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PERTURBED SUBCRITICAL DIRICHLET PROBLEMS WITH
VARIABLE EXPONENTS

RAMZI ALSAEDI

Abstract. We study a class of nonhomogeneous elliptic problems with Dirich-

let boundary condition and involving the p(x)-Laplace operator and power-

type nonlinear terms with variable exponent. The main results of this articles
establish sufficient conditions for the existence of nontrivial weak solutions,

in relationship with the values of certain real parameters. The proofs com-

bine the Ekeland variational principle, the mountain pass theorem and energy
arguments.

1. Introduction

Let Ω ⊂ R be a bounded domain with smooth boundary. In a pioneering paper,
Ambrosetti and Rabinowitz [1] consider the subcritical elliptic problem

−∆u = |u|p−2u, x ∈ Ω
u = 0, x ∈ ∂Ω,

(1.1)

where 1 < p < 2N/(N − 2) if N ≥ 3 and 1 < p < ∞ if N ∈ {1, 2}. Problem (1.1)
illustrates in [1] the celebrated mountain pass theorem, which yields the existence
of a nontrivial solution of (1.1). This result has been a rich source of valuable
extensions to several classes of nonlinear elliptic equations described by various
types of differential operators and involving nonlinear terms fulfilling or not the
Ambrosetti-Rabinowitz growth condition. We refer, for instance, to Pucci and
Rădulescu [13], where it is established that a related existence property remains
true, provided that the (linear) operator in the left-hand side of (1.1) is perturbed
in a suitable manner. More precisely, [13, Theorem 9] (see also Theorem 10) asserts
that the perturbed problem

−∆u− λu = |u|p−2u, x ∈ Ω
u = 0, x ∈ ∂Ω

has a nontrivial solution for all λ < λ1, where λ1 is the principal eigenvalue of the
Laplace operator in H1

0 (Ω). A related problem is studied in [10] in the framework of
differential operators and nonlinear terms involving variable exponents. The main
result in [10] establishes the existence of nontrivial solutions in the case of small
perturbations, namely with respect to the values of a suitable parameter.
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The main purpose of this article is to show that the perturbation results estab-
lished in [13, Theorem 9] and [10, Theorem 2.1] can be extended to the case of
variable exponents. However, the problem studied in this article has a different
structure with those studied in [13] and [10] because of the several nonlinearities
with nonhomogeneous behaviour.

We refer to Cencelj, Repovš and Virk [4], Repovš [16] for related results and to
the monographs by Diening, Hästo, Harjulehto and Ruzicka [5] and Rădulescu and
Repovš [15] for the basic functional framework used in the present paper.

2. Function spaces with variable exponent

In this section we recall some basic definitions and properties concerning the
Lebesgue and Sobolev spaces with variable exponent. Consider the set

C+(Ω) = {h ∈ C(Ω), h(x) > 1 for all x ∈ Ω}.
For all h ∈ C+(Ω) we define

h+ = sup
x∈Ω

h(x) and h− = inf
x∈Ω

h(x).

The real numbers h+ and h− will play a crucial role in our arguments and usually
the gap between these quantities produces new results, which are no longer valid
for constant exponents.

For any p ∈ C+(Ω), we define the variable exponent Lebesgue space

Lp(x)(Ω) = {u : u is measurable and
∫

Ω

|u(x)|p(x) dx <∞}.

This vector space is a Banach space if it is endowed with the Luxemburg norm,
which is defined by

|u|p(x) = inf
{
µ > 0;

∫
Ω

|u(x)
µ
|p(x) dx ≤ 1

}
.

Then Lp(x)(Ω) is reflexive if and only if 1 < p− ≤ p+ <∞ and continuous functions
with compact support are dense in Lp(x)(Ω) if p+ <∞.

The inclusion between Lebesgue spaces with variable exponent generalizes the
classical framework, namely if 0 < |Ω| <∞ and p1, p2 are variable exponents so that
p1 ≤ p2 in Ω then there exists the continuous embedding Lp2(x)(Ω) ↪→ Lp1(x)(Ω).

Let Lp
′(x)(Ω) be the conjugate space of Lp(x)(Ω), where 1/p(x) + 1/p′(x) = 1.

For any u ∈ Lp(x)(Ω) and v ∈ Lp′(x)(Ω) the following Hölder-type inequality holds:∣∣ ∫
Ω

uv dx
∣∣ ≤ ( 1

p−
+

1
p′−

)
|u|p(x)|v|p′(x) . (2.1)

The modular of Lp(x)(Ω) is the mapping ρp(x) : Lp(x)(Ω)→ R defined by

ρp(x)(u) =
∫

Ω

|u|p(x) dx.

If (un), u ∈ Lp(x)(Ω) and p+ <∞ then the following relations are true:

|u|p(x) > 1 ⇒ |u|p
−

p(x) ≤ ρp(x)(u) ≤ |u|p
+

p(x), (2.2)

|u|p(x) < 1 ⇒ |u|p
+

p(x) ≤ ρp(x)(u) ≤ |u|p
−

p(x), (2.3)

|un − u|p(x) → 0 ⇔ ρp(x)(un − u)→ 0. (2.4)
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We define the variable exponent Sobolev space by

W 1,p(x)(Ω) = {u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)}.

On W 1,p(x)(Ω) we may consider one of the following equivalent norms

‖u‖p(x) = |u|p(x) + |∇u|p(x)

or

‖u‖ = inf
{
µ > 0;

∫
Ω

(
|∇u(x)

µ
|p(x) + |u(x)

µ
|p(x)

)
dx ≤ 1

}
.

We define W
1,p(x)
0 (Ω) as the closure of the set of compactly supported W 1,p(x)-

functions with respect to the norm ‖u‖p(x). When smooth functions are dense, we
can also use the closure of C∞0 (Ω) in W 1,p(x)(Ω). Using the Poincaré inequality, the
space W 1,p(x)

0 (Ω) can be defined, in an equivalent manner, as the closure of C∞0 (Ω)
with respect to the norm

‖u‖p(x) = |∇u|p(x).

The space (W 1,p(x)
0 (Ω), ‖ · ‖) is a separable and reflexive Banach space. Moreover,

if 0 < |Ω| < ∞ and p1, p2 are variable exponents so that p1 ≤ p2 in Ω then there
exists the continuous embedding W 1,p2(x)

0 (Ω) ↪→W
1,p1(x)
0 (Ω). Set

%p(x)(u) =
∫

Ω

|∇u(x)|p(x) dx. (2.5)

If (un), u ∈W 1,p(x)
0 (Ω) then the following properties are true:

‖u‖ > 1 ⇒ ‖u‖p
−
≤ %p(x)(u) ≤ ‖u‖p

+
, (2.6)

‖u‖ < 1 ⇒ ‖u‖p
+
≤ %p(x)(u) ≤ ‖u‖p

−
, (2.7)

‖un − u‖ → 0 ⇔ %p(x)(un − u)→ 0 . (2.8)

Set

p∗(x) =

{
Np(x)
N−p(x) if p(x) < N

+∞ if p(x) ≥ N.

We point out that if p, q ∈ C+(Ω) and q(x) < p?(x) for all x ∈ Ω then the embedding
W

1,p(x)
0 (Ω) ↪→ Lq(x)(Ω) is compact.
For a constant function p, the variable exponent Lebesgue and Sobolev spaces

coincide with the standard Lebesgue and Sobolev spaces. Cf. [15], the function
spaces with variable exponent have some striking properties, such as:

(i) If 1 < p− ≤ p+ <∞ and p : Ω→ [1,∞) is smooth, then the formula∫
Ω

|u(x)|pdx = p

∫ ∞
0

tp−1|{x ∈ Ω; |u(x)| > t}| dt

has no variable exponent analogue.
(ii) Variable exponent Lebesgue spaces do not have the mean continuity prop-

erty : if p is continuous and nonconstant in an open ball B, then there exists
a function u ∈ Lp(x)(B) such that u(x+ h) 6∈ Lp(x)(B) for all h ∈ RN with
arbitrary small norm.

(iii) An argument in the development of the theory of function spaces
with variable exponent is the fact that these spaces are never translation
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invariant. The use of convolution is also limited, for instance the Young
inequality

|f ∗ g|p(x) ≤ C |f |p(x) ‖g‖L1

holds if and only if p is constant.

We refer to Rădulescu [14] and the monographs by Diening, Hästo, Harjulehto
and Ruzicka [5] and Rădulescu and Repovš [15] for additional properties of func-
tion spaces with variable exponent and for a thorough variational analysis of these
problems.

3. Main results

Let ∆p(x) denote the p(x)-Laplace operator, namely

∆p(x)u := div(|∇u|p(x)−2∇u).

In this article we study of the perturbed nonhomogeneous Dirichlet problem

−∆p(x)u = λ|u|p(x)−2u+ |u|q(x)−2u, in Ω
u = 0, on ∂Ω.

(3.1)

We suppose that p, q ∈ C+(Ω) satisfy

p+ < q− and max{p(x), q(x)} < p∗(x) for all x ∈ Ω. (3.2)

The energy functional associated with (3.1) is E : W 1,p(x)
0 (Ω)→ R defined by

E(u) =
∫

Ω

1
p(x)

(|∇u|p(x) − λ|u|p(x))dx−
∫

Ω

|u|q(x)

q(x)
dx,

for all u ∈W 1,p(x)
0 (Ω).

Hypothesis (3.2) implies that E is well-defined and E ∈ C1(W 1,p(x)
0 (Ω),R). We

also observe that

〈E ′(u), v〉 =
∫

Ω

(
|∇u|p(x)−2∇u · ∇v − λ|u|p(x)−2uv

)
dx−

∫
Ω

|u|q(x)−2uv dx,

for all v ∈W 1,p(x)
0 (Ω).

We say that u is a weak solution of (3.1) if u ∈W 1,p(x)
0 (Ω) \ {0} and∫

Ω

(
|∇u|p(x)−2∇u · ∇v − λ|u|p(x)−2uv

)
dx−

∫
Ω

|u|q(x)−2uv dx = 0,

for all v ∈W 1,p(x)
0 (Ω).

Thus, weak solutions of (3.1) correspond to the critical points of the energy
functional E . Let

λ∗ = inf
{∫

Ω

|∇u|p(x)dx; u ∈W 1,p(x)
0 (Ω), |u|p(x) = 1

}
.

Our first result in this paper establishes the following existence property.

Theorem 3.1. Assume that hypothesis (3.2) is satisfied and λ < λ∗. Then problem
(3.1) has at least one solution.



EJDE-2016/295 PERTURBED SUBCRITICAL DIRICHLET PROBLEMS 5

We recall that the functional E : W 1,p(x)
0 (Ω) → R satisfies the Palais-Smale

condition if any sequence (un) ⊂W 1,p(x)
0 (Ω) such that

E(un) = O(1) and ‖E ′(un)‖W−1,p′(x) = o(1) as n→∞, (3.3)

is relatively compact.
An important role in the proof of Theorem 3.1 is played by the mountain pass

theorem of Ambrosetti and Rabinowitz [1].

Theorem 3.2. Assume that X is a Banach space, ϕ ∈ C1(X,R) satisfies the
Palais-Smale condition, u0, u1 ∈ X, ‖u1 − u0‖ > ρ > 0

max{ϕ(u0), ϕ(u1)} < inf[ϕ(u) : ‖u− u0‖ = ρ] = mρ

and

c = inf
γ∈Γ

max
0≤t≤1

ϕ(γ(t)) with Γ = {γ ∈ C([0, 1], X) : γ(0) = u0, γ(1) = u1}.

Then c ≥ mρ and c is a critical value of ϕ.

As pointed out by Brezis and Browder [3], the mountain pass theorem “extends
ideas already present in Poincaré and Birkhoff”. More generally, this result is in
fact true in Banach-Finsler manifolds.

Assumption (3.2) guarantees that the energy functional associated with (3.1) has
a mountain pass geometry. We study in what follows a related perturbed problem,
provided that Theorem 3.2 cannot be applied. Consider the problem

−∆p(x)u = λ|u|p(x)−2u+ µ|u|q(x)−2u, in Ω
u = 0, on ∂Ω.

(3.4)

We say that u is a weak solution of problem (3.4) if u ∈W 1,p(x)
0 (Ω) \ {0} and∫

Ω

(
|∇u|p(x)−2∇u · ∇v − λ|u|p(x)−2uv

)
dx− µ

∫
Ω

|u|q(x)−2uv dx = 0,

for all v ∈W 1,p(x)
0 (Ω).

We assume that p, q ∈ C+(Ω) satisfy

q− < p− and max{p(x), q(x)} < p∗(x) for all x ∈ Ω. (3.5)

Under this assumption, the functional E satisfies the mountain condition of the
mountain pass theorem near the origin for small values of the parameter µ. How-
ever, the existence of a valley for large values of µ is not guaranteed, hence we
do not have a mountain pass geometry. The second existence result of this paper
extends [10, Theorem 2.1] and is stated in the following theorem.

Theorem 3.3. Assume that hypothesis (3.5) is fulfilled and λ < λ∗. Then there
exists µ∗ > 0 such that for all µ < µ∗ problem (3.4) has at least one solution.

The key ingredient in the proof of Theorem 3.3 is the Ekeland variational prin-
ciple, which asserts the existence of almost critical points of E . The subcritical
framework of the problem yields a nontrivial critical point of E , hence a weak solu-
tion of problem (3.4). We point out that the Ekeland variational principle can be
viewed as the nonlinear version of the Bishop-Phelps theorem [12].
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The arguments developed in this paper show that a similar result holds if the
p(x)-Laplace operator is replaced with other nonhomogeneous differential opera-
tors with variable exponent, for instance the generalized mean curvature operator
defined by

div
(

(1 + |∇u|2)[p(x)−2]/2∇u
)
.

4. Proof of Theorem 3.1

The proof strongly relies on the mountain pass theorem in relationship with some
ideas developed in [11] and [13].

We start with the verification of the geometric hypotheses of the mountain pass
theorem. We observe that E(0) = 0 and we show the existence of a mountain near
the origin, namely there exist positive numbers r and η such that E(u) ≥ η for all
u ∈ W 1,p(x)

0 (Ω) with ‖u‖ = r. We first observe that the definition of λ∗ combined
with the fact that λ < λ∗ imply that there exists δ > 0 such that∫

Ω

1
p(x)

(|∇u|p(x) − λ|u|p(x))dx ≥ δ|∇u|p(x), for all u ∈W 1,p(x)
0 (Ω).

But ∫
Ω

|u|q(x)

q(x)
dx ≤ 1

q−
|u|q(x), for all u ∈W 1,p(x)

0 (Ω).

Combining these inequalities, we deduce that

E(u) ≥ δ |∇u|p(x) −
1
q−
|u|q(x) . (4.1)

Fix r ∈ (0, 1) and u ∈ W 1,p(x)
0 (Ω) with ‖u‖ = r. Then relations (2.7), (4.1) and

the Sobolev embedding W 1,p(x)
0 (Ω) ↪→ Lq(x)(Ω) yield

E(u) ≥ δ ‖u‖p
+
− C

q−
‖u‖q

−
.

Choosing eventually r ∈ (0, 1) smaller if necessary, we conclude that there exists
η > 0 such that E(u) ≥ η for all u ∈W 1,p(x)

0 (Ω) with ‖u‖ = r.
Next, we argue the existence of a valley over the chain of mountains. For this

purpose, we fix s > 1 and w ∈W 1,p(x)
0 (Ω) \ {0}. It follows that

E(sw) =
∫

Ω

sp(x)

p(x)

(
|∇w|p(x) − λ|w|q(x)

)
dx−

∫
Ω

sq(x)

q(x)
|w|q(x)dx

≤ As
p+

p−
−Bs

q−

q+
,

(4.2)

where

A =
∫

Ω

(
|∇w|p(x) − λ|w|q(x)

)
dx and B =

∫
Ω

|w|q(x)dx.

Using hypothesis (3.2), relation (4.2) yields E(sw) < 0 for s large enough.
To apply Theorem 3.2 to our problem (3.1) it remains to check that the en-

ergy functional E satisfies the Palais-Smale compactness condition. Let (un) ⊂
W

1,p(x)
0 (Ω) be an arbitrary Palais-Smale sequence for E , namely

E(un) = O(1) as n→∞ (4.3)
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and
‖E ′(un)‖W−1,p′(x)(Ω) = o(1) as n→∞ . (4.4)

We claim that
the sequence (un) is bounded in W

1,p(x)
0 (Ω). (4.5)

Relations (4.3) and (4.4) yield∫
Ω

1
p(x)

(
|∇un|p(x) − λ|un|p(x)

)
dx−

∫
Ω

1
q(x)
|un|q(x)dx = O(1) as n→∞ (4.6)

and for all v ∈W 1,p(x)
0 (Ω),∫

Ω

(
|∇un|p(x)−2∇un · ∇v − λ|un|p(x)−2unv

)
dx−

∫
Ω

|un|q(x)−2unv dx

= o(1)‖v‖ as n→∞ .

(4.7)

Choosing v = un in (4.7) we deduce that∫
Ω

(
|∇un|p(x) − λ|un|p(x)

)
dx−

∫
Ω

|un|q(x)dx = o(1)‖un‖ as n→∞ . (4.8)

On the other hand, relation (4.6) implies

O(1) +
1
p+

∫
Ω

(
|∇un|p(x) − λ|un|p(x)

)
dx

≤
∫

Ω

1
q(x)

|un|q(x)dx

≤ O(1) +
1
p−

∫
Ω

(
|∇un|p(x) − λ|un|p(x)

)
dx.

Using now relation (4.8) we deduce that

O(1) + o(1)‖un‖+
1
p+

∫
Ω

|un|q(x)dx

≤
∫

Ω

1
q(x)

|un|q(x)dx

≤ O(1) + o(1)‖un‖+
1
p−

∫
Ω

|un|q(x)dx.

It follows that ∫
Ω

|un|q(x)dx = O(1) + o(1)‖un‖ as n→∞ . (4.9)

Returning to (4.6) and using relation (4.9) we deduce that∫
Ω

1
p(x)

(
|∇un|p(x) − λ|un|p(x)

)
dx = O(1) + o(1)‖un‖ . (4.10)

Taking into account the definition of λ∗ and the fact that λ < λ∗, relation (4.10)
implies that (un) is bounded in W 1,p(x)

0 (Ω), hence Claim (4.5) is argued. So, up to
a subsequence

un ⇀ u in W
1,p(x)
0 (Ω), (4.11)

un → u in Lp(x)(Ω). (4.12)

We prove in what follows that

(un) contains a strongly convergent subsequence in W
1,p(x)
0 (Ω). (4.13)
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We first observe that relation (4.7) yields∫
Ω

|∇un|p(x)−2∇un · ∇v dx =
∫

Ω

%(x, un)v dx+ o(1)‖v‖ as n→∞ , (4.14)

for all v ∈W 1,p(x)
0 (Ω) where %(x,w) = λ|w|p(x)−2w + |w|q(x)−2w.

We assume in what follows that p+ < N (the same arguments can be developed
in the contrary case). Using (4.5), relation (4.14) implies that our claim (4.13)
follows as soon as we show that %(x, un) is relatively compact in W−1,p′(x)(Ω).
Hence, by Sobolev embeddings, it is enough to show that

%(x, un) is relatively compact in LNp(x)/[Np(x)−N+p(x)](Ω), (4.15)

which is the dual space of LNp(x)/[N−p(x)](Ω).
Using (4.12) in combination with the Egorov theorem, we deduce that for fixed

η > 0 there is a subset A of Ω of measure less than η and such that

un → u uniformly on Ω \A.

So, our claim (4.15) follows as soon as we show that for for all ε > 0 and n large
enough ∫

A

|%(x, un)− %(x, u)|Np(x)/[Np(x)−N+p(x)]dx ≤ ε . (4.16)

Taking into account the subcritical growth of % we have for some C > 0∫
A

|%(x, u)|Np(x)/[Np(x)−N+p(x)]dx ≤ C
∫
A

(1 + |u|)Np(x)/[N−p(x)]dx,

which can be made sufficiently small if we choose η > 0 small enough. We conclude
that ∫

A

|%(x, un)− %(x, u)|Np(x)/[Np(x)−N+p(x)]dx

≤ δ
∫
A

|un − u|Np(x)/[N−p(x)]dx+ Cδ|A| < ε,

by choosing η small enough and by using Sobolev embeddings and (4.5). Our claim
(4.13) is proved, which implies that E satisfies the Palais-Smale condition. Applying
Theorem 3.2 we deduce that (3.1) has a nontrivial solution for all λ < λ∗.

The ideas developed in the proof of Theorem 3.1 allow to extend this result for
more general perturbations. Indeed, let us consider the nonhomogeneous Dirichlet
problem:

−∆p(x)u+ a(x)|u|p(x)−2u = |u|q(x)−2u, in Ω
u = 0, on ∂Ω,

(4.17)

where a ∈ L∞(Ω) and there exists α > 0 such that∫
Ω

(
|∇u|p(x) + a(x)|u|p(x)

)
≥ αρp(x)(∇u) for all u ∈W 1,p(x)

0 (Ω). (4.18)

The following property is the counterpart of [13, Theorem 10] in the framework of
operators and nonlinearities involving variable exponents.

Theorem 4.1. Suppose that hypotheses (3.2) and (4.18) are satisfied. Then (4.17)
has at least one nontrivial solution.
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5. Proof of Theorem 3.3

The weak solutions of (3.4) correspond to critical points of the associated energy
functional J : W 1,p(x)

0 (Ω)→ R defined by

J (u) =
∫

Ω

1
p(x)

(|∇u|p(x) − λ|u|p(x))dx− µ
∫

Ω

|u|q(x)

q(x)
dx,

for all u ∈W 1,p(x)
0 (Ω).

We first establish a preliminary result, which asserts that the energy functional
J satisfies the geometric condition around the origin, provided that λ < λ∗ and µ
is small enough.

Lemma 5.1. Let λ < λ∗. Then there exist positive numbers µ∗, r and a such that
for all µ < µ∗ we have J (u) ≥ a, provided that u ∈W 1,p(x)

0 (Ω) satisfies ‖u‖ = r.

Proof. As in the proof of Theorem 3.1, combining the definition of λ∗ with the fact
that λ < λ∗, we deduce that there is a positive number δ such that

J (u) ≥ δ|∇u|p(x) −
µ

q−
|u|q(x) for all u ∈W 1,p(x)

0 (Ω). (5.1)

Let a1 > 0 denote the best constant corresponding to the continuous embedding of
W

1,p(x)
0 (Ω) into Lq(x)(Ω). Fix arbitrarily r ∈ (0, 1). Using (2.3) we obtain∫

Ω

|u|q(x)dx ≤ |u|q
−

q(x) ≤ a
q−

1 ‖u‖q
−

for all u ∈W 1,p(x)
0 (Ω) , ‖u‖ =

r

a1
. (5.2)

Next, using (2.7) we obtain

|∇u|p(x) ≥ ‖u‖p
+

for all u ∈W 1,p(x)
0 (Ω), ‖u‖ =

r

a1
. (5.3)

We notice that in (5.2) and (5.3) we can assume that a1 is large enough in order
to have r/a1 < 1.

Relations (5.1), (5.2) and (5.3) imply that for all u ∈W 1,p(x)
0 (Ω) with ‖u‖ = r

a1

we have

J (u) ≥ δ‖u‖p
+
− µ

q−
aq
−

1 ‖u‖q
−

= δrp
+
− µ

q−
aq
−

1 rq
−

= rq
−
(
δrp

+−q− − µ

q−
aq
−

1

)
.

This relation shows that the lemma follows after choosing

µ∗ =
δq−rp

+−q−

2aq
−

1

and a =
δrp

+

2
.

�

The second auxiliary result shows that J has a valley around the origin, hence
the hypotheses of the mountain pass theorem are not fulfilled.

Lemma 5.2. Let λ < λ∗. Then there exists a smooth nonnegative function φ ∈
W

1,p(x)
0 (Ω) such that J (tφ) < 0 for all t > 0 sufficiently small.
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Proof. The basic idea is to use our assumption (3.5), more exactly q− < p−. Set

η :=
p− − q−

2
.

Let ω be a subdomain of Ω such that

q(x) ≤ q− + η < p− for all x ∈ ω.

Let ϕ ∈W 1,p(x)
0 (Ω) a smooth function with compact support such that 0 ≤ φ ≤ 1,

ϕ|ω = 1 and ω̄ ⊂ supp (φ). It follows that for all t ∈ (0, 1) we have

J (tφ) =
∫

Ω

tp(x)

p(x)
(
|∇φ|p(x) − λφp(x)

)
dx− µ

∫
Ω

tq(x)

q(x)
φq(x)dx

≤ tp
−

p−

∫
Ω

(
|∇φ|p(x) − λφp(x)

)
dx− µ

q+

∫
Ω

tq(x)φq(x)dx

≤ tp
−

p−

∫
Ω

(
|∇φ|p(x) − λφp(x)

)
dx− µ

q+

∫
ω

tq(x)φq(x)dx

≤ At
p−

p−
−Bµt

q−+η

q+
,

where

A :=
∫

Ω

(
|∇φ|p(x) − λφp(x)

)
dx > 0 and B :=

∫
ω

φq(x)dx > 0.

We deduce that J (tφ) < 0, provided that t ∈ (0, 1) is small enough. �

Fix µ∗ > 0 as established in Lemma 5.1 and let µ < µ∗. Using Lemmata 5.1 and
5.2 we deduce that there exists r > 0 such that

inf
u∈Br(0)

J (u) < 0 < inf
u∈∂Br(0)

J (u),

where Br(0) := {u ∈W 1,p(x)
0 (Ω); ‖u‖ < r}.

Fix ε > 0 such that

ε < inf
u∈∂Br(0)

J (u)− inf
u∈Br(0)

J (u).

Applying Ekeland’s variational principle [6] we find uε ∈ Br(0) such that

J (uε) < inf
u∈Br(0)

J (u) + ε, (5.4)

J (uε) < J (u) + ε‖u− uε‖ for all u ∈W 1,p(x)
0 (Ω) \ {uε}. (5.5)

We claim that uε ∈ Br(0). Indeed, relations (5.4) and (5.5) yield

J(uε) < inf
u∈Br(0)

J (u) + ε < inf
u∈∂Br(0)

J (u),

hence uε 6∈ ∂Br(0). A standard argument (see, e.g., [10, p. 2934]) shows that
‖J ′(uε)‖ ≤ ε.

Let c := inf
u∈Br(0)

J (u). It follows that uε is an almost critical point of J at
the level c, that is,

lim
ε→0
J (uε) = c and lim

ε→0
‖J ′(uε)‖ = 0.
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From now on, using the same argument as in [8, p. 59] (see also [7, Theorem
3.1] and [10, p. 2935]) we deduce that there exists a subsequence (vn) of (uε) that
converges to a nontrivial critical point u of J , hence u is a weak solution of problem
(3.4).

Perspectives and open problems

Now we raise some open problems in relationship with the study developed in
this paper.

Open problem 1. Problem (3.1) has been studied in the subcritical case, namely
under the basic hypothesis (3.2), namely max{p(x), q(x)} < p∗(x) for all x ∈ Ω,
which is crucial for the verification of the Palais-Smale compactness condition. We
consider that a very interesting research direction is to study the same problem
in the almost critical setting, hence under the following weaker assumption: there
exists x0 ∈ Ω such that

q(x) < p∗(x) for all x ∈ Ω \ {x0} and q(x0) = p∗(x0). (5.6)

Of course, this hypothesis is not possible if the functions p and q are constant. We
conjecture that the result stated in Theorem 3.1 remains true under assumption
(5.6).

Open problem 2. [13, Theorem 11] studies with values of the parameter λ which
are larger than the principal eigenvalue of the Laplace operator. In such a case it
is established an existence property by using the dual variational method. This is
based on the introduction of a new unknown and uses in an essential manner the
linearity of the Laplace operator. We consider that a very interesting open problem
is the qualitative analysis of problem (3.1) provided that λ ≥ λ∗.
Open problem 3. We suggest to adapt the limited developments techniques intro-
duced in the proof of Theorem 9 in [13, pp. 30-32] in order to obtain an alternative
proof of Theorem 3.1 in this paper. In our framework the major difficulties arise
due to the presence of variable exponents, which is not the case in [13].

Open problem 4. Inspired by the study developed in [15, Chapter 3.3], we suggest
the study of problems (3.1) and (3.4) if the p(x)-Laplace operator is replaced with
a differential operator with several variable exponents, for instance

div
(

(|∇u|p1(x)−2 + |∇u|p2(x)−2)∇u
)
.

Open problem 5. We conjecture that the existence properties stated in Theorems
3.1 and 3.3 remain true if the p(x)-Laplace operator is replaced with a general class
of Leray-Lions type operators, as defined in [15, pp. 27-28]. We refer to the
pioneering paper by Leray and Lions [9] for basic properties of these operators and
some relevant applications.

Open problem 6. Theorem 3.3 establishes an existence property for low pertur-
bations, namely provided that the parameter µ is small enough. We consider that
a complete bifurcation analysis for this problem, in relationship with the values of
the variable exponents p and q, is a very interesting open problem. We do not have
partial results on this problem even for particular variable exponents or if Ω is a
ball.
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of Applied Mathematics for the Master’s Degree], Masson, Paris, 1983.

[3] H. Brezis, F. Browder; Partial differential equations in the 20th century, Adv. Math., 135

(1998), 76-144.
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