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RIEMANN-HILBERT PROBLEM FOR THE
MOISIL-TEODORESCU SYSTEM IN
MULTIPLE CONNECTED DOMAINS

VIKTOR A. POLUNIN, ALEXANDRE P. SOLDATOV

Abstract. In this article we obtain a new integral representation of the gen-

eral solution of the Moisil-Teodorescu system in a multiply connected domain.
Also we give applications of this representation to Riemann-Hilbert problem.

1. Introduction

Consider the Moisil-Teodorescu system [2]

M
( ∂
∂x

)
u(x) = 0, M(ζ) =


0 ζ1 ζ2 ζ3
ζ1 0 −ζ3 ζ2
ζ2 ζ3 0 −ζ1
ζ3 −ζ2 ζ1 0

 , (1.1)

for a vector u(x) = (u1, u2, u3, u4). The identity M>(ζ)M(ζ) = |ζ|2 shows that
the components of this vector are harmonic functions. Note also that using the
notation

u = (u1, v) (1.2)

system (1.1) can be written in the form

div v = 0, rot v + gradu1 = 0. (1.3)

It is well known [2] that the matrix-valued function M>(x)/|x|3, where > stands
for the transposed, is the fundamental solution of the differential operator M(D).
Thus the Cauchy type integral

(Iψ)(x) =
1

2π

∫
Γ

M>(y − x)
|y − x|3

M [n(y)]ψ(y)d2y, x /∈ Γ, (1.4)

where Γ is a closed smooth surface and n(y) is a unit normal, defines a solution of
(1.1).

Let Γ be a boundary of a finite domain D for which n is an exterior normal,
D′ = R3 \D be an open set and for consistency the notation D+ = D, D− = D′ are
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introduced. Let Γ be a Lyapunov surface, u = Iψ and suppose that the function ψ
satisfies the Holder condition. Then there exist the limit values

u±(y0) = lim
x→y0,x∈D±

u(x), y0 ∈ Γ,

and the analogue of Plemelj-Sokhotskyii formula

u± = ±ψ + u∗. (1.5)

holds. Here u∗ = I∗ψ is defined by the singular integral

(I∗ψ)(y0) =
1

2π

∫
Γ

M>(y − y0)
|y − y0|3

M [n(y)]ψ(y)d2y.

These formulas were first obtained by Bitsadze [3]. Based on the minimal require-
ments on the smoothness of the surface this result made precise in [7]: if Γ belongs
to the class C1,ν , 0 < ν < 1, then the operator I is bounded Cµ(Γ) → Cµ(D),
0 < µ < ν.

Let the matrix-valued function

B =
(
B11 B12 B13 B14

B21 B22 B23 B24

)
be continuous on Γ and be of the rank 2 at any point y ∈ Γ. We consider the
following analogue of the Riemann-Hilbert boundary value problem

Bu+ = f, (1.6)

for the system (1.1). A natural approach for the study of this problem (in case of
special matrices B) using the Cauchy type integrals was proposed by Bitsadze[4]. A
complete study of problem (1.6) for the domains homeomorphic to the ball was done
by Shevchenko [10, 11]. Another approach based on the integral representation of
special type was described in [8, 9].

In this article, we consider the case of arbitrary multiply connected domain.
Taking into account a general elliptic theory [5, 1], problem (1.6) is Fredholm one
under a so called complementarity condition. This condition can be defined as
follows [11, 9]. Consider the vector s = (s1, s2, s3) with components

s1 = b12 + b34, s2 = b13 − b24, s3 = b14 + b23,

where bkj = b1kb2j − b1jb2k are the corresponding minors of the matrix B. Then
complementarity condition can be expressed in the form

s(y)n(y) 6= 0, y ∈ Γ. (1.7)

As shown in [11], if Γ is homeomorphic to a ball, then under the above condition
the operator R has a Fredholm property and its index equals to −1. In the case
of a arbitrary multiply connected domain D only the Fredholm property of this
problem can be stated.

Theorem 1.1. Suppose the surface Γ belongs to the class C1,ν and the matrix-
valued function B ∈ Cν(Γ) satisfies (1.7). Then the operator R : Cµ(Γ)→ Cµ(D)
of the problem (1.1), (1.6) has a Fredholm property.

Proof. Every two-component vector ϕ = (ϕ1, ϕ2) corresponds to a four-component
vector ψ = ϕ̃ by the formula ϕ̃ = (ϕ1, nϕ2) and we put

(I0ϕ)(x) = (Iϕ̃)(x), x ∈ D. (1.8)



EJDE-2016/310 RIEMANN-GILBERT PROBLEM 3

So, the operator I0 acts from the space Cµ(D) of two-component vector- valued
functions to the space Cµ(D) of solutions of the system (1.1) in the domain D. We
first prove that this operator has a Fredholm property.

For this purpose we consider the special case of problem (1.6), which is defined
by the boundary value condition

Cu+ = f (1.9)

where

C =
(

1 0 0 0
0 n1 n2 n3

)
.

We verify, that the kernel of this problem has a finite dimension.
Indeed if Cu+ = 0 then using notation (1.2) we have

u+
1 = 0, v+n = 0. (1.10)

Since the function u1 is harmonic in the domain D, then u1 = 0 and the second
equality (1.3) becomes rot v = 0. Hence, in each simply-connected subdomain D0 ⊆
D the function v can be defined as gradw0 of some function w0, which is harmonic
by virtue of the first equality of (1.3). If D1 denotes another simply-connected
subdomain D with corresponding representation v = gradw1, then w0 − w1 is a
locally constant function on the open set D0 ∩ D1 because its gradient equals 0.
In the whole multiple-connected domain D, the harmonic function w such that
v = gradw is a multi-valued function. It follows from the second equality of (1.10)
that

∂w+

∂n
= 0. (1.11)

To avoid the multipli-connectedness of the domain D let us consider its cuts.
By definition the cut is a simply-connected smooth surface R ⊆ D with smooth
boundary ∂L, such that R ∩ Γ = ∂L. There exist disjoint cuts R1, . . . , Rm, such
that the set

DR = D \R, R = R1 ∪ . . . ∪Rm,
is a simply connected domain. In this domain the function w is a single-valued and
its boundary values satisfy the relation

(w+ − w−)
∣∣
Ri

= ci, 1 ≤ i ≤ m, (1.12)

with some constants ci. Nevertheless equalities c1 = . . . = cm = 0 indicate that w
is univalent function. So it is harmonic in the whole domain D, while in a view of
(1.11) this is possible only if w is constant. These arguments prove that the space
of solutions of homogeneous problem (1.9) is finite dimensional space.

We denote the operator of the problem (1.9) by S and consider the composition
SI0, which is acting within the space of two-component vector-functions in the
space Cµ(Γ). Note that the product CC> is the unit 2× 2-matrix. Also note that
(1.6) can be written as ϕ̃ = C>ϕ. So by virtue of (1.4), (1.5) we have the equality
SI0 = 1 +K0 with integral operator K0, according to the formula

(K0ϕ)(y0) =
1

2π

∫
Γ

k0(y0, y)
|y − y0|2

ϕ(y)d2y, y0 ∈ Γ, (1.13)

with the matrix-valued function

k0(y0, y) = C(y0)M>(ξ)M [n(y)]C>(y), ξ =
y − y0

|y − y0|
.
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It is easy to see that

M>(ξ)M(n)C> =


nξ 0

[n, ξ]1 ξ1
[n, ξ]2 ξ2
[n, ξ]3 ξ3

 , (1.14)

where in the sequel brackets denote the vector product, a product without brackets
is a scalar product, and [n, ξ]k are components of the vector [n, ξ]. Therefore we
get the following expression in explicit form

k0(y0, y) =
(

n(y)ξ 0
n(y0)[n(y), ξ] n(y0)ξ

)
=
(

n(y)ξ 0
[n(y0), n(y)]ξ n(y0)ξ

)
.

It was stated in [7] under assumption Γ ∈ C1,ν that the function k0(t0, t) belongs
to Cν(Γ× Γ) ) and equals zero at t = t0. So a kernel of the operator K0 has weak
singularity, and the proper operator is compact in the space Cµ(Γ). According
to Riesz theorem we conclude that the image im (SI0) is closed subspace of finite
co-dimension. Since imS ⊇ im (SI0), then an image of the operator S has the
same property. Therefore the operator S has the Fredholm property, and taking
into account the Fredholm property of the product SI0 = 1 + K this implies that
I0 is Fredholm operator. �

Let us next turn to the original problem (1.6). As before it is obvious that RI0 =
G+K with the matrix -valued function G = BC> and the integral operator K de-
fined similar (1.13) with respect to the function k(y0, y) = B(y0)M>(ξ)M [n(y)]C>(y),
contrary to the previous case, this operator is singular operator.

Since I0 is Fredholm operator, the operator R of our problem is Fredholm equiv-
alent to the operator N = G + K. For a surface Γ, homeomorphic to a ball, the
inequality (1.7) provides the Fredholm property of the singular operator N . Since
the Fredholm criterion for this operator has local property [6] the similar result is
true for arbitrary surface also, and this completes the proof.

Note that the expressions for the matrices G(y0) and k(y0, y) can be simplified.
To see this we write the matrix B = (Bij) in the form

B =
(
B11 b1
B21 b2

)
with the vectors bk = (Bk2, Bk3, Bk4). Then taking into account (1.14) we obtain

G =
(
B11 b1n
B21 b2n

)
,

k(y0, y) =
(
B11(y0)n(y)ξ + b1(y0)[n(y), ξ] b1(y)ξ
B21(y0)n(y)ξ + b2(y0)[n(y), ξ] b2(y), ξ

)
=
(
B11(y0)n(y)ξ + [b1(y0), n(y)]ξ b1(y)ξ
B21(y0)n(y)ξ + [b2(y0), n(y)]ξ b2(y)ξ

)
ξ =

y − y0

|y − y0|
.
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