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EXISTENCE OF THREE SOLUTIONS FOR HIGHER ORDER
BVP WITH PARAMETERS VIA MORSE THEORY

MARIUSZ JURKIEWICZ, BOGDAN PRZERADZKI

Abstract. We prove the existence of at least three solutions to a general
Lidstone problem using the Morse Theory.

1. Introduction

In 1929, Lidstone introduced a generalization of the Taylor series. It approxi-
mates a given function in the neighbourhood of two points instead of one. Thus,
the initial research was devoted to description of a maximal set of functions that
could be expressed as a Lidstone series. Those considerations led to so-called func-
tions of exponential type and next to general Lidstone boundary value problem
(BVP) (comp. [1, 8, 9]), examined today in various configurations. Motivated by
many papers (see for example ([5], [16]), in which authors studied the existence of
multiple solutions to Lidstone BVP, and being inspired by ideas given by Chang
[3, 4], we have decided to study the case of existence of at least three solutions to
the BVP that is being described. The crucial results of our research are presented
in this paper.

Coming to the point, we shall consider a special case of a general Lidstone BVP
for a nonlinear ordinary differential equation of the 2k-th order studied earlier in
[11]:

x(2k) −
k∑

j=1

λjx
(2k−2j) = f(t, x, x′′, . . . , x(2k−2)),

x(2j)(0) = 0 = x(2j)(1), j = 0, 1, . . . , k − 1.

(1.1)

It is a natural generalization of the beam equation with fixed ends (comp. [10]).
The topological methods used in the mentioned papers admit arbitrary parameters
λ := (λ1, . . . , λk) but need very restrictive conditions on an asymptotic behaviour
of the nonlinear term f . The problem (1.1) is equivalent to the fixed point problem
for completely continuous operator if the linear homogeneous problem (f = 0) has
only the trivial solution. In [10], it has been shown that it is for λ which does not
belong to a sequence of (k−1)-dimensional hyperplanes; the paper contains mainly
the case when λ sits in this sequence – the resonant case.
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Here, we study a special nonlinear case of the general Lidstone problem, that
takes the form

(−1)kx(2k) +
k∑

j=1

λjx
(2k−2j) = (−1)i−1f(t, x(2i−2))

x(2j)(0) = x(2j)(1) = 0, j = 0, . . . , k − 1,

(1.2)

with fixed parameters k ≥ 2 and i ∈ {1, . . . , k − 1}. Note that continuous f
depends on one of the even order derivatives only. Then, the problem is equivalent
to looking for a critical point of a C1-functional on a Hilbert space. We have
considered it in [14] and we have found assumptions that guarantee the existence
of at least one solution. Furthermore, in [13] one of the authors has answered a
question concerning existence of infinitely many solutions to (1.2). After joining
those results a natural problem about intermediate case arose. Actually, this is the
goal of the paper to fill this hiatus, what means to formulate the assumptions that
lead us to the conclusion of existence no fewer than three solutions.

For a vector of real coefficients λ = (λ1, . . . , λn), let us define

Λ(n) :=
k∑

j=1

(−1)k−jλj(n2π2)k−j ,

Hn := {λ ∈ Rk : Λ(n)+(n2π2)k = 0} for n = 1, 2, . . .. Then the linear homogeneous
problem has nontrivial solutions if and only if

λ ∈ σk :=
∞⋃

n=1

Hn.

We shall assume that λ ∈ ∆+, where

∆+ := ∩∞n=1{λ : Λ(n) ≥ 0}.

This set is nonempty and even large since it contains all λ such that (−1)jλj ≥ 0
for any j if k is even and (−1)jλj ≤ 0 if k is odd. Obviously, ∆+ ∩ σk = ∅. It can
be proved that (1.2) is equivalent (comp. [14]) to

x(2i−2)(t) =
∫ 1

0

Hi(t, s)f(s, x(2i−2)(s)) ds,

where

Hi(t, s) := 2
∞∑

n=1

(n2π2)i−1

Λ(n) + (n2π2)k
sin(nπs) sin(nπt).

The last formula is obtained by using the spectral theory of compact self-adjoint
operators in Hilbert space. Hence, one should find fixed points of an operator which
is a superposition of the Nemytskǐi operator f defined by f and the linear integral
operator H with the kernel Hi. Denote this superposition as T : C[0, 1]→ C[0, 1].
The spectrum of H is composed of eigenvalues

µ2
n :=

(n2π2)i−1

Λ(n) + (n2π2)k
, n = 1, 2, . . .

and the limit of this sequence – 0 which belongs to the continuous spectrum. We
can define H by the same formula on the Hilbert space L2(0, 1). The assumption
λ ∈ ∆+ is necessary to get H ≥ 0 that enables us to define a square root S :
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L2(0, 1) → L2(0, 1) – a nonnegative linear operator such that S2 = H. From the
spectral theory (comp. [7]), we know that S is an integral operator with the kernel

S(t, s) :=
∞∑

n=1

2(nπ)i−1√
Λ(n) + (n2π2)k

sin(nπs) sin(nπt).

In [13], it is proved that fixed points of T are exactly critical points of the functional
ϕ : L2(0, 1)→ R,

ϕ(y) :=
1
2
‖y‖2 −

∫ 1

0

F (t, Sy(t)) dt,

since
ϕ′(y) · u = 〈y, u〉 − 〈f(Sy), Su〉,

where F (t, w) =
∫ w

0
f(t, u) du, 〈·, ·〉 stands for the scalar product in L2(0, 1), and S

is self-adjoint.
In [14], we proved the following result.

Theorem 1.1. Assume that λ ∈ ∆+ and let f : [0, 1] × R → R be a continuous
function that satisfies the following conditions

(i) lim supu→0
f(t,u)

u < µ−2
1 ,

(ii) lim infu→+∞
f(t,u)

u > µ−2
1

(iii) there exist k ∈ [0, 1/2) and N > 0, such that for ‖w‖ ≥ N , we have

F (t, w) ≤ kwf(t, w),

uniformly with respect to t ∈ [0, 1].
Then problem (1.2) possesses at least one nonzero solution.

If f(t, ·) is odd for any t and the limit in condition (ii) equals +∞, then in [13]
it has been proved that ϕ has infinitely many critical points which are solutions of
(1.2). We used slightly different notations in both papers but one can see that

µ2
1 =

(Λ(1) + π2k

π2i−2

)−1

= ‖H‖.

Observe that condition (i) implies f(t, 0) ≡ 0 and we get the null solution.

2. Main results

Now, we can formulate the main result.

Theorem 2.1. Let f be continuous, and assume the conditions:
(C1) there exist an integer m ≥ 1 and the limits, for any t, such that

∂f

∂x
(t, 0) := lim

u→0

f(t, u)
u

∈ (µ−2
m , µ−2

m+1);

(C2) the infinite system of linear equations

cj = 2µj

∞∑
n=1

µn

∫ 1

0

∂f

∂x
(t, 0) sin(nπt) sin(jπt) dt cn, j = 1, 2, . . . ,

has only trivial solutions: cj = 0, j = 1, 2, . . ..
(C3) there exist 0 < α < µ1/2, β ∈ R such that F (t, u) ≤ αu2 + β for any t, u.

Then (1.2) has at least three solutions.
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Proof. We apply [4, Thm. 5.4] (first slightly weaker result appears in [3]) which
gives at least three critical points for C1-functional ψ defined on the Hilbert space,
if ψ is bounded below, it satisfies Palais-Smale condition and has a nondegenerate
critical point different from the argument of its minimum with finite Morse index.
Here, L2(0, 1) is the Hilbert space, ϕ is the functional and the null solution is a
critical point with finite Morse index.

Condition (C3) leads to the estimate

ϕ(y) ≥ 1
2
‖y‖2 −

∫ 1

0

(α(Sy)(t)2 + β) dt ≥
(1

2
− αµ2

1

)
‖y‖2 − β

that implies values of ϕ are bounded from below by a quadratic function with finite
minimum. It gives that ϕ is bounded from below and coercive. Let (yn) be a Palais-
Smale sequence, i.e. |ϕ(yn)| ≤ M and ϕ′(yn) = yn − S(f(S(yn))) → 0. Since S is
compact, S(f(S(yn))) has a convergent subsequence and the Palais-Smale condition
is satisfied.

Let us observe that ϕ′(0) = 0 and there exists the second derivative of this
functional at 0:

ϕ′′(0)(u, v) = 〈u, v〉 −
∫ 1

0

∂f

∂x
(t, 0) · Su(t) · Sv(t) dt = 〈u, v〉 − 〈∂f

∂x
(·, 0) · Su, Sv〉.

This bilinear functional on L2(0, 1) is symmetric and continuous which means that
it defines a self-adjoint operator L on L2(0, 1) given by ϕ′′(0)(u, v) = 〈Lu, v〉. It
follows that

Lu = u− S
(∂f
∂x

(·, 0) · Su
)
.

If we denote by en(t) :=
√

2 · sin(nπt) for n = 1, 2, . . ., then it is a complete
orthonormal basis of eigenfunctions of S corresponding eigenvalues µn. Let H−
denotes a subspace spanned by en with n ≤ m and H+ its orthogonal complement.
We shall show that L is one-to-one. If it is not the case, there exists u =

∑
n cnen 6=

0, Lu = 0 and then

u =
∞∑

j=1

∞∑
n=1

µjcnµn

∫ 1

0

∂f

∂x
(s, 0)ej(s)en(s) ds · ej . (2.1)

that implies the system from (C2).
Since L = I − S1 where S1u = S(∂f

∂x (·, 0) · Su) is compact, then the range of L
is closed with codimension 0. It follows that L is an isomorphism of L2(0, 1) onto
itself and 0 is a nondegenerate critical point of ϕ. We shall show that

ϕ′′(0)(x, x) ≤ −C‖x‖2, x ∈ H−,
ϕ′′(0)(x, x) ≥ C‖x‖2, x ∈ H+,

for some positive constant C.
From (C1) there exists ξ > 0 such that

µ−2
m + ξ ≤ ∂f

∂x
(t, 0) ≤ µ−2

m+1 − ξ, t ∈ [0, 1].

Then

ϕ′′(0)(x, x) = ‖x‖2 −
∫ 1

0

∂f

∂x
(t, 0)|Sx(t)|2 dt
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and, for x ∈ H−,

ϕ′′(0)(x, x) ≤ ‖x‖2 − (µ−2
m + ξ)‖Sx‖2 ≤ −ξµ2

m‖x‖2

and similarly, for x ∈ H+,

ϕ′′(0)(x, x) ≥ ‖x‖2 − (µ−2
m+1 − ξ)‖Sx‖2 ≥ ξµ2

m+1‖x‖2.

This means that L|H− is negative and L|H+ is positive and the Morse index of the
critical point 0 equals m so it is finite.

It remains to show that there exists x such that ϕ(x) < 0 = ϕ(0). But from
(C1) one can take ξ > 0 and ε > 0 such that f(t, u) ≥ (µ−2

m + ξ)u for any t and
|u| ≤ ε. It follows that F (t, u) ≥ 1

2 (µ−2
m + ξ)u2 for |u| ≤ ε. Then take 0 6= y ∈ H−

such that supt |Sy(t)| ≤ ε and get

ϕ(y) =
1
2
‖y‖2 −

∫ 1

0

F (t, Sy(t)) dt ≤ −ξµ
2
m

2
‖y‖2 < 0.

The proof is complete. �

Remarks. If ∂f
∂x (t, 0) does not depend on t ∈ [0, 1], then condition (C2) is satisfied

since ∫ 1

0

∂f

∂x
(t, 0) sin(nπs) sin(jπs) ds = 0

for n 6= j. In other cases, condition (C2) can be verified by a finite algorithm. The
condition is equivalent to:

1 /∈ σ(S1)

and this operator is compact selfadjoint, hence its eigenvalues can be obtained by
the Courant-Hilbert method (see [7]), and the sequence of eigenvalues of S1 tends
to 0,therefore only finite number of them can be greater then 1. The main result
can be obtained (essentially with the same proof) by using [2, Corollary 3] where
only the Leray-Schauder degree is applied.

Corollary 2.2. The equation describing a shape of a beam freely supported on both
ends:

u(4) − λ1u
′′ + λ2u = f(t, u), u(0) = u(1) = u′′(0) = u′′(1) = 0

with λ1,2 ≥ 0 has at least three solutions if there exists m ∈ N such that

λ2 + λ1m
2π2 +m4π4 <

∂f

∂x
(t, 0) < λ2 + λ1(m+ 1)2π2 + (m+ 1)4π4

for all t and (C2), (C3) hold.

A similar problem with λ1 = 0, λ2 depending on t and f(t, u) = h(t) was recently
studied in [6].
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Birkhäuser, Boston 1993.

[5] J. M. Davis, J. Henderson, P. J. Y. Wong; General Lidstone problems: multiplicity and
symmetry of solutions, J. Math. Anal. Appl. 251 (2000), 527–548.
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 Lódź, Poland
E-mail address: bogdan.przeradzki@p.lodz.pl


	1. Introduction
	2. Main results
	Remarks
	Acknowledgments

	References

