 1).

Figure 1. The line α is a closed curve (equator), a = x(0, s) =
α(s) is an initial point of the solution x(t, s), b = x(T (s), s) =
α(τ(s)) is the first return point of the solution x(t, s) on the curve
α.

This curve is defined by the function α(s) on the interval 0 ≤ s ≤ 1 with the
condition α(0) = α(1). Consider a solution x(t, s) of (2.1) with the initial condition
x(0, s) = α(s). It is supposed that the solution x(t, s) leaves the point α(s) of
the curve α and after rotation around the torus crosses the curve α again. Let
T (s) = min{t > 0 | x(t, s) ∈ α} be a first return time of the trajectory x(t, s) on
the curve α and x(T (s), s) be a first return point. Let τ(s) be a point of the interval
[0, 1) where α(τ(s)) = x(T (s), s). Here τ(s) is a Poincare first return function for
intersections of the curve α by the phase trajectories of system (2.1).

A natural range of the variable s is a circle. Consideration of the function τ(s) on
the interval [0, 1) only leads to discontinuity. To provide a continuity of the function
τ(s) we extend a domain of its definition on the infinite interval −∞ < s < +∞.
The equalities x(t, s + 1) = x(t, s), x(T (s) + t, s) = x(t, τ(s)) allow us to extend a
function x(t, s) to the whole plane Π = {(t, s) : −∞ < t < +∞, −∞ < s < +∞}.
So, the function x(t, s) defines one-to-one correspondence between points of 2-torus
Γ and points of the set D = {(t, s) : 0 ≤ t < T (s), 0 ≤ s < 1}.

The vector-functions ∂x(t,s)
∂t , ∂x(t,s)

∂s are linearly independent. For any point γ ∈ Γ
one can find t = t(γ), s = s(γ) such that x(t, s) = γ.

In a neighbourhood D of the torus Γ, consider a function γ(x), where γ(x) is a
nearest point of 2-torus Γ to x, ∆(x) = x − γ(x) is a vector of a deviation of the
point x from the torus Γ. It is assumed that a neighbourhood D is invariant for
system (2.1).

Definition 2.1. A torus Γ is called exponentially stable (E-stable) for system (2.1)
in D if there exist constants K > 0, l > 0 such that

‖∆(x(t))‖ ≤ Ke−lt‖∆(x0)‖,

where x(t) is a solution of (2.1) with initial condition x(0) = x0 ∈ D.
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Stability of toroidal manifolds for deterministic systems was studied in [22, 33].
We consider the stochastic system

ẋ = f(x) + εσ(x)ẇ, (2.2)

where w(t) is an n-dimensional Wiener process, σ(x) is sufficiently smooth n × n-
function, ε is a noise intensity. It is supposed that noise is nonsingular on the torus
Γ (detσ(x)|Γ 6= 0).

Under stochastic disturbances random trajectories of (2.2) leave the torus Γ and
form some probability distribution around it. A general theoretical approach based
on the Fokker-Planck-Kolmogorov (FPK) equation gives a most detailed descrip-
tion of such probabilistic distribution. However, a direct use of this equation is
technically difficult, even in two-dimensional case. Therefore, asymptotic methods
and approximations are commonly used [36, 12].

For weak noise, an asymptotic of the stationary probability density ρ(x, ε) can
be written in the form

ρ(x, ε) ≈ Ke−
v(x)
ε2 ,

where the function v(x) is a quasipotential [12].
The quasipotential being connected with some variational problem of the mini-

mization of action functional is governed by the appropriate Hamilton-Jacobi equa-
tion. However, to solve this equation analytically is difficult too. In what follows,
we will use a local description of the quasipotential in a small neighborhood of the
torus Γ.

The following function v(x) is a quasipotential of (2.2) in the neighborhood D
of the torus Γ:

v(x) = inf
u∈U

J(x, u), J(x, u) =
1
2

∫ ∞
0

u>(τ)S−1(y(τ))u(τ)dτ, S(y) = σ(y)σ>(y).

Here, J(x, u) is an action functional, and U is a set of admissible n-dimensional
control inputs u(τ), 0 ≤ τ < +∞. These inputs u ∈ U transfer a solution of the
system

ẏ = −f(y) + u (2.3)
from the initial point y(0) = x to the torus Γ : limτ→+∞∆(y(τ)) = 0.

The function v(x) is a solution of Hamilton-Jacobi equation(
f(x),

∂v

∂x

)
+

1
2
(∂v
∂x
,S(x)

∂v

∂x

)
= 0 (2.4)

with the conditions
v|Γ = 0, , v|D\Γ > 0. (2.5)

From these properties, the quadratic form

ϕ(x) =
1
2

(∆(x),Ψ(γ(x))∆(x))

is the first approximation of the quasipotential v(x) near the torus Γ : v(x) =
ϕ(x) + O(‖∆(x)‖3). This quadratic form is parametrized by the symmetric non-
negative n× n-matrix function Ψ(γ) = ∂2v

∂x2 (γ) defined on the torus Γ.
The matrix function Ψ(γ) is singular. Indeed, consider an arbitrary smooth

curve β lying on Γ and passing through a point γ ∈ Γ. Let this curve have the
parametrization: β(τ), β(0) = γ. Differentiating the identity

∂v

∂x
(β(τ)) ≡ 0
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with respect to τ , we have

∂2v

∂x2
(β(τ))

dβ(τ)
dτ

≡ 0.

This means that

Ψ(γ)r(γ) ≡ 0, (2.6)

where r(γ) is an arbitrary vector tangent to Γ at the point γ. The condition (2.6)
means that the matrix Ψ(γ) is singular and it holds that rank(Ψ(γ)) ≤ n− 2.

For the function Ψ(γ), consider the following parametrization. Using a family of
solutions x(t, s) ∈ Γ of the deterministic system (2.1), one can introduce the matrix
function

V (t, s) = Ψ(x(t, s)) (2.7)

defined on Π. It follows from

x(t, s+ 1) = x(t, s), x(T (s) + t, s) = x(t, τ(s)),

that

V (t, s+ 1) = V (t, s), V (T (s) + t, s) = V (t, τ(s)). (2.8)

Note that the singularity condition (2.6) implies

V (t, s)
∂x(t, s)
∂t

≡ 0, V (t, s)
∂x(t, s)
∂s

≡ 0.

This system can be rewritten in the form

V (t, s)y(t, s) = 0, V (t, s)z(t, s) = 0. (2.9)

Here,

y(t, s) = f(x(t, s)), (2.10)

and z(t, s) is a solution of the system

∂z

∂t
= F (t, s)z , F (t, s) =

∂f

∂x
(x(t, s)) (2.11)

with the initial value z(0, s) = dα(s)
ds ,

Consider a space Σ of the sufficiently smooth symmetric n× n-matrix functions
V (t, s) defined on the plane Π with conditions (2.8), (2.9).

Let Py,z be a matrix of the projection onto subspace that is orthogonal to the
vectors y and z. Consider the matrix function P (t, s) = Py(t,s),z(t,s), where y(t, s)
and z(t, s) are defined in (2.10), (2.11).

Note that

Py,z = Py −
Pyzz

>Py
z>Pyz

, Py = I − yy>

y>y
, rank(Py,z) = n− 2.

Definition 2.2. A matrix V (t, s) ∈ Σ is called by P (t, s)-positive definite at the
point (t, s) if for any vector u satisfying P (t, s)u 6= 0 the inequality (u, V (t, s)u) > 0
holds.

The matrix V (t, s) which is P (t, s)-positive definite for any (t, s) ∈ Π, is called
by P -positive definite.
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In the space Σ, consider a cone K = {V ∈ Σ|V (t, s) is non-negative definite for
any (t, s) ∈ Π} and a set KP = {V ∈ Σ : V is a P -positive definite matrix}.

Taking into account a sufficient smoothness of the quasipotential v(x), one can
differentiate the Hamilton-Jacobi equation (2.4) and substitute x = x(t, s). As a
result, for V (t, s), we obtain the matrix differential Bernoulli equation

∂V (t, s)
∂t

+ F>(t, s)V (t, s) + V (t, s)F (t, s) + V (t, s)S(t, s)V (t, s) = 0, (2.12)

for V ∈ Σ, where

F (t, s) =
∂f(x(t, s))

∂x
, S(t, s) = S(x(t, s)) = σ(x(t, s))σ>(x(t, s)).

Along with (2.12) consider the linear matrix equation

∂W (t, s)
∂t

= F (t, s)W (t, s) +W (t, s)F>(t, s) + P (t, s)S(t, s)P (t, s), (2.13)

for W ∈ Σ.

Proposition 2.3. Let the torus Γ of system (2.1) be E-stable. Then (2.13) has a
unique solution W ∈ K.

Proof. The E-stability of the torus means [31] that for any element C ∈ K there
exists a unique solution V ∈ K of the matrix Lyapunov equation L[V ] = −C with
the following Lyapunov operator

L[V ] =
∂V (t, s)
∂t

+ F>(t, s)V (t, s) + V (t, s)F (t, s).

Since the cone K is reproducing in Σ [24], the operator L is invertible on the entire
space Σ. For the space Σ with the scalar product

〈V,W 〉 = lim
T→∞

1
T

∫ T

0

tr(V (t, s)W (t, s))dt,

the conjugate operator of L, has the representation

L∗[W ] = −∂W (t, s)
∂t

+ F (t, s)W (t, s) +W (t, s)F>(t, s).

Then (2.13) can be written as L∗[W ]+PSP = 0. The matrixW = −(L−1)∗[PSP ] ∈
K is a unique solution of this equation. The proof is complete. �

Proposition 2.4. Let W be a solution of (2.13). Then, the the matrix V = W+

is a solution of (2.12).

Proof. Multiplying (2.13) by V from the left and right, we obtain

V ẆV = V FP + PF>V + V SV. (2.14)

Here, Ẇ = ∂W
∂t . Differentiating the equality V = VWV , we obtain V̇ = V̇ P +

V ẆV +PV̇ , and V ẆV = V̇ − V̇ P −PV̇ . Multiplying the last equality by P from
the left and right, one can obtain V ẆV = −PV̇ P . Taking into account (2.14) we
have

P [V̇ + V F + F>V + V SV ]P = 0. (2.15)
Consider a vector r = r(t, s) that belongs to the plain spanned by the vectors
y(t, s), z(t, s). Since V r = 0, we obtain

[V̇ + V F + F>V + V SV ]r = [V̇ + V F ]r = ˙[V r] = 0. (2.16)
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It follows from (2.15), (2.16) that V = W+ is a solution of (2.12). The proof is
complete. �

Using these results, one can write the following approximation of the quasipo-
tential:

v(x) = ϕ(x) +O(‖∆(x)‖3), (2.17)

where

ϕ(x) =
1
2

(∆(x),Φ+(γ(x))∆(x)), Φ(γ) = W (t(γ), s(γ)).

Here, W (t, s) is a solution of the matrix equation (2.13).
This approximation ϕ(x) of the quasipotential v(x) allows us to represent an

asymptotic of the stationary density in the form of the Gaussian distribution:

ρ(x, ε) ≈ ρ∗(x, ε) = K exp
(
− (∆(x),Φ+(γ(x))∆(x))

2ε2

)
with covariance matrix ε2Φ(γ). This matrix characterizes a dispersion of random
trajectories of (2.2) at the point γ of the toroidal surface. Let λ1(γ) ≥ λ2(γ) ≥
· · · ≥ λn(γ) be eigenvalues, and h1(γ), h2(γ), . . . , hn(γ) be orthonormal basis of
eigenvectors of the matrix Φ(γ).

Since for any γ ∈ Γ the matrix Φ(γ) is singular (rank Φ(γ) = n − 2) then
λn−1(γ) = λn(γ) ≡ 0. Corresponding eigenvectors hn−1(γ) and hn(γ) belong to
the plane that is tangent to torus. For noises non-degenerate on Γ, other eigenvalues
λ1, . . . , λn−2 are positive and define a dispersion of random trajectories in direction
of the vectors h1, . . . , hn−2. These vectors specify a basis of the normal hyperplane.

The matrix Φ(γ) characterizes a response of system (2.2) near the torus Γ on the
random input. If we consider (2.2) as a converter of the stochastic input (stationary
Wiener process w(t)) to the stochastic output (stationary distribution of random
trajectories near Γ), the eigenvalues of Φ(γ) define coefficients of amplification
(λi > 1) and weakening (λi < 1) of this converter.

The stochastic sensitivity function Φ(γ) allows us to describe the nonuniformity
of the dispersion of random trajectories near torus along all directions, and to mark
more and less sensitive to noise portions of the toroidal surface.

3. Stochastic sensitivity of a 2-torus in the three-dimensional space

Consider system (2.2) for n = 3 In this case, the projective matrix P (t, s) has
a rank equal to one, and so this matrix can be written as P (t, s) = p(t, s)p>(t, s)
where p(t, s) is a unit vector orthogonal to vectors y(t, s) and z(t, s). The matrix
W which is a solution of (2.13) characterizes a dispersion of random trajectories
near 2-torus. This matrix also has a rank equal to one, and can be written as
W (t, s) = µ(t, s)P (t, s). The projective matrix P (t, s) can be found uniquely for
any point of the initial deterministic surface Γ. So, a problem of the construction
of the stochastic sensitivity function is reduced here to the calculation of the scalar
function µ(t, s). This function describes a dispersion of random trajectories in the
direction that is orthogonal to the torus Γ at the point x(t, s).

Proposition 3.1. The matrix W (t, s) = µ(t, s)P (t, s) is a solution of (2.13) if and
only if the scalar function µ(t, s) is a solution of the system

∂µ

∂t
(t, s) = a(t, s)µ(t, s) + b(t, s) (3.1)
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with the conditions

µ(t, s+ 1) = µ(t, s), (3.2)

µ(T (s) + t, s) = µ(t, τ(s)). (3.3)

Here,

a(t, s) = p>(t, s)[F>(t, s) + F (t, s)]p(t, s), b(t, s) = p>(t, s)S(t, s)p(t, s).

Proof. Substituting the solution W (t, s) = µ(t, s)p(t, s)p>(t, s) into the equation
(2.13), we obtain

µ̇pp> + µ(ṗp> + p(ṗ)>) = µ(Fpp> + pp>F>) + pp>Spp>.

Multiplying this equality by p> from the left and by p from the right, and taking
into account that p>p ≡ 1, ˙(p>p) = ṗ>p+p>ṗ ≡ 0, we obtain the following equation
for µ:

µ̇ = p>(F + F>)pµ+ p>Sp.

A proof of the converse implication follows from calculations written above. The
proof is complete. �

As a result, for n = 3, the stochastic sensitivity function is found from the scalar
equation (3.1) with conditions (3.2), (3.3).

A general solution of (3.1) is as follows

µ(t, s) = g(t, s)[c(s) + h(t, s)] (3.4)

where functions g(t, s) and h(t, s) can be written in the explicit form

g(t, s) = exp
(∫ t

0

a(τ, s)dτ
)
, h(t, s) =

∫ t

0

b(τ, s)
g(τ, s)

dτ. (3.5)

The unknown function c(s) plays a role of initial data for µ(t, s): µ(0, s) = c(s).
Condition (3.2) gives the equation c(s+ 1) = c(s). Condition (3.3) implies

g(T (s), s)[c(s) + h(T (s), s)] = c(τ(s)).

Denote
α(s) = g(T (s), s), β(s) = α(s)h(T (s), s). (3.6)

As a result, for the function c(s) we obtain a functional equation

c(τ(s)) = α(s)c(s) + β(s) (3.7)

with the condition
c(s+ 1) = c(s). (3.8)

So, a construction of the stochastic sensitivity function µ(t, s) for 2-torus in three-
dimensional space is reduced to the solution of the functional equation (3.7) with
condition (3.8). For E-stable torus Γ, an existence and uniqueness of the solution
of (3.7), (3.8) directly follows from the Propositions 2.3 and 3.1.

A solution c̄(s) of (3.7),(3.8) can be found by the stabilization method. Consider
sequences s0 = s, s1, . . . , sk, . . . , where sk+1 = τ(sk), and c̄0, c̄1, . . . , c̄k, . . . , where
c̄k = c̄(sk). Because of (3.7), the values c̄k are connected by the equation

c̄k+1 = αk c̄k + βk, αk = α(sk), βk = β(sk). (3.9)

For elements c̄k, consider approximations ck generated by the recurrence formula

ck+1 = αkck + βk,

where c0 is some approximation for c̄0.
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Proposition 3.2. Let the torus Γ be E-stable. Then limk→∞(ck − c̄k) = 0 for any
initial approximation c0.

Proof. The error rk = ck − c̄k satisfies the equation rk+1 = αkrk, and relates with
the initial error r0 by the formula rk = qkr0, where

qk =
k−1∏
i=0

αi = exp
(∫ Tk(s)

0

a(t, s)dt
)
.

Here, Tk(s) is passing time of the trajectory x(t, s) along the scroll consisting of k
turns. �

A necessary and sufficient condition of the E-stability of the torus in system
(2.1) is the following [31]:

max
s

lim
T→∞

1
T

∫ T

0

a(t, s)dt < 0. (3.10)

Condition (3.10) implies that limk→∞ qk = 0, and therefore limk→∞ rk = 0 inde-
pendently on the choice of c0.

These mathematical results can be summarized in the following computer-oriented
algorithm.

Algorithm for the calculation of stochastic sensitivity of 2-torus.
(1) Let s0, s1, . . . , sN be a discretization of the interval 0 ≤ s ≤ 1, where

sk+1 = τ(sk). For the each point sk, find a solution x(t, sk) of the equation
(2.1) with initial condition x(0, sk) = α(sk) on the interval 0 ≤ t ≤ T (sk).

(2) Using (3.5) with

a(t, s) = p>(t, s)[F>(t, s) + F (t, s)]p(t, s),

b(t, s) = p>(t, s)S(t, s)p(t, s),

F (t, s) =
∂f

∂x
(x(t, s)), S(t, s) = σ(x(t, s))σ>(x(t, s)),

calculate functions g(t, sk), h(t, sk).
(3) Find α(sk) and Rβ(sk) from formulas (3.6).
(4) By the iterative method (3.9), find a solution c(s) of the functional equation

(3.7) with condition (3.8) at the points sk.
(5) Finally, find the stochastic sensitivity functions µ(t, sk) by the formula (3.4).

4. Example

In the three-dimensional phase space of variables (x, y, z), we consider the 2-torus
Γ defined by

(
√
x2 + y2 − 1)2 + z2 = r2

0, 0 < r0 < 1.
In variables r, ϕ, ψ, connected with the initial variables x, y, z by the relations x =
(2 + r cosψ) cosϕ, y = (2 + r cosψ) sinϕ, z = r sinψ, this toroidal surface can be
written as r = r0, 0 ≤ ϕ ≤ 2π, 0 ≤ ψ ≤ 2π. For new variables, consider the
stochastic dynamical system

ṙ = f(r) + ε
√
σ(ϕ,ψ)ẇ,

ϕ̇ = ω,

ψ̇ = ν,

(4.1)
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where f(r) = A
4 r
[
( rr0 )2 − 1

]
, σ(ϕ,ψ) = 1 + B cos(ϕ) + D cos(ψ), and w(t) is a

standard Wiener process. Since f(r0) = 0, for system (4.1) with ε = 0, the torus
Γ is an invariant manifold and can be parametrized by the family of its solutions
r(t) ≡ r0, ϕ(t, s) = ωt + 2πs, ψ(t) = νt. Here, time t is one of the parameters,
and the parameter s defines an initial state ϕ(0, s) = 2πs. It holds that T (s) = 2π

ν ,
τ(s) = ω

ν + s.
The inequality A < 0 is a necessary and sufficient condition of the E-stability of

the torus Γ.
Let us find functions g(t, s), h(t, s) and c(s), that define stochastic sensitivity

function (3.4) of the torus Γ for system (4.1). In our example, coefficients of the
equation (3.1) are a(t, s) ≡ A, b(t, s) = σ(ωt + 2πs, νt) = 1 + B cos(ωt + 2πs) +
D cos(νt).

It follows from (3.5) that

g(t, s) = eAt,

h(t, s) =
1
A

(1− e−At) +
B

A2 + ω2

[
e−At(−A cos(ωt+ 2πs)

+ ω sin(ωt+ 2πs)) +A cos 2πs− ω sin 2πs
]

+
D

A2 + ν2

[
e−At(−A cos(νt) + ν sin(νt)) +A

]
.

Coefficients in (3.6) are as follows:

α(s) ≡ α = e
2πA
ν ,

β(s) = α

∫ 2π
ν

0

e−Aτ (1 +B cos(ωτ + 2πs) +D cos(ντ))dτ

= K0 +K1 cos(2πs) +K2 sin(2πs),

where

K0 = (α− 1)
( 1
A

+
AD

A2 + ν2

)
,

K1 =
B

A2 + ω2
(−A cos η + ω sin η +Aα) ,

K2 =
B

A2 + ω2
(A sin η + ω cos η − ωα) , η =

2πω
ν
.

In this example, the functional equation (3.7), (3.8) has an analytical solution

c(s) = c0 + c1 cos(2πs) + c2 sin(2πs),

where

c0 =
K0

1− α
, c1 =

K1(cos η − α)−K2 sin η
1− 2α cos η + α2

, c2 =
K2(cos η − α) +K1 sin η

1− 2α cos η + α2
.

As a result, the stochastic sensitivity of torus can be written as

µ(t, s) = eAt
(
c1 cos(2πs) + c2 sin(2πs) +

B

A2 + ω2
(A cos(2πs)− ω sin(2πs))

)
+

B

A2 + ω2
(−A cos(ωt+ 2πs) + ω sin(ωt+ 2πs))

+
D

A2 + ν2
(−A cos(νt) + ν sin(νt))− 1

A
.
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This explicit formula connects values of the stochastic sensitivity function with all
system’s parameters.

Conclusion. In this article, for a dynamical system with two-dimensional toroidal
attracting manifold, a new mathematical approach based on stochastic sensitivity
function is suggested. This function allows us to approximate the quasipotential
and probability density distribution of random states around torus. A construction
of the stochastic sensitivity function is reduced to the solution of a boundary value
problem for the linear matrix differential equation. In the case of three-dimensional
space, for this problem an analytical solution is found. Our theory is applied to the
detailed parametric analysis of two-torus. This example shows that the stochastic
sensitivity function is a convenient and constructive tool to study the dispersion of
stochastically perturbed trajectories near toroidal manifolds. The elaborated SSF
method is readily applicable to the analysis of complex stochastic multifrequency
oscillations intrinsical to a wide variety of nonlinear dynamic models of real systems.
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