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EXISTENCE AND ULAM STABILITIES FOR HADAMARD
FRACTIONAL INTEGRAL EQUATIONS WITH

RANDOM EFFECTS

SAÏD ABBAS, WAFAA A. ALBARAKATI, MOUFFAK BENCHOHRA, JOHNNY

HENDERSON

Abstract. This article concerns the existence and Ulam stabilities for a class
of random integral equations via Hadamard’s fractional integral. Our main

tools is a random fixed point theorem with stochastic domain.

1. Introduction

Fractional calculus is a powerful tool in applied mathematics to study many prob-
lems from fields of science and engineering. It has produced many break-through
results in mathematical physics, finance, hydrology, biophysics, thermodynamics,
control theory, statistical mechanics, astrophysics, cosmology and bioengineering
[21, 43]. There has been a significant development in ordinary and partial frac-
tional differential and integral equations in recent years; see the monographs of
Abbas et al [4, 5], Kilbas et al [28], Miller and Ross [33], and the papers of Abbas
et al [1, 2, 6], Benchohra et al [9], Vityuk et al [45, 46], and the references therein.

Abbas et al [3] obtained some existence and uniqueness results for determin-
ist integral equations involving the Hadamard fractional integral of two indepen-
dent variables. Butzer et al [12] investigate properties of the Hadamard fractional
integral and the derivative. In [13], they obtained the Mellin transforms of the
Hadamard fractional integral and differential operators and Pooseh et al [36] ob-
tained expansion formulas of the Hadamard operators in terms of integer order
derivatives. Many other interesting properties of those operators and others are
summarized in [40] and the references therein.

The nature of a dynamic system in engineering or natural sciences depends on
the accuracy of the information we have concerning the parameters that describe
that system. If the knowledge about a dynamic system is precise then a determin-
istic dynamical system arises. Unfortunately in most cases the available data for
the description and evaluation of parameters of a dynamic system are inaccurate,
imprecise or confusing. In other words, evaluation of parameters of a dynamical
system is not without uncertainties. When our knowledge about the parameters of
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a dynamic system are of statistical nature, that is, the information is probabilistic,
the common approach in mathematical modeling of such systems is the use of ran-
dom differential equations or stochastic differential equations. Random differential
equations, as natural extensions of deterministic ones, arise in many applications
and have been investigated by many mathematicians; see [29, 30, 31, 42, 52] and
references therein. Between them differential equations with random coefficients
(see, [42, 15]) offer a natural and rational approach (see [41], Chapter 1), since
sometimes we can obtain the random distributions of some main disturbances by
historical experiences and data rather than take all random disturbances into ac-
count and assume the noise to be white noise.

The stability of functional equations was originally raised by Ulam in 1940 in a
talk given at Wisconsin University. The problem posed by Ulam was the following:
“Under what conditions does there exist an additive mapping near an approxi-
mately additive mapping?” (for more details see [44]). The first answer to Ulam’s
question was given by Hyers in 1941 in the case of Banach spaces in [22]. There-
after, this type of stability is called the Ulam-Hyers stability. In 1978, Rassias [37]
provided a remarkable generalization of the Ulam-Hyers stability of mappings by
considering variables. The concept of stability for a functional equation arises when
we replace the functional equation by an inequality which acts as a perturbation of
the equation. Thus, the stability question of functional equations becomes, “How
do the solutions of the inequality differ from those of the given functional equa-
tion?” Considerable attention has been given to the study of the Ulam-Hyers and
Ulam-Hyers-Rassias stability for all kinds of functional equations; one can see the
monographs of [23, 25]. Bota-Boriceanu and Petrusel [11], Petru et al [35], and Rus
[38, 39] who discussed the Ulam-Hyers stability for operatorial equations and in-
clusions. Castro and Ramos [14] and Jung [27] considered the Hyers-Ulam-Rassias
stability for a class of Volterra integral equations. More details from a historical
point of view, and recent developments of such stabilities are reported in [26, 38]
and [47]-[51].

This article concerns the existence and Ulam stability of solutions to the Hada-
mard fractional integral equation

u(x, y, w) = µ(x, y, w) +
∫ x

1

∫ y

1

(
log

x

s

)r1−1 (
log

y

t

)r2−1

× f(s, t, u(s, t, w), w)
st

dt ds, (x, y) ∈ J, w ∈ Ω,
(1.1)

where J := [1, a] × [1, b], a, b > 1, r1, r2 > 0, (Ω,A) is a measurable space, µ :
J × Ω → R and f : J × R× Ω → R are given continuous functions. In this article
we obtain the existence and Ulam stabilities of random solutions via fixed point
techniques.

2. Preliminaries

In this section, we introduce notation, definitions, and preliminary facts which
are used throughout this article. Denote by L1(J,R) the Banach space of functions
u : J → R that are Lebesgue integrable, with norm

‖u‖L1 =
∫ a

1

∫ b

1

|u(x, y)|dydx.
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Let L∞(J) be the Banach space of functions u : J → R which are measurable and
essentially bounded. As usual, by C := C(J,R) we denote the Banach space of all
continuous functions u : J → R with the norm

‖u‖C = sup
(x,y)∈J

|u(x, y)|.

Let βE be the σ-algebra of Borel subsets of E. A mapping v : Ω→ E is said to
be measurable if for any B ∈ βE , one has

v−1(B) = {w ∈ Ω : v(w) ∈ B} ⊂ A.
To define integrals of sample paths of random process, it is necessary to define a
jointly measurable map.

Definition 2.1. A mapping T : Ω×E → E is called jointly measurable if for any
B ∈ βE , one has

T−1(B) = {(w, v) ∈ Ω× E : T (w, v) ∈ B} ⊂ A× βE ,
where A× βE is the direct product of the σ-algebras A and βE those defined in Ω
and E respectively.

Lemma 2.2 ([16]). Let T : Ω×E → E be a mapping such that T (., v) is measurable
for all v ∈ E, and T (w, ·) is continuous for all w ∈ Ω. Then the map (w, v) 7→
T (w, v) is jointly measurable.

Definition 2.3 ([20]). A function f : J×E×Ω→ E is called random Carathéodory
if the following conditions are satisfied:

(i) The map (x, y, w)→ f(x, y, u, w) is jointly measurable for all u ∈ E, and
(ii) The map u→ f(x, y, u, w) is continuous for almost all (x, y) ∈ J and w ∈ Ω.

Let T : Ω×E → E be a mapping. Then T is called a random operator if T (w, u)
is measurable in w for all u ∈ E and it is expressed as T (w)u = T (w, u). In this case
we also say that T (w) is a random operator on E. A random operator T (w) on E
is called continuous (resp. compact, totally bounded and completely continuous) if
T (w, u) is continuous (resp. compact, totally bounded and completely continuous)
in u for all w ∈ Ω. The details of completely continuous random operators in
Banach spaces and their properties appear in Itoh [24].

Definition 2.4 ([17]). Let P(Y ) be the family of all nonempty subsets of Y and C
be a mapping from Ω into P(Y ). A mapping T : {(w, y) : w ∈ Ω, y ∈ C(w)} → Y
is called random operator with stochastic domain C if C is measurable (i.e., for all
closed A ⊂ Y, {w ∈ Ω, C(w)∩A 6= ∅} is measurable) and for all open D ⊂ Y and all
y ∈ Y , {w ∈ Ω : y ∈ C(w), T (w, y) ∈ D} is measurable. T will be called continuous
if every T (w) is continuous. For a random operator T , a mapping y : Ω → Y is
called random (stochastic) fixed point of T if for P -almost all w ∈ Ω, y(w) ∈ C(w)
and T (w)y(w) = y(w) and for all open D ⊂ Y , {w ∈ Ω : y(w) ∈ D} is measurable.

Let MX denote the class of all bounded subsets of a metric space X.

Definition 2.5. Let X be a complete metric space. A map α : MX → [0,∞) is
called a measure of noncompactness on X if it satisfies the following properties for
all B,B1, B2 ∈MX .

(1) α(B) = 0 if and only if B is precompact (Regularity),
(2) α(B) = α(B) (Invariance under closure),
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(3) α(B1 ∪B2) = α(B1) + α(B2) (Semi-additivity).

For more details on measure of noncompactness and its properties see [7].

Example 2.6. In every metric space X, the map φ :MX → [0,∞) with φ(B) = 0
if B is relatively compact and φ(B) = 1 otherwise is a measure of noncompactness,
the so-called discrete measure of noncompactness [8, Example 1, p. 19], .

Definition 2.7 ([19, 28]). The Hadamard fractional integral of order q > 0 for a
function g ∈ L1([1, a],R), is defined as

(HIr1g)(x) =
1

Γ(q)

∫ x

1

(
log

x

s

)q−1 g(s)
s
ds,

where Γ(·) is the Euler gamma function.

Definition 2.8. Let r1, r2 ≥ 0, σ = (1, 1) and r = (r1, r2). For w ∈ L1(J,R),
define the Hadamard partial fractional integral of order r by the expression

(HIrσw)(x, y) =
1

Γ(r1)Γ(r2)

∫ x

1

∫ y

1

(
log

x

s

)r1−1 (
log

y

t

)r2−1 w(s, t)
st

dt ds.

Now, we consider the Ulam stability for the Hadamard random integral equation
(1.1). Consider the operator N : Ω× C → C defined by:

(N(w)u)(x, y)

= µ(x, y, w) +
∫ x

1

∫ y

1

(
log

x

s

)r1−1 (
log

y

t

)r2−1 f(s, t, u(s, t, w), w)
st

dt ds.
(2.1)

Let ε be a positive real number and Φ : J × Ω → [0,∞) be a measurable and
bounded function. We consider the following inequalities:

|u(x, y, w)− (N(w)u)(x, y)| ≤ ε; for a.a. (x, y) ∈ J, w ∈ Ω, (2.2)

|u(x, y, w)− (N(w)u)(x, y)| ≤ Φ(x, y, w); for a.a. (x, y) ∈ J, w ∈ Ω, (2.3)

|u(x, y, w)− (N(w)u)(x, y)| ≤ εΦ(x, y, w); for a.a. (x, y) ∈ J, w ∈ Ω. (2.4)

Definition 2.9 ([4, 38]). Equation (1.1) is Ulam-Hyers stable if there exists a real
number cN > 0 such that for each ε > 0 and for each random solution u : Ω → C
of the inequality (2.2) there exists a random solution v : Ω → C of the equation
(1.1) with

|u(x, y, w)− v(x, y, w)| ≤ εcN ; (x, y) ∈ J, w ∈ Ω.

Definition 2.10 ([4, 38]). Equation (1.1) is generalized Ulam-Hyers stable if there
exists cN ∈ C([0,∞), [0,∞)) with cN (0) = 0 such that for each ε > 0 and for
each random solution u : Ω→ C of inequality (2.2) there exists a random solution
v : Ω→ C of the equation (1.1) with

|u(x, y, w)− v(x, y, w)| ≤ cN (ε); (x, y) ∈ J, w ∈ Ω.

Definition 2.11 ([4, 38]). Equation (1.1) is Ulam-Hyers-Rassias stable with respect
to Φ if there exists a real number cN,Φ > 0 such that for each ε > 0 and for each
random solution u : Ω → C of inequality (2.4) there exists a random solution
v : Ω→ C of equation (1.1) with

|u(x, y, w)− v(x, y, w)| ≤ εcN,ΦΦ(x, y, w); (x, y) ∈ J, w ∈ Ω.
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Definition 2.12 ([4, 38]). Equation (1.1) is generalized Ulam-Hyers-Rassias stable
with respect to Φ if there exists a real number cN,Φ > 0 such that for each random
solution u : Ω→ C of inequality (2.3) there exists a random solution v : Ω→ C of
equation (1.1) with

|u(x, y, w)− v(x, y, w)| ≤ cN,ΦΦ(x, y, w); (x, y) ∈ J, w ∈ Ω.

Remark 2.13. It is clear that: (i) Definition 2.9 implies Definition 2.10; (ii) Def-
inition 2.11 implies Definition 2.12; (iii) Definition 2.11 for Φ(., ., .) = 1 implies
Definition 2.9.

One can have similar remarks for the inequalities (2.2) and (2.4). So, the Ulam
stabilities of the fractional random differential equations are some special types of
data dependence of the solutions of fractional differential equations.

Lemma 2.14 ([10]). If Y is a bounded subset of a Banach space X, then for each
ε > 0, there is a sequence {yk}∞k=1 ⊂ Y such that

α(Y ) ≤ 2α({yk}∞k=1) + ε.

Lemma 2.15 ([34, 53]). If {uk}∞k=1 ⊂ L1(J) is uniformly integrable, then the
function α({uk}∞k=1) is measurable and for each (x, y) ∈ J ,

α
({∫ x

1

∫ y

1

uk(s, t) dt ds
}∞
k=1

)
≤ 2

∫ x

1

∫ y

1

α({uk(s, t)}∞k=1) dt ds.

Lemma 2.16 ([32]). Let F be a closed and convex subset of a real Banach space,
let G : F → F be a continuous operator and G(F ) be bounded. If there exists a
constant k ∈ [0, 1) such that for each bounded subset B ⊂ F ,

α(G(B)) ≤ kα(B),

then G has a fixed point in F .

3. Existence and Ulam stability results

In this section, we discuss the existence of solutions and we present conditions
for the Ulam stability for the Hadamard integral equation (1.1). The following
hypotheses will be used in the sequel.

(H1) The function w 7→ µ(x, y, w) is measurable and bounded for a.e. (x, y) ∈ J ,
(H2) The function f is random Carathéodory on J × R× Ω,
(H3) There exist functions p1, p2 : J×Ω→ [0,∞) with pi(w) ∈ C(J,R+); i = 1, 2

such that for each w ∈ Ω,

|f(x, y, u, w)| ≤ p1(x, y, w) +
p2(x, y, w)

1 + |u(x, y)|
|u(x, y, w)|,

for all u ∈ R and a.e. (x, y) ∈ J ,
(H4) There exists a function q : J × Ω → [0,∞) with q(w) ∈ L∞(J, [0,∞)) for

each w ∈ Ω such that for any bounded B ⊂ R,

α(f(x, y,B,w)) ≤ q(x, y, w)α(B), for a.e. (x, y) ∈ J,

(H5) There exists a random function R : Ω→ (0,∞) such that

R(w) ≥ µ∗(w) +
(p∗1(w) + p∗2(w))(log a)r1(log b)r2

Γ(1 + r1)Γ(1 + r2)
,
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where

µ∗(w) = sup
(x,y)∈J

|µ(x, y, w)|, p∗i (w) = ess sup(x,y)∈J pi(x, y, w); i = 1, 2,

(H6) There exist q1, q2 : J × Ω → [0,∞) with qi(., w) ∈ L∞(J, [0,∞)); i = 1, 2
such that for each w ∈ Ω, and a.e. (x, y) ∈ J , we have

pi(x, y, w) ≤ qi(x, y, w,w)Φ(x, y, w),

(H7) Φ(w) ∈ L1(J, [0,∞)) for all w ∈ Ω, and there exists λΦ > 0 such that for
each (x, y) ∈ J , we have

(HIrσΦ)(x, y, w) ≤ λΦΦ(x, y, w).

Set
q∗ = ess sup(x,y,w)∈J×Ω q(x, y, w).

Theorem 3.1. Assume that hypotheses (H1)–(H5) hold. If

` :=
4q∗(log a)r1(log b)r2

Γ(1 + r1)Γ(1 + r2)
< 1,

then the integral equation (1.1) has a random solution defined on J . Furthermore,
if the hypotheses (H6) and (H7) hold, then the random equation (1.1) is generalized
Ulam-Hyers-Rassias stable.

Proof. Let N be the operator defined in (2.1). From the hypotheses (H2) and (H3),
for each w ∈ Ω and almost all (x, y) ∈ J , we have that f(x, y, u(x, y, w), w) is in
L1. Since the function f is continuous, then the indefinite integral is continuous
for all w ∈ Ω and almost all (x, y) ∈ J . Again, as the map µ is continuous for all
w ∈ Ω and the indefinite integral is continuous on J , then N(w) defines a mapping
N : Ω× C → C. Hence u is a solution for the integral equation (1.1) if and only if
u = (N(w))u. We shall show that the operator N satisfies all conditions of Lemma
2.16. The proof will be given in several steps.
Step 1: N(w) is a random operator with stochastic domain on C. Since f(x, y, u, w)
is random Carathéodory, the map w → f(x, y, u, w) is measurable in view of Def-
inition 2.1. Similarly, the product

(
log x

s

)r1−1 (log y
t

)r2−1 f(s,t,u(s,t,w),w)
st of a con-

tinuous and a measurable function is again measurable. Further, the integral is a
limit of a finite sum of measurable functions, therefore, the map

w 7→ µ(x, y, w) +
∫ x

1

∫ y

1

(
log

x

s

)r1−1(
log

y

t

)r2−1 f(s, t, u(s, t, w), w)
stΓ(r1)Γ(r2)

dt ds

is measurable. As a result, N is a random operator on Ω× C into C.
Let W : Ω→ P(C) be defined by

W (w) = {u ∈ C : ‖u‖C ≤ R(w)},

with W (w) bounded, closed, convex and solid for all w ∈ Ω. Then W is measurable
by [17, Lemma 17]. Let w ∈ Ω be fixed, then from (H4), for any u ∈ w(w), we
obtain

|(N(w)u)(x, y)|

≤ |µ(x, y, w)|+
∫ x

1

∫ y

1

∣∣ log
x

s

∣∣r1−1∣∣ log
y

t

∣∣r2−1 |f(s, t, u(s, t, w), w)|
stΓ(r1)Γ(r2)

dt ds
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≤ |µ(x, y, w)|+
∫ x

1

∫ y

1

∣∣ log
x

s

∣∣r1−1∣∣ log
y

t

∣∣r2−1 |p1(s, t, w) + p2(s, t, w)|
Γ(r1)Γ(r2)

dt ds

≤ µ∗(w) +
(p∗1(w) + p∗2(w))(log a)r1(log b)r2

Γ(1 + r1)Γ(1 + r2)
≤ R(w).

Therefore, N is a random operator with stochastic domain W and N(w) : W (w)→
N(w). Furthermore, N(w) maps bounded sets into bounded sets in C.
Step 2: N(w) is continuous. Let {un} be a sequence such that un → u in C. Then,
for each (x, y) ∈ J and w ∈ Ω, we have

|(N(w)un)(x, y)− (N(w)u)(x, y)|

≤
∫ x

1

∫ y

1

∣∣ log
x

s

∣∣r1−1∣∣ log
y

t

∣∣r2−1

× |f(s, t, un(s, t, w), w)− f(s, t, u(s, t, w), w)|
Γ(r1)Γ(r2)

dt ds.

Using the Lebesgue Dominated Convergence Theorem, we obtain

‖N(w)un −N(w)u‖C → 0 as n→∞.
As a consequence of Steps 1 and 2, we can conclude that N(w) : W (w) → N(w)
is a continuous random operator with stochastic domain W , and N(w)(W (w)) is
bounded.
Step 3: For each bounded subset B of W (w) we have α(N(w)B) ≤ `α(B). Let
w ∈ Ω be fixed. From Lemmas 2.14 and 2.15, for any B ⊂W and any ε > 0, there
exists a sequence {un}∞n=0 ⊂ B, such that for all (x, y) ∈ J , we have

α((N(w)B)(x, y))

= α
({
µ(x, y) +

∫ x

1

∫ y

1

(
log

x

s

)r1−1 (
log

y

t

)r2−1 f(s, t, u(s, t, w), w)
stΓ(r1)Γ(r2)

dt ds;

u ∈ B
})

≤ 2α
({∫ x

1

∫ y

1

(
log

x

s

)r1−1 (
log

y

t

)r2−1 f(s, t, un(s, t, w), w)
stΓ(r1)Γ(r2)

dt ds
}∞
n=1

)
+ ε

≤ 4
∫ x

1

∫ y

1

α
({(

log
x

s

)r1−1 (
log

y

t

)r2−1

× f(s, t, u(s, t, w), w)
stΓ(r1)Γ(r2)

dt ds
}∞
n=1

)
dt ds+ ε

≤ 4
∫ x

1

∫ y

1

(
log

x

s

)r1−1 (
log

y

t

)r2−1

× 1
Γ(r1)Γ(r2)

α ({f(s, t, un(s, t, w), w)}∞n=1) dt ds+ ε

≤ 4
∫ x

1

∫ y

1

(
log

x

s

)r1−1 (
log

y

t

)r2−1

× 1
Γ(r1)Γ(r2)

q(s, t, w)α ({un(s, t, w)}∞n=1) dt ds+ ε

≤
(

4
∫ x

1

∫ y

1

(
log

x

s

)r1−1 (
log

y

t

)r2−1 1
Γ(r1)Γ(r2)

q(s, t, w)dsdt
)
α ({un}∞n=1)
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+ ε

≤
(

4
∫ x

1

∫ y

1

(
log

x

s

)r1−1 (
log

y

t

)r2−1 1
Γ(r1)Γ(r2)

q(s, t, w) dt ds
)
α(B) + ε

≤ 4q∗(log a)r1(log b)r2

Γ(1 + r1)Γ(1 + r2)
α(B) + ε

= `α(B) + ε.

Since ε > 0 is arbitrary, α(N(B)) ≤ `α(B). Hence, from Lemma 2.16 it follows
that for each w ∈ Ω, N has at least one fixed point in W . Since

⋂
w∈Ω intW (w) 6= ∅

the hypothesis that a measurable selector of intW exists holds. By Lemma 2.16, N
has a stochastic fixed point, i.e., the integral equation (1.1) has at least one random
solution on C.

Step 4: The generalized Ulam-Hyers-Rassias stability. Set

q∗i = ess sup(x,y,w)∈J×Ω qi(x, y, w); i = 1, 2.

Let u : Ω → C be a solution of inequality (2.3). By Theorem 3.1, there exists v
which is a solution of the random equation (1.1). Hence

v(x, y, w) = µ(x, y, w) +
∫ x

1

∫ y

1

(
log

x

s

)r1−1 (
log

y

t

)r2−1

× f(s, t, v(s, t, w), w)
stΓ(r1)Γ(r2)

dt ds; (x, y) ∈ J, w ∈ Ω.

From inequality (2.3) and hypotheses (H6), (H7), for each (x, y) ∈ J and w ∈ Ω, it
follows that

|u(x, y, w)− v(x, y, w)| ≤ |u(x, y, w)−N(w)(u)|+ |N(w)(u)−N(w)(v)|

≤ Φ(x, y, w) +
∫ x

1

∫ y

1

∣∣ log
x

s

∣∣r1−1∣∣ log
y

t

∣∣r2−1

× |f(s, t, u(s, t, w))− f(s, t, v(s, t, w))|
Γ(r1)Γ(r2)

dt ds

≤ Φ(x, y, w) +
1

Γ(r1)Γ(r2)

∫ x

1

∫ y

1

∣∣∣log
x

s

∣∣∣r1−1 ∣∣∣log
y

t

∣∣∣r2−1

×
(

2q∗1 +
q∗2 |u(s, t, w)|

1 + |u|
+
q∗2 |v(s, t, w)|

1 + |v|

)
Φ(s, t, w)

st
dt ds

≤ Φ(x, y, w) + 2(q∗1 + q∗2)(HIrσΦ)(x, y, w)

≤ [1 + 2(q∗1 + q∗2)λφ]Φ(x, y, w)

:= cN,ΦΦ(x, y, w).

Hence, the random equation (1.1) is generalized Ulam-Hyers-Rassias stable. �

4. An example

Let E = R and Ω = (−∞, 0) be equipped with the usual σ-algebra consisting
of Lebesgue measurable subsets of (−∞, 0). Given a measurable function u : Ω→
C([1, e]× [1, e]), consider the following partial random Hadamard integral equation
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of the form

u(x, y, w) = µ(x, y, w) +
∫ x

1

∫ y

1

(
log

x

s

)r1−1 (
log

y

t

)r2−1

× f(s, t, u(s, t, w), w)
stΓ(r1)Γ(r2)

dt ds,

(4.1)

for (x, y) ∈ [1, e] × [1, e], w ∈ Ω, where r1, r2 > 0, µ(x, y, w) = x sinw + y2 cosw;
(x, y) ∈ [1, e]× [1, e], and

f(x, y, u(x, y)) =
w2xy2

(1 + w2 + u(x, y, w)|)ex+y+3
, (x, y) ∈ [1, e]× [1, e], w ∈ Ω.

The function w 7→ µ(x, y, w) = x sinw + y2 cosw is measurable and bounded with

|µ(x, y, w)| ≤ e+ e2,

hence, condition (H1) is satisfied.
The mapping (x, y, w) 7→ f(x, y, u, w) is jointly continuous for all u ∈ R and

hence jointly measurable for all u ∈ R. Also the map u 7→ f(x, y, u, w) is continuous
for all (x, y) ∈ [1, e] × [1, e] and w ∈ Ω. So the function f is Carathéodory on
[1, e]× [1, e]× R× Ω. For each u ∈ R, (x, y) ∈ [1, e]× [1, e] and w ∈ Ω, we have

|f(x, y, u, w)| ≤ w2xy2(1 +
1
e3
|u|).

Hence the condition (H3) is satisfied with p∗1 = e3 and p1(x, y, w) = p∗2 = 1.
We shall show that the condition ` < 1 holds with a = b = e and q∗ = 1

e3 .
Indeed, for each r1, r2 > 0 we obtain

` =
4q∗(log a)r1(log b)r2

Γ(1 + r1)Γ(1 + r2)
≤ 4
e3Γ(1 + r1)Γ(1 + r2)

< 1.

Also, the hypothesis (H6) is satisfied with

Φ(x, y, w) = w2w2xy2, and λΦ =
1

Γ(1 + r1)Γ(1 + r2)
.

Indeed, for each (x, y) ∈ [1, e]× [1, e] we obtain

(HIrσΦ)(x, y, w) ≤ w2e3

Γ(1 + r1)Γ(1 + r2)
= λΦΦ(x, y, w).

Finally, we can see that the hypothesis (H7) is satisfied with

q1(x, y, w) = 1 and q2(x, y, w) =
1
e3
.

Consequently Theorem 3.1 implies that the Hadamard integral equation (4.1) has a
solution defined on [1, e]× [1, e], and (4.1) is generalized Ulam-Hyers-Rassias stable.
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