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Abstract. In this article we consider the Robin-Cauchy problem for multi-
dimensional elliptic equations in a cylindrical domain. The method of spec-

tral expansion in eigenfunctions of the Robin-Cauchy problem for equations

with deviating argument establishes a criterion of the strong solvability of the
considered Robin-Cauchy problem. It is shown that the ill-posedness of the

Robin-Cauchy problem is equivalent to the existence of an isolated point of the

continuous spectrum for a self-adjoint operator with the deviating argument.

1. Introduction

As it is known, the solution of the Cauchy problem for the Laplace equation is
unique but unstable. First of all it should be noted that the existence and unique-
ness of its solution is essentially guaranteed by the universal Cauchy-Kovalevskaja
theorem, which holds for elliptic problems. However, the existence of the solution
is guaranteed only in a small data. Traditionally the ill-posedness of the elliptic
Cauchy problem is determined in relation to its equivalence to Fredholm integral
equations of the first kind. The problem of solving the operator equation of the
first kind can not be correct, since the operator which is inverse to completely
continuous operator is not continuous.

The Cauchy problem for the Laplace equation is one of the main examples of
ill-posed problems. One can pick up the harmonic functions with arbitrarily small
Cauchy data on a piece of the domain boundary, which will be arbitrarily large
in the domain (the famous example of Hadamard) [5]. For the formulation of the
problem to be correct, it is necessary to restrict the class of solutions. The stability
of a two dimensional problem in the class of bounded solutions firstly was proved
by Carleman [1].

From Carleman’s results immediately follow estimations characterizing this sta-
bility. In the mentioned work Carleman established a formula for determining an
complex variable analytic function from the data only on part of the arc. How-
ever, this formula is unstable and therefore can not be directly used as an efficient
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method. The first results related to the construction of an efficient algorithm for
solving the problem, best to our knowledge, are published simultaneously in works
Pucci [16] and Lavrent’ev [12]. Estimates characterizing the stability of a spatial
problem in the class of bounded solutions, were first obtained by M.M. Lavrent’ev
[12] for harmonic functions, given in a straight cylinder and vanishing on the gener-
ators. The Cauchy data were given on the base of the cylinder. Just after, similar
estimates were obtained by Mergelyan [14] for the functions within a sphere and by
Lavrent’ev [13] for an arbitrary spatial domain with sufficiently smooth boundary.
Around the same time, Landis [11] obtained estimates characterizing the stability
of spatial problem for an arbitrary elliptic equation.

The above results laid the foundation for the theory of ill-posed Cauchy problems
for elliptic equations. By now this theory has deep development both in the plane,
and for the spatial cases, and also for general elliptic equations of high order, etc.
Methods of regularization and solutions of ill-posed problems have been proposed
in [3, 4, 6, 17, 18, 19]. In these works the concept of conditional correctness of such
problems is introduced and algorithms for constructing their solutions are proposed.

In contrast to the presented results, in this paper a new criterion of well-posedness
(ill-posedness) of initial boundary value problem for a general second order elliptic
equation is proved. The principal difference of our work from the work of other au-
thors is the application of spectral problems for equations with deviating argument
in the study of ill posed boundary value problems. The present work is an extension
of results [7]-[9] on the case of more general elliptic operators in a multidimensional
cylindrical domain.

2. Formulation of the problem and main results

Let D = Ω× (0, 1) be a cylinder and Ω ⊂ Rn be a bounded domain with smooth
boundary S. In D we consider a mixed Robin-Cauchy problem for elliptic equations

Lu ≡ uyy(x, t) +
n∑

i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj

)
(x, y) + a(x)u(x, y)

= f(x, y), (x, y) ∈ D,
(2.1)

with the Robin condition
n∑

i,j=1

νi
∂

∂xi

(
aij(x)

∂u

∂xj

)
(x, y) + b(x)u(x, y) = 0, x ∈ S, y ∈ [0, 1], (2.2)

and Cauchy conditions

u(0, x) = uy(0, x) = 0, x ∈ Ω ∪ S. (2.3)

Here aij(x), a(x) and b(x) are given bounded measurable functions satisfying the
following conditions:

n∑
i,j=1

aij(x)ξiξj ≥ c
n∑
i=1

ξ2i , c is a positive constant

aij(x) = aji(x), a(x), b(x) ≥ 0,

(2.4)

and ν = (ν1, . . . , νn) denotes the outer unit normal on the boundary S.
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Definition 2.1. The function u ∈ L2(D) will be called a strong solution of the
Robin-Cauchy problem (2.1)-(2.3), if there exists a sequence of functions un ∈
C2(D̄) satisfying conditions (2.2) and (2.3), such that un and Lun converge in the
norm L2(D) respectively to u and f .

In the future, the following eigenvalue problem for an elliptic equation with de-
viating argument will play an important role. Find numerical values of λ (eigenval-
ues), under which the problem for a differential equation with deviating argument

Lu ≡ uyy(x, y) +
n∑

i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj

)
(x, y) + a(x)u(x, y)

= λu(x, 1− y), (x, y) ∈ D,
(2.5)

has nonzero solutions (eigenfunctions) satisfying conditions (2.2) and (2.3). Obvi-
ously, the equivalent representation of equation (2.5) has the form

LPu(x, y) = λu(x, y), in D,

where Pu(x, y) = u(x, 1− y) is a unitary operator.
We consider the spectral problem

−
n∑

i,j=1

∂

∂xi

(
aij(x)

∂uk
∂xj

)
(x) + a(x)uk(x) = µkuk(x), x ∈ Ω, (2.6)

n∑
i,j=1

νi
∂

∂xi

(
aij(x)

∂uk
∂xj

)
(x) + b(x)uk(x) = 0, x ∈ S. (2.7)

It is known [2], that problem (2.6)–(2.7) with the condition (2.4) is self-adjoint
and non-negative definite operator in L2(Ω) and it has a discrete spectrum. All
eigenvalues of the problem (2.6)–(2.7) are discrete and non-negative, and the system
of eigenfunctions form a complete orthonormal system in L2(Ω).

By µk we denote all eigenvalues (numbered in decreasing order) and by uk(x), k ∈
N denote a complete system of all orthonormal eigenfunctions of the problem (2.6)-
(2.7) in L2(Ω).

Theorem 2.2. The spectral Robin-Cauchy problem (2.5), (2.2), (2.3) has a com-
plete orthonormal system of eigenfunctions

ukm(x, y) = uk(x) · vkm(y), (2.8)

where k,m ∈ N , vkm(y) are non-zero solutions of the problem

v′′km(y)− µkvkm(y) = λkmvkm(1− y), 0 < y < 1, (2.9)

vkm(0) = v′km(0) = 0, (2.10)

and λkm are eigenvalues of problem (2.5), (2.2), (2.3). In addition for large k the
smallest eigenvalue λk1 has the asymptotic behavior

λk1 = 4µk exp(−√µk)(1 + o(1)) . (2.11)

Theorem 2.3. A strong solution of the Robin-Cauchy problem (2.1)–(2.3) exists
if and only if f(x, y) satisfies the inequality

∞∑
k=1

∣∣ f̃k1
λk1

∣∣2 <∞, (2.12)
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where f̃km = (f(x, 1− y), ukm(x, y)).
If condition (2.12) holds, then a solution of (2.1)–(2.3) can be written as

u(x, y) =
∞∑
k=1

f̃k1
λk1

uk1(x, y) +
∞∑
k=1

∞∑
m=2

f̃km
λkm

ukm(x, y). (2.13)

By L̃2(D) we denote a subspace of L2(D), spanned by the eigenvectors

{uk1(x, y)}∞k=p+1,

p ∈ N and by L̂2(D) we denote its orthogonal complement

L2(D) = L̃2(D)⊕ L̂2(D).

Theorem 2.4. For any f ∈ L̂2(D) a solution of the problem (2.1)–(2.3) exists, is
unique and belongs to L̂2(D). This solution is stable and has the form

u(x, y) =
p∑
k=1

f̃k1
λk1

uk1(x, y) +
∞∑
k=1

∞∑
m=2

f̃km
λkm

ukm(x, y). (2.14)

3. Auxiliary statements

In this section we present some auxiliary results to prove the main results.

Lemma 3.1. For each fixed value of the index k the spectral problem (2.9)-(2.10)
has a complete orthonormal in L2(0, 1) system of eigenfunctions vkm(y), m ∈
N, corresponding to the eigenvalues λkm. These eigenvalues λkm are roots of the
equation √

µk − λ cosh
√
µk + λ

2
cosh

√
µk − λ

2

−
√
µk + λ sinh

√
µk + λ

2
sinh

√
µk − λ

2
= 0.

(3.1)

Proof. Indeed, applying an inverse operator L−1
C to the Cauchy eigenvalue problem

(2.9)–(2.10) we arrive at the operator equation

vkm(y) = λL−1
C Pvkm(y),

where Pf(y) = f(1− y), and a function φ(y) = L−1
C f(y) is the solution of the

Cauchy problem

φ′′(y)− µkφ(y) = f(y), φ(0) = φ′(0) = 0, ∀f ∈ L2(0, 1).

Then for the operator L−1
C we have the representation

L−1
C f(y) =

1
√
µk

∫ y

0

f(ξ) sinh
√
µk(y − ξ)dξ, ∀f ∈ L2(0, 1). (3.2)

Therefore, the adjoint to L−1
C operator has the form

(L−1
C )∗f(y) =

1
√
µk

∫ 1

y

f(ξ) sinh
√
µk(ξ − y)dξ, ∀f ∈ L2(0, 1). (3.3)

Taking into account representation (3.2) and (3.3), it is easy to make sure that

L−1
C Pf = P (L−1

C )∗f.

Then the chain of equalities

L−1
C Pf = P (L−1

C )∗f = P ∗(L−1
C )∗f = (L−1

C P )∗f, ∀ f ∈ L2(0, 1),



EJDE-2016/252 A METHOD FOR SOLVING ILL-POSED ROBIN-CAUCHY PROBLEMS 5

allows us to conclude that the operator L−1
C P is completely continuous self-adjoint

Hilbert-Schmidt operator [10]. Therefore for each k ∈ N, the spectral problem
(2.9)–(2.10) has a complete orthonormal system of functions vkm(y), m ∈ N in
L2(0, 1).

We are looking for eigenfunctions of problem (2.5), (2.2), (2.3) by means of the
Fourier method of separation of variables in the form

uk(x, y) = uk(x)v(y),

where k ∈ N. Therefore, to determine the unknown function v(y) we get the spectral
problem (2.9), (2.10). It is easy to show that the general solution of equation (2.9)
has the form

v(y) = c1 cosh
√
µk + λ

(
y − 1

2
)

+ c2 sinh
√
µk − λ

(
y − 1

2
)
,

where c1 and c2 are some constants. Using the initial conditions (2.9), we arrive
at the system of linear homogeneous equations concerning these constants. As we
know, this system has a nontrivial solution if the determinant of the system

∆(λ) = det

(
cosh

√
µk+λ
2 sinh

√
µk−λ
2√

µk + λ sinh
√
µk+λ
2

√
µk − λ cosh

√
µk−λ
2

)
is zero. Thus, for determining the parameter λ we get (3.1). The proof is complete.

�

Let

$k(λ) = ln
(

coth
√
µk + λ

2

)
+ ln

(
coth

√
µk − λ

2

)
− 1

2
ln
(µk + λ

µk − λ

)
. (3.4)

Lemma 3.2. There exists a number λ0 such that for all

0 < λ < λ0 <
µk

4µk + θ
, k ∈ N, θ ∈ (0, 1) ,

the following statements are true:
(1) the function $′k(λ) is of a fixed sign;
(2) for the function $′′k(λ) ,

‖λµk$′′k(λ)| < 1, k > 1.

Proof. By Lemma 3.1 we have the real eigenvalues of (2.9)-(2.10), that is, real roots
λkm of equation (3.1). It is easy to verify that λkm > 0.

Indeed, let us write the asymptotic behavior of the smallest eigenvalues λkm at
k →∞. After a nontrivial transformation of equation (3.1), we have

√
µk + λ√
µk − λ

= coth
√
µk + λ

2
coth

√
µk − λ

2
. (3.5)

Assuming |λ| < 1 and taking the logarithm of both sides of (3.5), we obtain (3.4).
By calculating the derivative $k(λ), we get

$′k(0) = − 1
µk
.

Then the required boundary of monotonicity of $k(λ) can be determined from
the relation

$′k(λ0) = $′k(0) +$′′k(θλ0)λ0 < 0.
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Here 0 < λ0 < 1 and θ ∈ (0, 1) are arbitrary numbers. Thus, for determining λ0

we have the condition
λ0µk$

′′
k(θλ0) < 1. (3.6)

We write explicitly the second derivative of $k(λ):

$′′k(λ) =
cosh

√
µk + λ

4(µk + λ) sinh2√µk + λ
+

cosh
√
µk − λ

4(µk − λ) sinh2√µk − λ

+
1

4
√

(µk + λ)3 sinh
√
µk + λ

+
1

4
√

(µk − λ)3 sinh
√
µk − λ

− 2λµk
(µ2
k − λ2)2

.

As
2λ0θµk

(µ2
k − (λ0θ)2)2

≥ − 1
(µk + λ0θ)2

and
cosh

√
µk ± λ0θ

sinh2√µk ± λ0θ
≤ 1

cosh
√
µk ± λ0θ − 1

,

the inequality

$′′k(λ0θ) ≤
1

(µk − λ0θ)
2 + (1− exp(−

√
µk − λ0θ))2

(1− exp (−
√
µk − λ0θ))2

is true. Hence

$′′k(λ0θ) <
1

(µk − λ0θ)
3− 2 exp (−

√
µk − λ0θ) + exp (−2

√
µk − λ0θ)

(1− exp (−
√
µk − λ0θ))2

. (3.7)

Further, for large values k, from (3.7) we obtain the validity of the inequality

$′′k(λ0θ) ≤
4

µk − λ0θ
.

Applying the condition (3.6) to the last inequality, we obtain the desired estimate
for λ0:

λ0 <
µk

4µk + θ
, µk > 1, 0 < θ < 1.

The proof is complete. �

Consider now the question of an asymptotic behavior of the eigenvalues of prob-
lem (2.9)–(2.10) for large k.

Lemma 3.3. An asymptotic behavior of eigenvalues of the problem (2.9)-(2.10),
not exceeding λ0, for the large values of k has the form (2.11).

Proof. According to Lemma 3.2 the monotonic function $k(λ) in the interval
(0, λ0) can have only one zero. By the Taylor formula we have

$k(λ) = $k(0) +
$′k(0)

1!
λ+

$′′k(θλ)
2!

λ2 < 0 , 0 < θ < 1.

Substituting the calculated values of the function $k and its derivative $′k, we get

$k(λ) = 2 ln
(

coth
√
µk

2

)
− λ

µk
+$′′k(θλ)

λ2

2
.
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Then the zero of the linear part of the function

µk$k(λ) = 2µk ln
(

coth
√
µk

2

)
− λ+

µkλ
2

2
$′′k(θλ)

will be

λk1 = 2µk ln
(1 + exp (−√µk)

1− exp (−√µk)

)
.

For sufficiently large values k ∈ N, considering the asymptotic formulas, λk1 can
be written as

λk1 = 4µk exp (−√µk)(1 + o(1)).
Taking into account the result of Lemma 3.2 on a circle |λ| = 4µk exp (−√µk)(1 + ε),
where ε is a greatly small positive number, for sufficiently large k ≥ k0(ε) it is easy
to check the validity of the inequality∣∣∣$′′k(θλ)µkλ2

∣∣∣
|λ|=4µk exp (−√µk)(1+ε)

≤ C
∣∣∣2µk ln(

1 + exp (−√µk)
1− exp (−√µk)

)− λ
∣∣∣
|λ|=4µk exp (−√µk)(1+ε)

.

Then, by Rouche’s theorem [20], we have that the quantity of zeros of µk$k(λ)
and its linear part coincide and are inside the circle |λ| = 4µk exp (−√µk)(1 + ε).
Consequently, the function µk$k(λ) for 0 < λ < λ0 has one zero, the asymptotic
behavior is given by formula (2.11). the proof is complete. �

4. Proof the main results

Theorem 2.2. By uk(x), k ∈ N we denote a complete system of orthonormal eigen-
functions of the problem (2.6)-(2.7) in L2(Ω). By Lemma 3.1, for each fixed value
of the k the spectral problem (2.9)–(2.10) has complete orthonormal system of
eigenfunctions vkm(t), m = 1, 2, ... in L2(0, 1). Then the system (2.8) forms a
complete orthogonal system in L2(D). Consequently, problem (2.5), (2.3) does not
have other eigenvalues and eigenfunctions. the proof is complte. �

Theorem 2.3. Let u ∈ C2(D) be a solution of problem (2.1)–(2.3). Then, by the
completeness and orthonormality of eigenfunctions ukm(x, t) of problem (2.5), (2.2),
(2.3), the function u(x, t) in L2(D) can be expanded in a series [15]

u(x, t) =
∞∑
k=1

∞∑
m=1

akmukm(x, t), (4.1)

where akm are the Fourier coefficients of the system. Rewriting equation (2.1) in
the form

LPu = P (uyy(x, y) +
n∑

i,j=1

∂

∂xi
(aij(x)

∂u

∂xj
)(x, y) + a(x)u(x, y))

= Pf(x, y),

(4.2)

and substituting the solution of form (4.1) in equation (4.2) according to represen-
tation

P (
∂2ukm
∂y2

(x, y) +
n∑

i,j=1

∂

∂xi
(aij(x)

∂u

∂xj
)(x, y) + a(x)u(x, y)) = λkmukm(x, y),
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we have

akm =
f̃km
λkm

,

where f̃km = (f(x, 1− y), ukm(x, y)).
Thus for solutions u(x, y) we obtain the following explicit representation

u(x, y) =
∞∑
k=1

∞∑
m=1

f̃km
λkm

ukm(x, y). (4.3)

Note that the representation (4.3) remains true for any strong solution of problem
(2.1)-(2.3). We have obtained this representation under the assumption that the
solution of the Robin-Cauchy problem (2.1)-(2.3) exists.

The question naturally arises, for what subset of the functions f ∈ L2(D) there
exists a strong solution?

To answer this question, we represent the formula (4.3) in the form (2.13) from
which, by Parseval’s equality, it follows

‖u‖2 =
∞∑
k=1

| f̃k1
λk1
|
2

+
∞∑
k=1

∞∑
m=2

| f̃km
λkm
|2. (4.4)

By Lemma 3.3 we have λkm ≥ 1
4 , m > 1. Therefore, the right-hand side of equal-

ity (4.4) is bounded only for those f(x, y) for which the weighted norm (2.12) is
bounded. This fact completes the proof. �

Theorem 2.4. Obviously the operator L is invariant in L̂2(D). By Theorem 2.3, for
any f ∈ L̂2(D) there exists a unique solution of problem (2.1)–(2.3) and it can be
represented in the form (2.14). Therefore, determined infinite-dimensional space
L̂2(D) is the space of correctness of the Robin-Cauchy problem (2.1)-(2.3). The
proof is complete. �
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