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INTERACTING RAREFACTION WAVES FOR THE UNSTEADY
TRANSONIC SMALL DISTURBANCE EQUATION

ILIJA JEGDIĆ, KATARINA JEGDIĆ

Abstract. We consider a Riemann problem for the unsteady transonic small
disturbance equation that results in two rarefaction waves. We write the prob-

lem in self-similar and parabolic coordinates and we obtain a system that

changes type from hyperbolic to elliptic. We use the characteristic decompo-
sition equations to study the complicated interaction of these two rarefaction

waves in the hyperbolic region. We obtain local existence of the solution and
we derive various properties of the solution and of the characteristic curves.

1. Introduction and summary of this article

To better understand the structure of the solutions to the Cauchy problem for the
two-dimensional Euler gas dynamics equations, scientists have considered simpler
models with sectorially constant initial data known as Riemann initial data. There
has been a lot of progress in the past several decades in this research area using
numerical and analytical approaches. Some of the simplified models that have
been considered are the isentropic gas dynamics equations, the pressure-gradient
system, the nonlinear wave system, the potential flow and the unsteady transonic
small disturbance (UTSD) equation (see Keyfitz [12]).

Conjectures on the structure of the solutions to isentropic and full gas dynamics
equations, where the Riemann initial data is constant in four quadrants and each
discontinuity results in a shock, rarefaction wave or a slip line, are given by Zhang
and Zheng [18], revealing very complicated interactions using the theory of gener-
alized characteristics. The numerical simulations are given by Schulz-Rinne et al.
[14]. For the analytical and numerical studies of solutions to the pressure-gradient
system, with Riemann data posed in four quadrants, see [17, 19].

A Riemann problem with data constant in four quadrants that results in interact-
ing rarefaction waves is considered numerically for the full gas dynamics equations
by Glimm et al. in [6]. They observed reflection of characteristics from the sonic
curves and formation of shocks. These regions where one family of characteristics
starts on a sonic curve and ends on a transonic shock are known in the literature as
semi-hyperbolic patches and have been studied using the characteristic decomposi-
tion equations. For the study of semi-hyperbolic patches for the pressure-gradient
system, see Song and Zheng [15], for the Euler equations, see Li and Zheng [13], for
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the nonlinear wave system, see [7] by Hu and Wang, and for the UTSD equation,
see Jegdić and Jegdić [10] and Tesdall and Keyfitz [16]. Conjecture on the structure
of the solution for the nonlinear wave system with diverging rarefaction waves was
given by Jegdić and Jegdić [9]. A Riemann problem for the pressure-gradient sys-
tem with data constant in four quadrants resulting in interacting rarefaction waves
without the reflection of waves from the sonic curves was studied by Bang [1].

Shock reflection phenomena for the UTSD equation have been studied in [2, 3,
4, 11]. In this article we are interested in interaction of rarefaction waves and in §2
we formulate the initial value problem we consider. As in [3, 4, 10, 11], we write the
problem in self-similar coordinates and obtain a reduced system that changes type
from hyperbolic to elliptic with boundary data given in the far field. Using the gen-
eralized characteristics as in [17, 18, 19], we derive conjectures on two configurations
of the solution. We notice that the hyperbolic region consists of fully-hyperbolic,
semi-hyperbolic and, in the case of the second configuration, impracticably hy-
perbolic subregions (see Zheng [19] for this terminology for the pressure-gradient
system). In §3 we recall the characteristic decomposition equations from [10], which
we use to study solution locally in the fully-hyperbolic and semi-hyperbolic subdo-
mains. We prove local existence of smooth solution in these subdomains and we
derive statements on the monotonicity of solution along characteristics and various
properties of characteristics curves.

2. Formulation of the problem and structure of the solution

In this section we formulate the initial value problem we consider and we rewrite
it using self-similar coordinates. We use the generalized characteristics to pose
conjectures on the structure of two possible solutions.

2.1. Formulation of the initial value problem. We consider the unsteady tran-
sonic small disturbance equation

ut + uux + vy = 0,
−vx + uy = 0,

(2.1)

where (x, y) ∈ R2, t ∈ [0,∞), and (u, v) : [0,∞) × R2 → R are velocities in x-
and y-directions, respectively. We use the notation U = (u, v). Given a parameter
a > 0, we consider initial data consisting of three constant states posed in three
sectors (see Figure 1)

U(0, x, y) =


U2 = (−1, a), y > max{x/a, 0},
U3 = (−1,−a), y < min{−x/a, 0},
U1 = (0, 0), otherwise.

(2.2)

2.2. Formulation of the problem in self-similar coordinates. We write sys-
tem (2.1) in self-similar coordinates ξ = x/t and η = y/t

(u− ξ)uξ − ηuη + vη = 0,
−vξ + uη = 0.

(2.3)

The eigenvalues of this system are

Λ± =
η ±

√
η2 + 4(ξ − u)
2(ξ − u)

, (2.4)
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Figure 1. Initial data

implying that (2.3) changes type across the sonic parabola

Pu : ξ +
η2

4
= u,

and (2.3) is hyperbolic outside of Pu and elliptic inside Pu. Hence, under this change
of variables, the initial data (2.2) becomes boundary data given on the “parabola
in the far field”

U(ξ, η) =

 U2, η > max{ξ/a, 0}, ξ + η2/4→∞
U3, η < min{−ξ/a, 0}, ξ + η2/4→∞
U1, ξ > 0, −ξ/a < η < ξ/a, ξ + η2/4→∞.

Using the theory of one-dimensional hyperbolic conservation laws, we obtain
that each of the discontinuities in the far field resolves in a rarefaction wave. More
precisely, we obtain a rarefaction wave

R12

 U = U(ξ − aη)
u = ξ − aη − a2

v = −au

connecting the states U1 on the left and U2 on the right, and a rarefaction wave

R13

 U = U(ξ + aη)
u = ξ + aη − a2

v = au

connecting the states U3 on the left and U1 on the right. Therefore, the left and the
right borders of R12 are given by ξ = aη+a2 and ξ = aη+a2− 1, respectively, and
the left and the right borders of R13 are given by ξ = −aη+a2−1 and ξ = −aη+a2,
respectively (see Figure 2).

2.3. Two possible structures of the solution. We study the interaction of
rarefaction waves R12 and R13 coming from the far field with the sonic parabola
P0 : ξ + η2/4 = 0 for the state U1 and the sonic parabola P−1 : ξ + η2/4 = −1 for
the states U2 and U3.

The rarefaction waves R12 and R13 start to interact at the point A(a2, 1). The
problem is symmetric about the ξ-axis and we focus our attention to the upper
half-plane. We find the Λ±-characteristics at A by integrating

dη

dξ
= Λ±
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Figure 2. Solution in the far field and the sonic parabolas P0 and P−1

and using that ξ − u = aη+ a2 across R12. We compute that Λ+ characteristics at
A is

η =
ξ

a
− a,

which is the left border of R12, and that Λ− characteristics at A is

(a+ η)2

2
= −ξ +

3a2

2
,

which penetrates R12 and intersects the right border of R12 at the point

B(−a2 + a
√

4a2 + 2− 1,−2a+
√

4a2 + 2)

(see Figure 3).

C P0 y

U2 R12

F B
D

E
U4 U1

P−1 M A ξ
E1

B1
F1 D1

U3 R13

C1

Figure 3. Configuration I

It is easy to check that the point B is outside of the parabola P−1, implying
that the point B is hyperbolic with respect to the state U2. The straight Λ+
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characteristics of the rarefaction wave R12 curve bellow the parabolic arc ÂB. Since
the problem is symmetric with respect to ξ-axis, after meeting at the point A, we
conclude that the rarefaction waves R12 and R13 interact to form the penetration
region ABMB1A. The problem in this region is a Goursat type problem with data
given on characteristic boundaries ÂB and ÂB1.

Upon exiting the boundaries B̂M and B̂1M , the curved characteristics become
again straight forming two simple waves. We again focus on the upper half-plane
and we find the Λ− characteristics at B which is a line tangent to the sonic parabola
P−1 at the point

C(−5a2 + 2a
√

4a2 + 2− 3,−2a+ 2
√

4a2 + 2). (2.5)

It is easy to show that the characteristics ÂBC has continuous first derivatives at
A and B.

Next, we follow Λ+ characteristics at C. This characteristics goes backward
through the simple wave in the upper half-plane and exists the simple wave at the
point D. Afterwords, this characteristics becomes straight ending tangentially at
the point E on the sonic parabola for the constant state U4 which is a solution to
the Goursat problem in the region MDEE1D1M with data given on characteristics
boundaries MD and MD1. The straight Λ− characteristics of the simple wave in
the upper half-plane become curved to the right of ĈD until they become sonic along
ĈF . We can think of these Λ− characteristics reflecting of the sonic boundary F̂C
as Λ+ characteristics. After passing through D̂F , these Λ+ characteristics become
again straight until they reach the sonic boundary F̂E.

Therefore, the boundary of the interaction domain consists of the Λ− character-
istic curve ÂBC, Λ+ characteristic curve ÂB1C1 and the part of the sonic parabola
P−1 outside of the arc ĈC1. The exterior of this domain consists of two rarefaction
waves and three constant states. The interaction domain consists of the elliptic and
hyperbolic subdomains.

The problem in the unbounded region with boundary

̂CFEE1C1 ∪ {(ξ, η) ∈ P−1 : η > ηC or η < ηC1}

is elliptic, while the problem in the bounded region ABCFEE1F1C1B1A is hyper-
bolic. Moreover, the problem in the region ABCDEE1D1C1B1A is fully-hyperbolic
since both sets of characteristics can be traced back to the parabola in the far-field.
The regions CDEFC and C1D1E1F1C1 are partially hyperbolic and in the litera-
ture known as semi-hyperbolic patches as one set of characteristics can be traced to
the far-field parabola and the other set of characteristics starts and ends on sonic
curves. More on this terminology for the pressure-gradient system could be found
in Zheng [19]. In particular, the semi-hyperbolic patches for the unsteady transonic
small disturbance equation were studied in [10] where it is shown that the character-
istics which start on a sonic curve form an envelope that is overtaken by a transonic
shock. Hence, we conjecture that curved Λ+ characteristics exiting the boundary
D̂F as straight characteristics end on a transonic shock. Numerical examples of
interacting rarefaction waves for the full Euler gas dynamics equations are given by
Glimm et al. [6] showing a complicated structure involving semi-hyperbolic patches
and reflection of characteristics which start on a sonic curve and end on a transonic
shock. Tesdall and Keyfitz [16] study the interaction of the rarefaction wave with
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the sonic boundary and show numerically that the the resulting shock starts (or
ends) in the supersonic region.

The second possible structure of the solution is illustrated in Figure 4. In this
case, the Λ+ characteristics DE and the Λ− characteristics D1E1 intersect each
other before becoming sonic. Let X denote their intersection. The region EXE1E
is known in the literature (see [19]) as impracticably hyperbolic since at each point
in this region neither set of characteristics could be traced back to the far field
parabola.

C P0 y

U2 R12

F B

DE1 U4 U1

P−1 X M A ξ
E D1

B1
F1

U3 R13

C1

Figure 4. Configuration II

3. Analysis in the hyperbolic part of the interaction region

The rest of the paper is about the study of the solution structure in Configuration
I (Figure 3) and we focus our attention to the hyperbolic part of the interaction
region. We study the solution in three subdomains: penetration region ABMB1A
between R12 and R13, simple domain region BCDMB and the semi-hyperbolic
patch CDEFC. In §3.1 we write the problem in parabolic coordinates and we
recall the characteristic decomposition equations derived in [10]. We use these
equations to study Goursat problems in domains ABMB1A and BCDMB, where
the data is known along two characteristic boundaries.

In the semi-hyperbolic patch CDEFC, positive characteristics reflect of the sonic
curve F̂C and the solution in CDFC depends on the solution in the elliptic region
with F̂C being a free sonic boundary. To the best of our knowledge, understanding
of this dependence is still an open problem and our future work consists of comput-
ing detailed numerical simulations using the numerical method from [8] by Jegdić to
better understand this dependence. As in earlier studies of semi-hyperbolic patches
[7, 10, 13, 15], to study the solution in the region CDEFC, we assume that the
location of the characteristic curve D̂F is known.

In §3.2 and 3.4 we prove existence of local smooth solutions in regions ABMB1A
and CDFC, and we obtain various properties of global smooth solutions in these
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regions. Our future work consists of using these properties and ideas from [5] by
Dai to extend these local solutions to the entire regions ABMB1A and CDFC.

3.1. Formulation of the problem in parabolic coordinates and character-
istic decomposition. We consider system (2.3) in parabolic coordinates (ρ, η)
where ρ = ξ + η2/4

(u− ρ)uρ −
η

2
uη + vη = 0,

η

2
uρ − vρ + uη = 0,

(3.1)

with eigenvalues

λ± = ± 1√
ρ− u

.

From [10] we recall the definitions of the directional derivatives along Λ± and λ±
characteristic curves

∂± = ∂ξ + Λ±∂η and ∂± = ∂η + λ−1
± ∂ρ = ∂η ±

√
ρ− u∂ρ, (3.2)

the following relationships

∂±Λ± =
Λ3
±

ηΛ± + 2
∂±u and ∂±u =

ηΛ± + 2
Λ4
±

∂±Λ±, (3.3)

and the characteristic decomposition equations

∂±∂∓u = Q(∂±u− ∂∓u)∂∓u, (3.4)

where

Q =
1

4(ρ− u)
= −λ+λ−

4
. (3.5)

Notice that equations (3.4) could be rewritten as

∂±
( 1
∂∓u

)
+Q∂±u

1
∂∓u

= Q. (3.6)

As in [10], we eliminate v from the system (3.1) and we obtain the second order
equation

(u− ρ)uρρ + uηη −
uρ
2

+ u2
ρ = 0

and the system∂+u
∂−u
u


η

+

−√ρ− u 0 0
0

√
ρ− u 0

0 0 0

∂+u
∂−u
u


ρ

=

Q(∂−u− ∂+u)∂+u
Q(∂+u− ∂−u)∂−u

1
2 (∂+u+ ∂−u)

 . (3.7)

We use the notation
W = (∂+u, ∂−u, u)T

and in sections §3.2 - §3.4, we consider system (3.7) in subregions of the hyperbolic
interaction domain ABCFEE1F1C1B1A with u given on characteristic boundaries.
We find ∂±u along those boundaries by using the fact that they are characteristics
and by using the characteristic decomposition equations written in the form (3.6).
We obtain local existence of solution in these subregions and we obtain certain
properties of the solution and of the characteristic curves. Our ideas are similar to
those in [10] on the study of a semi-hyperbolic patch.
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3.2. Interactions in the region ABMB1A. We consider system (3.7) in the
region ABMB1A. The boundaries ÂB and B̂1A are characteristics determined in
§2.3 with the condition for u found in §2.2. More precisely, we have that ÂB is
given by

(a+ η)2

2
= −ξ +

3a2

2
,

or, in parabolic coordinates,

ρ = a2 − aη − η2

4
,

and along ÂB we have

u = ξ − aη − a2 = ρ−
(η

2
+ a
)2

.

Also, B̂1A is given by

(a− η)2

2
= −ξ +

3a2

2
or ρ = a2 + aη − η2

4
,

and along B̂1A we have

u = ξ + aη − a2 = ρ−
(η

2
− a
)2

.

We find ∂−u along ÂB and ∂+u along B̂1A by using the fact that these bound-
aries are characteristics and we find ∂+u along ÂB and ∂−u along B̂1A by using
equations (3.6).

Since ÂB is a λ− characteristics, we have

∂−u = ∂η −
√
ρ− u∂ρu = −η − 2a < 0 (3.8)

along ÂB. Similarly, since B̂1A is a λ+ characteristics, we have

∂+u = uη +
√
ρ− u ∂ρu = −η + 2a > 0 (3.9)

along B̂1A.
Next, since ÂB is λ− characteristic curve, (3.6) imply that along ÂB we have

∂−
( 1
∂+u

)
+ ∂−u

1
∂+u

= Q,

i.e., by using (3.8), we have

d

dη

1
∂+u

− 1
η + 2a

1
∂+u

=
1

(η + 2a)2
.

Notice that this is a linear ordinary differential equation in 1/∂+u. We use (3.9) to
impose a condition at A,

1
∂+u

(A) =
1
2a
,

and as a solution of this initial value problem we obtain ∂+u along ÂB. Similarly,
(3.6) imply that along B̂1A we have

d

dη

1
∂−u

− 1
η − 2a

1
∂−u

=
1

(η − 2a)2
,
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which with the condition 1
∂−u

(A) = − 1
2a gives ∂−u along B̂1A. Therefore, we have

W = (∂+u, ∂−u, u)T along the boundaries ÂB and B̂1A.

Theorem 3.1. The Goursat problem (3.7) with W given on the characteristic
boundaries ÂB and B̂1A as above has a smooth local solution at the point A.

Proof. As in [10, Theorem 4.1], it suffices to check the following compatibility
conditions at the point A:

W |dAB(A) = W |dB1A
(A)

and
~l3W

′|dAB(A)− ∂+u(A)+∂−u(A)
2

λ1(A)− λ3(A)
=
~l3W

′|dB1A
(A)− ∂+u(A)+∂−u(A)

2

λ2(A)− λ3(A)
,

where λ1 = −
√
ρ− u, λ2 =

√
ρ− u and λ3 = 0 are the eigenvalues of the sys-

tem (3.7) and ~l1 = (1, 0, 0), ~l2 = (0, 1, 0) and ~l3 = (0, 0, 1) are the corresponding
eigenvectors. It is easy to check that both conditions are satisfied. �

Lemma 3.2. Let u be a smooth solution of the Goursat problem (3.7) in the domain
ABMB1A with W given on characteristic boundaries ÂB and B̂1A as above. Then

(a) ∂−u < 0 and ∂+u > 0 in the interior of the domain ABMB1A,
(b) ∂−u is increasing along λ+ characteristics, and
(c) ∂+u is decreasing along λ− characteristics.

Proof. The proof is similar to the proof of [10, Lemma 4.2] and for completeness,
we outline it here. Let P be an interior point of the domain ABMB1A and let P1

be the intersection of the λ+ characteristics with ÂB. Then integrating (3.4) along
P̂P1 we have

∂−u(P ) = ∂−u(P1)e
R P1

P Q(∂+u−∂−u)ds.

Since ∂−u(P1) < 0 according to (3.8), we have ∂−u(P ) < 0. Part (b) follows by
noticing that Q > 0. Similarly, we prove the statement (c) for ∂+u. �

Lemma 3.3. Let u be a smooth solution of the Goursat problem (3.7) in the domain
ABMB1A with W given on characteristic boundaries ÂB and B̂1A as above. Then
Λ+ characteristics are convex and Λ− characteristics are concave.

Proof. From (3.3) we have

∂±Λ± =
Λ4
±

ηΛ± + 2
∂±u.

Using the result (a) of the previous Lemma, it suffices to prove

ηΛ± + 2 > 0. (3.10)

First, we note that ξ − u > 0 in the region ABMB1A. Clearly, at the point A,
we have ξ−u = a2 > 0. Assume that there is a point P in the interior of ABMB1A
such that ξ − u = 0 at P . By the definition of Λ+ in (2.4), if η 6= 0 at P , then
Λ+ characteristics would be vertical at P , which is false. Hence, η = 0 at P , and
therefore η2/4 = u − ξ at P , implying that P is sonic. This is also false since the
region ABMB1A is hyperbolic.
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Next, from (2.4) we have

ηΛ+ + 2 =
η2 + η

√
η2 + 4(ξ − u) + 4(ξ − u)

2(ξ − u)
.

To prove (3.10), we need to prove that the numerator in the above expression is pos-
itive, i.e., that η2 + 4(ξ− u) > −η

√
η2 + 4(ξ − u). If η > 0, this is clearly satisfied,

and if η < 0, by squaring both sides of the inequality, we obtain that the inequality
is also satisfied. Similarly, we prove the claim (3.10) for Λ− characteristics. �

3.3. Interactions in the simple wave region BCDMB. We express the left
and the right border of the rarefaction wave R12 in (ρ, η)-coordinates and we obtain

ρ =
(η

2
+ a
)2

and ρ =
(η

2
+ a
)2

− 1.

From Lemma 3.3 we have that the Λ+ characteristics at the point B curves up
after passing through the point B. Therefore, if M̂B is given by ρ = f(η) in the
(ρ, η)-coordinates, we have f ′ > 0 and f ′′ < 1

2 . Then

f ′ =
dρ

dη
=
√
ρ− u =

√
f − u

implies u = f − (f ′)2, and along M̂B we have

∂+u = ∂ηu+
√
ρ− u∂ρu = f ′(1− 2f ′′) > 0. (3.11)

Next, we prove that u is continuous in the simple wave region BCDMB.

Theorem 3.4. Let u be a solution of the Goursat problem (3.7) with W given
along the characteristic boundaries B̂C and M̂B. Then λ− characteristics do not
intersect each other in the domain BCDMB.

Proof. We prove the statement by contradiction. Assume that Z ∈ BCDMB
is the first intersection point of two negative characteristics XZ and Y Z, where
X,Y ∈ M̂B. Assume that ∂+u(Z) =∞.

Since u is constant along λ− characteristics, we have ∂−u = 0 along XZ. From
the characteristic decomposition equation (3.4), we have

∂−∂+u = −Q(∂+u)2

i.e.,

−∂−∂+u

(∂+u)2
= Q

on XZ. Integrating the last equation along the characteristic line XZ, we obtain

1
∂+u(Z)

− 1
∂+u(X)

=
∫ Z

X

Qds,

implying

∂+u(X) =
(
−
∫ Z

X

Qds
)−1

< 0,

since Q > 0. This is a contradiction to (3.11). �

In the next lemma we prove that u is increasing along D̂C in the parabolic
coordinates and decreasing in self-similar coordinates.
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Lemma 3.5. Let u be a solution of the Goursat problem (3.7) in the domain
BCDMB with W given along the characteristic boundaries B̂C and M̂B. Then

∂+u > 0 on D̂C and ∂+u < 0 on D̂C.

Proof. Let Y ∈ D̂C and let XY be a negative characteristics through Y , where
X ∈ M̂B. We integrate the characteristic decomposition equation (3.4) along XY
and obtain

∂+u(X) = ∂+u(Y )e
R Y

X
Q(∂−u−∂+u)ds.

From (3.11) we have ∂+u(X) > 0, implying ∂+u(Y ) > 0.
To prove the second part of the lemma, we consider the change of coordinates

(ξ, η) 7→ (ρ, η) and we compute

∂+u = ∂ηu+
√
ρ− u ∂ρu

= −η
2
∂ξu+ ∂ηu+

√
ρ− u ∂ξu

=
(
∂+u− Λ+∂ηu

)(√
ρ− u− η

2

)
+ ∂ηu,

using that ∂ξu = ∂+u − Λ+∂ηu from (3.2). By rewriting the last expression, we
obtain

∂+u = ∂+u
(√

ρ− u− η

2

)
+ ∂ηu

(
1− Λ+

(√
ρ− u− η

2

))
.

Using the definition of Λ+ in (2.4), it is easy to show

1− Λ+

(√
ρ− u− η

2

)
= 0.

Therefore,

∂+u = ∂+u
(√

ρ− u− η

2

)
,

and to finish the proof, we need to prove that
√
ρ− u− η

2
< 0 on D̂C. (3.12)

Clearly, since C is a sonic point, we have
√
ρ− u− η

2
= −ηC

2
< 0,

since C is in the upper half-plane. If there exists a point X ∈ D̂C such that
√
ρ− u =

η

2
at X,

then we have η =
√
η2 + 4(ξ − u) at X, implying by (2.4), that Λ−characteristics

is horizontal at X. From the geometry of the problem, as described in §2.3, this
is impossible since every Λ− characteristics in the upper half-plane in the domain
BCDMB is decreasing. Hence, (3.12) is proved, implying ∂+u < 0 along D̂C. �

Lemma 3.6. Let u be a solution of the Goursat problem (3.7) in the domain
BCDMB with W given along the characteristic boundaries B̂C and M̂B. Then
Λ+ characteristics D̂C is concave in (ξ, η)-plane.
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Proof. Along D̂C, we have

d2η

dξ2
= ∂+Λ+ =

Λ3
+

ηΛ+ + 2
∂+u

by (3.3). Recall that Λ+ < 0 and that ∂+u < 0, by the previous Lemma.
Next, we determine the sign of

ηΛ+ + 2 =
η2 + 4(ξ − u) + η

√
η2 + 4(ξ − u)

2(ξ − u)
(3.13)

along D̂C. We prove that

ηΛ+ + 2 < 0 on D̂C \ {C}. (3.14)

First, note that at the point C we have

ξ − u = −5a2 + 2a
√

4a2 + 2− 4 < 0.

If there is a point P ∈ D̂C such that ξ − u = 0 at P , then by the definition (2.4),
we would have that Λ+ characteristics at P is vertical, which is false. Hence

ξ − u < 0 on D̂C. (3.15)

To prove (3.14), we need to show that the numerator in (3.13) is positive on D̂C \
{C}. This is clearly true as the sum of the first two terms is positive since D̂C \{C}
is in the hyperbolic region, and the third term is positive since η > 0 on D̂C. �

3.4. Interactions in the semi-hyperbolic patch CDEFC. We follow the same
idea as in [10] where the semi-hyperbolic patch resulted from the interaction of the
rarefaction wave and the sonic parabola, while the semi-hyperbolic patch CDEFC
results from the interaction of the simple wave and the sonic parabola. We remark
again that the solution in the semi-hyperbolic patch is coupled with the solution
in the elliptic region through the free sonic boundary, however, this dependence is
still an open problem. In this section, as in [7, 10, 13, 15], to study the solution in
the region CDEFC, we assume that the location of the curve D̂F is known.

Let us denote the Λ+ characteristics D̂C by ξ = f(η) and Λ− characteristics D̂F
by ξ = g(η). We have f ′ < 0 and, by Lemma 3.6, we have f ′′ < 0. Also, g′ < 0,
and since the straight Λ− characteristics of the simple wave in the region BCDMB

become curved to the right of D̂C, it is reasonable to assume that g′′ > 0. As in
§3.2, we use the fact that D̂C and D̂F are characteristics to derive u, ∂+u and ∂−u
along D̂C and D̂F and we show that the Goursat problem for the system (3.7)
with data given on D̂C and D̂F has a smooth solution in a neighborhood of D.

In (ρ, η)-coordinates, we have that D̂C is given by ρ = f(η) + η2/4. Using the
fact that D̂C is λ+ characteristics, we have

f ′ +
η

2
=
dρ

dη
=
√
ρ− u =

√
f +

η2

4
− u,

implying

u = f +
η2

4
−
(
f ′ +

η

2
)2
. (3.16)

Hence, along D̂C

∂+u = uη +
√
ρ− uuρ = −2f ′′

(
f ′ +

η

2
)
. (3.17)
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We claim f ′ + η
2 > 0 along D̂C. At the point C, given by (2.5), we have

f ′+
η

2
= − 2

ηC
+
ηC
2

=
1

a−
√

4a2 + 2
− (a−

√
4a2 + 2) =

−5a2 − 1 + 2a
√

4a2 + 2
a−
√

4a2 + 2
.

It is easy to show that both the numerator and the denominator in the above
expression are negative, implying that the claim holds at the point C. Assume that
there is a point X ∈ D̂C such that f ′ + η

2 = 0 at X. From (3.16) and definition of
D̂C in (ρ, η)-coordinates, we have that at the point X

u = f +
η2

4
= ρ,

implying that X is sonic, which is false. Therefore, the above claim is proved and

∂+u > 0 on D̂C. (3.18)

Similarly, λ− characteristics D̂F is given by ρ = g(η) + η2/4, implying

g′ +
η

2
=
dρ

dη
= −
√
ρ− u = −

√
g(η) +

η2

4
− u.

Hence,

u = g(η) +
η2

4
−
(
g′ +

η

2
)2
,

and along D̂F we have

∂−u = uη −
√
ρ− u = −2g′′

(
g′ +

η

2
)
.

We claim that g′ + η
2 < 0 on D̂F . Using that at the point D we have

f ′ +
η

2
=
√
ρ− u = −

(
g′ +

η

2
)
,

and we proved f ′ + η
2 > 0 at D, we obtain g′ + η

2 < 0 at D. Similarly, as above
if there is a point X ∈ D̂F such that g′ + η

2 = 0 at X, then X would be a sonic
point. Therefore, the above claim is proved and

∂−u > 0 on D̂F . (3.19)

Using (3.6), as in §3.2, we have that ∂u along D̂C is found from a solution of
the linear ordinary equation

d

dη

1
∂−u

− f ′′

2f ′ + η

1
∂−u

=
1

(2f ′ + η)2
,

with the initial condition
1
∂−u

(D) = − 1
2g′′(D)(g′(D) + ηD/2)

,

and ∂+u along D̂F is found from the solution of the linear ordinary equation

d

dη

1
∂+u

− g′′

2g′ + η

1
∂+u

=
1

(2g′ + η)2

with the initial condition
1
∂+u

(D) = − 1
2f ′′(D)(f ′(D) + ηD/2)

.

We obtain analogous results to those in §3.2.
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Theorem 3.7. The Goursat problem (3.7) with W given on the characteristic
boundaries D̂C and D̂F as above has a smooth local solution at the point D.

Lemma 3.8. Let u be a smooth solution of the Goursat problem (3.7) in the domain
DCFD with W given on characteristic boundaries D̂C and D̂F as above. Then

(a) ∂−u > 0 and ∂+u > 0 in the interior of the domain DCFD,
(b) ∂−u is increasing (or decreasing) along λ+ characteristics if

∂−u > ∂+u (or ∂−u < ∂+u),

(c) ∂+u is increasing (or decreasing) along λ− characteristics if

∂+u > ∂−u (or ∂+u < ∂−u).

Remark 3.9. We remark that from part (a) of the previous Lemma we have that
the minimum of u in the domain DCFD is achieved at the point D.

Lemma 3.10. Let u be a smooth solution of the Goursat problem (3.7) in the
domain DCFD with W given on characteristic boundaries D̂C and D̂F as above.
Then Λ+ characteristics are concave and Λ− characteristics are convex.

Proof. The proof is similar to the proofs of Lemmas 3.3 and 3.6. We recall from
(3.3) that

∂±Λ± =
Λ4
±

ηΛ± + 2
∂±u.

Using the previous Lemma, it suffices to show that

ηΛ+ + 2 < 0 and ηΛ− + 2 > 0. (3.20)

First recall from (3.15) that ξ − u < 0 on D̂C. If there is a point P inside
the domain DCFD such that ξ − u = 0 at P , then, by (2.4), we would have that
Λ+ characteristics at P is vertical, which is false. Hence ξ − u < 0 in the domain
DCFD.

Next, we have

ηΛ± + 2 =
η2 + 4(ξ − u)± η

√
η2 + 4(ξ − u)

2(ξ − u)
.

Clearly, η2 + 4(ξ−u) + η
√
η2 + 4(ξ − u) > 0 in DCFD \ {C}, since the sum of the

first two terms is positive because the points in DCFD \ {C} are hyperbolic and
the third term is positive since η > 0 in DCFD. Hence, (3.20) holds for Λ+.

To show that η2 + 4(ξ − u)− η
√
η2 + 4(ξ − u) < 0 in DCFD \ {C}, we prove

η2 + 4(ξ − u) < η
√
η2 + 4(ξ − u).

We note that the left-hand side is positive, and by squaring both sides and recalling
that ξ − u < 0, we obtain that the inequality is satisfied. �

The reflected Λ+ characteristics pass through D̂F and continue as straight char-
acteristics forming a simple wave in the region DFED. As in [10, §5], these charac-
teristics form an envelope before their sonic points indicating existence of a shock.
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[11] K. Jegdić, B. L. Keyfitz, S. Čanić; Transonic regular reflection for the unsteady transonic

small disturbance equation - details of the subsonic solution, Free and Moving Boundaries
Analysis, Simulation and Control: R. Glowinski, J. P. Zolesio (Eds.), Lect. Notes Pure Appl.

Math., Chapman & Hall/CRC, Boca Raton, FL 252 (2007), 125–165.

[12] B. L. Keyfitz; Self-similar solutions of two-dimensional conservation laws, J. Hyp. Diff. Eq.,
1 (2004), 445–492.

[13] M. J. Li, Y. Zheng; Semi-hyperbolic patches of solutions of the two-dimensional Euler equa-
tions, Arch. Ration. Mech. Anal., 201 (2011), 1069–1096.

[14] C. W. Schulz-Rinne, J. P. Collins, H. M. Glaz; Numerical solution of the Riemann problem

for two-dimensional gas dynamics, SIAM J. Sci. Comp., 4 (1993), 1394–1414.
[15] K. Song, Y. Zheng; Semi-hyperbolic patches of solutions of the pressure gradient system,

Discrete Contin. Dyn. Syst., 24 (2009), 1365–1380.

[16] A. M. Tesdall, B. L. Keyfitz; A continuous two-way free boundary in the unsteady transonic
small disturbance equations, J. Hyp. Diff. Eq., 7 (2010), 317–338.

[17] P. Zhang, J. Li, T. Zhang; On two-dimensional Riemann problem for pressure-gradient equa-
tions of the Euler system, Disc. Cont. Dyn. Syst., 4 (1998), 609–634.

[18] T. Zhang, Y. Zheng; Conjecture on the structure of solutions of the Riemann problem for

two-dimensional gas dynamics systems, SIAM J. Math. Anal., 21 (1990), 593–630.

[19] Y. Zheng; Systems of conservation laws: two-dimensional Riemann problems, Birkhauser
(2001).

Ilija Jegdić
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