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STRUCTURAL STABILITY OF RIEMANN SOLUTIONS FOR
STRICTLY HYPERBOLIC SYSTEMS WITH THREE PIECEWISE

CONSTANT STATES

XUEFENG WEI, CHUN SHEN

Abstract. This article concerns the wave interaction problem for a strictly

hyperbolic system of conservation laws whose Riemann solutions involve delta
shock waves. To cover all situations, the global solutions are constructed when

the initial data are taken as three piecewise constant states. It is shown that the

Riemann solutions are stable with respect to a specific small perturbation of
the Riemann initial data. In addition, some interesting nonlinear phenomena

are captured during the process of constructing the solutions, such as the

generation and decomposition of delta shock waves.

1. Introduction

In this article, we are concerned with the hyperbolic system of conservation laws

ut + (u2)x = 0,

vt +
(

(2u+ 1)v
)
x

= 0,
(1.1)

which was used to study the behavior of a magnetohydrodynamics model (MHD)
[25, 26]. System (1.1) is strictly hyperbolic whose eigenvalues are λ1 = 2u and
λ2 = 2u+ 1. Furthermore, the first characteristic field for λ1 is genuinely nonlinear
and the second one for λ2 is linearly degenerate.

The Riemann problem is the particular Cauchy problem with the two piecewise
initial data

(u, v)(x, 0) =

{
(u−, v−), x < 0,
(u+, v+), x > 0,

(1.2)

where all the u± and v± are given constants. The Riemann problem (1.1) and (1.2)
was studied by Tan [25] through the self-similar vanishing viscosity method. It was
discovered in [25] that if u+ < u− − 1, then the solution of the Riemann problem
(1.1) and (1.2) cannot be constructed by a combination of shock waves, rarefaction
waves and contact discontinuities. In this situation, the delta shock wave should be
introduced into the soluton, which is the form of the standard Dirac delta function
supported on a shock wave [1, 2, 11, 12, 13, 23, 28].
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With the Riemann solutions of (1.1) and (1.2) in hand, it is natural to expect
the study of the so-called double Riemann problem because the Riemann problem
(1.1) and (1.2) cannot describe the dynamic pictures in all the situations for (1.1).
In this article, we study the Cauchy problem for (1.1) with three piecewise initial
data:

(u, v)(x, 0) =


(u−, v−), −∞ < x < −ε,
(um, vm), −ε < x < ε,

(u+, v+), ε < x < +∞,
(1.3)

where ε > 0 is arbitrarily small. This is the so-called perturbed Riemann problem
or the double Riemann problem. For the reason that the initial data (1.3) may be
regarded as a small perturbation of the corresponding Riemann initial data (1.2)
with the perturbed parameter ε. In fact, we will encounter an interesting problem
that if the limits ε→ 0 of solutions (uε, vε)(x, t) are identical with the ones of the
Riemann problem (1.1) and (1.2) or not, in which (uε, vε)(x, t) refer to the solutions
of the particular Cauchy problem (1.1) and (1.3) associated with ε accordingly.

In fact, the three piecewise initial data (1.3) have been widely used to study the
wave interaction problem for some hyperbolic systems, such as the the pressureless
Euler system [20, 29], the Euler system for Chaplygin gas [7, 18], a non-strictly
hyperbolic system [22, 30] and various types of chromatography systems [6, 19, 24].
It is noticed that all the systems studied above belong to the so-called Temple class
[27], namely the shock curves coincide with the rarefaction curves in the phase plane,
such that wave interactions have relatively more simplified structures and then the
global solutions may be constructed completely for these systems with the initial
data (1.3). However, it is remarkable that the system (1.1) does not belong to the
Temple class, such that the solutions of the perturbed Riemann problem (1.1) and
(1.3) have more complicated and interesting structures. Fortunately, we discover
that the propagation speeds of elementary waves for the Riemann problem (1.1)
and (1.2) can be expressed concisely by the state variable u, including shock wave,
rarefaction wave, contact discontinuity and delta shock wave. Thus, the global
solutions of the perturbed Riemann problem (1.1) and (1.3) can be constructed in
explicit forms.

The main purpose of this paper is to investigate various possible wave inter-
actions including delta shock waves for system (1.1). Thus, we take the three
piecewise initial data (1.3) instead of the Riemann initial data (1.2) such that the
solutions beyond the interactions are constructed. Furthermore, it is shown that
the solutions of the perturbed Riemann problem (1.1) and (1.3) converge to the
corresponding ones of the Riemann problem (1.1) and (1.2) as ε → 0 by dealing
with this problem case by case, which shows the stability of Riemann solutions
with respect to the small perturbation (1.3) of the Riemann initial data (1.2). In
addition, some interesting nonlinear phenomena can be captured during the process
of constructing the solutions to the perturbed Riemann problem (1.1) and (1.3).
At first, we discover that a delta shock wave may be generated by the interaction
between two shock waves. Secondly, it can be observed that a delta shock wave
may be decomposed into a shock wave and a delta contact discontinuity during
the process when it penetrates a rarefaction wave. Finally, it can be shown that
infinitely many contact discontinuities may be continuously produced which have
the same propagation speed during the process when a shock wave penetrates a
rarefaction wave.
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It should be pointed out that the following strictly hyperbolic system of conser-
vation laws

ut +
(u2

2

)
x

= 0,

vt +
(

(u− 1)v
)
x

= 0,
(1.4)

was introduced by Hayes and LeFloch [8]. This system has the similar property
with system (1.1). It should be stressed that the interactions between the delta
shock wave with the other elementary waves have been well investigated for (1.4)
by Nedeljkov and Oberguggenberger [17]. The method of split delta function [14,
15, 16] was in [17] to study the strength of delta shock wave precisely.

In this article, the wave interaction problem is also considered when the delta
shock wave does not appear at the initial moment for the perturbed Riemann
problem (1.1) and (1.3), which was not addressed in [17]. In fact, the interactions
between the delta shock wave with the other elementary waves for (1.1) have similar
structures with those for (1.4). In this paper, we only use the generalized Rankine-
Hugoniot conditions to calculate the strength of delta shock wave for simplicity.
In addition, the stability of solutions to the Riemann problem (1.1) and (1.2) can
also be analyzed when the delta shock waves are involved in the solutions to the
perturbed Riemann problem (1.1) and (1.3).

This article is organized in the following way. In Section 2, some preliminaries
are given, which include the Riemann solutions of (1.1) and (1.2) and the gener-
alized Rankine-Hugoniot relations of delta shock wave. Furthermore, it is proven
rigorously that the delta shock wave solution indeed satisfies the system (1.1) in the
sense of distributions. In Section 3, we consider the perturbed Riemann problem
(1.1) and (1.3) when the delta shock wave does not appear at the initial time. The
wave interaction problems are studied in detail and then the global solutions are
constructed completely. In Section 4, we consider the perturbed Riemann prob-
lem (1.1) and (1.3) when the delta shock wave is involved at the initial time. The
interactions between the delta shock wave with the other elementary waves are
investigated carefully, including shock wave, rarefaction wave and contact discon-
tinuity. At the end, discussions are carried out and the conclusions are drawn in
Section 5.

2. The Riemann problem

In this section, we are devoted to the Riemann problem (1.1) and (1.2), which
was investigated in [25] by using the self-similar vanishing viscosity method. The
eigenvalues of system (1.1) are λ1 = 2u and λ2 = 2u+1, thus (1.1) is strictly hyper-
bolic for the reason that λ1 < λ2 holds for any u. Furthermore, the corresponding
right eigenvectors are r1 = (−1, 2v)T and r2 = (0, 1)T , respectively. Thus, we have
∇λ1 · r1 = −2 and ∇λ2 · r2 = 0, in which the symbol ∇ expresses the gradient
with respect to (u, v). We know that the first characteristic field for λ1 is genuinely
nonlinear and the second one for λ2 is always linearly degenerate. Therefore, the
waves of the first family are either rarefaction waves (denoted by R) or shock waves
(denoted by S) which are decided by the initial data and while the waves of the
second family are always contact discontinuities (denoted by J).
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We first consider the elementary wave for (1.1). For a given left state (u−, v−),
the 1-rarefaction wave curve in the (u, v) phase plane can be expressed as R(u−, v−):

ξ = λ1 = 2u,

v · e2u = v− · e2u− ,

u > u−, 0 < v < v−.

(2.1)

On the other hand, the 1-shock wave curve in the (u, v) phase plane can also be
expressed as S(u−, v−):

σ = u− + u,

v

v−
=
u− − u+ 1
u− u− + 1

,

u− − 1 < u < u−, v > v−.

(2.2)

In addition, the 2-contact discontinuity curve in the (u, v) phase plane should satisfy
u = u− and the corresponding propagation speed is τ = 2u− + 1 = 2u+ 1.

Then, we construct the Riemann solutions of (1.1) and (1.2) for different cases.
For the case u− < u+, the Riemann solution of (1.1) and (1.2) is a rarefaction wave
followed by a contact discontinuity, which can be expressed as

(u, v)(x, t) =


(u−, v−), x < 2u−t,(
x
2t , v− exp(2u− − x

t )
)
, 2u−t < x < 2u+t,

(u+, v− exp(2u− − 2u+)), 2u+t < x < (2u+ + 1)t,
(u+, v+), x > (2u+ + 1)t.

(2.3)

For the case u− − 1 < u+ < u−, the Riemann solution of (1.1) and (1.2) contains
a shock wave plus a contact discontinuity, which is given by

(u, v)(x, t) =


(u−, v−), x < (u− + u+)t,
(u+, v∗), (u− + u+)t < x < (2u+ + 1)t,
(u+, v+), x > (2u+ + 1)t,

(2.4)

where

v∗ = v− ·
u− − u+ + 1
u+ − u− + 1

. (2.5)

6
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Figure 1. The (u, v) phase plane for system (1.1) for a given left
state (u−, v−).
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Let us turn our attention on the case u+ ≤ u− − 1. Then the nonclassical
situation appears where the Riemann problem (1.1) and (1.2) cannot be solved by
a combination of shock waves, rarefaction waves and contact discontinuities. To
solve the Riemann problem (1.1) and (1.2) when u+ ≤ u−− 1, it was shown in [25]
that a solution containing a weighted δ-measure supported on a curve should be
adopted. In this paper, let us use the exact definition of delta shock wave solution
which was introduced by Danilov and Shelkovich [3, 4, 5] and improved by Kalisch
and Mitrovic [9, 10].

Definition 2.1. Using the the two-dimensional weighted δ-measure β(s)δΓ, which
is supported on a smooth curve Γ = {(x(s), t(s)) : a < s < b}, we define the
measure-valued solutions by

〈β(s)δΓ, ψ(x, t)〉 =
∫ b

a

β(s)ψ(x(s), t(s))ds, (2.6)

for all ψ(x, t) ∈ C∞0 (R×R+).

Let Γ = {γi|i ∈ I} be a set of curves in the closed upper half-plane {(x, t)|(x, t) ∈
(−∞,∞) × [0,∞)}, in which γi expresses a Lipschitz continuous curve and I is a
finite index set. Let I0 be the subset of I involving all the indices of curves starting
from the x−axis and then let Γ0 = {x0

j |j ∈ I0} be the set of initial points of all
the curves γj when j ∈ I0. In what follows, one may define the solutions in the
distributional sense to the Cauchy problem for the system (1.1) with the delta
measure initial data.

Definition 2.2. Let (u, v) be a pair of distributions, in which v has the form

v(x, t) = v̂(x, t) + β(x, t)δ(Γ) = v̂(x, t) +
∑
i∈I

αi(x, t)δ(γi), (2.7)

and u, v̂ ∈ L∞(R×R+). Let us consider the initial data of type

(u, v)(x, 0) =
(
u0(x), v̂0(x) +

∑
j∈I0

αj(x0
j , 0)δ(x− x0

j )
)
, (2.8)

in which u0, v̂0 ∈ L∞(R), then the above pair of distributions (u, v) are called as a
generalized delta shock wave solution of the Cauchy problem (1.1) and (2.8) if the
following integral equalities hold for any ψ ∈ C∞c (R×R+):∫

R+

∫
R

(
uψt + u2ψx

)
dx dt+

∫
R

u0(x)ψ(x, 0)dx = 0, (2.9)

and ∫
R+

∫
R

(v̂ψt + (2u+ 1)v̂ψx) dx dt+
∑
i∈I

∫
γi

αi(x, t)
∂ψ(x, t)
∂l

+
∫
R

v̂0(x)ψ(x, 0)dx+
∑
k∈I0

αk(x0
k, 0)ψ(x0

k, 0) = 0,
(2.10)

where
∫
γi

is the line integral along γi and ∂ψ
∂l is the tangential derivative of ψ.

In view of the above definitions, we use the following theorem to describe the
delta shock wave solution to the Riemann problem (1.1) and (1.2) when u+ ≤ u−−1.
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Theorem 2.3. For the case u+ ≤ u−−1, the Riemann solution of (1.1) and (1.2)
is piecewise smooth in the form

(u, v)(x, t) =


(u−, v−), x < σδt,

(uδ, β(t)δ(x− σδt)), x = σδt,

(u+, v+), x > σδt,

(2.11)

where

σδ = u− + u+, uδ =
1
2

(u− + u+ − 1),

β(t) =
(

(u− − u+)(v− + v+)− (v+ − v−)
)
t.

(2.12)

The measure-valued solution (2.11) should satisfy the generalized Rankine-Hugoniot
conditions

dx

dt
= σδ,

dβ(t)
dt

= σδ[v]− [(2u+ 1)v],

σδ[u] = [u2],

(2.13)

and the over-compressive entropy condition

2u+ + 1 < σδ < 2u−, (2.14)

where [u] = u(x(t)+0, t)−u(x(t)−0, t) denotes the jump of u across the discontinuity
x = x(t), etc.

Proof. Let us check that the measure-valued solution (2.11) with (2.12) should
satisfy the system (1.1) in the sense of distributions. In other words, we need to
check that (2.11) and (2.12) should satisfy∫ ∞

0

∫ ∞
−∞

(
uψt + u2ψx

)
dx dt = 0,∫ ∞

0

∫ ∞
−∞

(vψt + (2u+ 1)vψx) dx dt = 0,
(2.15)

for any ψ ∈ C∞c (R×R+). Without loss of generality, let us assume that σδ > 0 for
the reason that σδ ≤ 0 can be dealt with similarly and the difference only lies in
that the different integral regions are decomposed in the upper-half physical plane
(x, t) ∈ (R×R+).

Let us check the first equation in (2.15). By the third equation in (2.13), we
have ∫ ∞

0

∫ ∞
−∞

(
uψt + u2ψx

)
dx dt

=
∫ ∞

0

∫ σδt

−∞

(
u−ψt + u2

−ψx
)
dx dt+

∫ ∞
0

∫ ∞
σδt

(
u+ψt + u2

+ψx
)
dx dt

=
∫ ∞

0

∫ 0

−∞
u−ψt dx dt+

∫ ∞
0

∫ σδt

0

u−ψt dx dt+
∫ ∞

0

∫ σδt

−∞
u2
−ψx dx dt

+
∫ ∞

0

∫ ∞
σδt

(
u+ψt + u2

+ψx
)
dx dt
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=
∫ ∞

0

∫ ∞
x
σδ

u−ψt dt dx+
∫ ∞

0

∫ σδt

−∞
u2
−ψx dx dt+

∫ ∞
0

∫ x
σδ

0

u+ψt dt dx

+
∫ ∞

0

∫ ∞
σδt

u2
+ψx dx dt

= −
∫ ∞

0

u−ψ(x,
x

σδ
)dx+

∫ ∞
0

u2
−ψ(σδt, t)dt+

∫ ∞
0

u+ψ(x,
x

σδ
)dx

−
∫ ∞

0

u2
+ψ(σδt, t)dt

=
∫ ∞

0

(
σδ(u+ − u−)− (u2

+ − u2
−)
)
ψ(σδt, t)dt = 0,

in which we have used the fact that ψ(x, t) is compactly support in the region
R×R+.

On the other hand, taking into account the second equation in (2.13) and the
relation formula σδ = 2uδ + 1 from (2.12), we also have

∫ ∞
0

∫ ∞
−∞

(vψt + (2u+ 1)vψx) dx dt

=
∫ ∞

0

∫ σδt

−∞
(v−ψt + (2u− + 1)v−ψx) dx dt

+
∫ ∞

0

∫ ∞
σδt

(v+ψt + (2u+ + 1)v+ψx) dx dt

+
∫ ∞

0

β(t)(ψt(σδt, t) + (2uδ + 1)ψx(σδt, t))dt

=
∫ ∞

0

∫ σδt

0

v−ψt dx dt+
∫ ∞

0

∫ σδt

−∞
(2u− + 1)v−ψx dx dt

+
∫ ∞

0

∫ ∞
σδt

v+ψt dx dt+
∫ ∞

0

∫ ∞
σδt

(2u+ + 1)v+ψx dx dt

+
∫ ∞

0

β(t)(ψt(σδt, t) + σδψx(σδt, t))dt

=
∫ ∞

0

∫ ∞
x
σδ

v−ψt dt dx+
∫ ∞

0

∫ σδt

−∞
(2u− + 1)v−ψx dx dt

+
∫ ∞

0

∫ x
σδ

0

v+ψt dt dx+
∫ ∞

0

∫ ∞
σδt

(2u+ + 1)v+ψx dx dt

+
∫ ∞

0

β(t)dψ(σδt, t)

=
∫ ∞

0

(v+ − v−)ψ(x,
x

σδ
)dx+

∫ ∞
0

((2u− + 1)v− − (2u+ + 1)v+)ψ(σδt, t)dt

+
∫ ∞

0

β(t)dψ(σδt, t)

=
∫ ∞

0

(
σδ(v+ − v−) + (2u− + 1)v− − (2u+ + 1)v+ − β′(t)

)
ψ(σδt, t)dt = 0.
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It is easy to check that the measure-valued solution (2.11) with (2.12) can be
derived from the generalized Rankine-Hugoniot conditions (2.13) by a simple calcu-
lation. In order to ensure uniqueness, the δ−entropy condition λ1(ur) < λ2(ur) <
σ < λ1(ul) < λ2(ul) should be satisfied, which leads to the over-compressive entropy
condition (2.14). In other words, all the characteristics on both sides of the δ−shock
wave curve are incoming. Thus, it can be concluded from the above calculations
that (2.11) with (2.12) is indeed the piecewise smooth solution of the Riemann
problem (1.1) and (1.2) in the sense of distributions when u+ ≤ u− − 1. �

Remark 2.4. One can see that the Riemann solutions of (1.1) and (1.2) can be
constructed by a combination of shock waves, rarefaction waves, contact discontinu-
ities and delta shock waves. More precisely, there are exactly three configurations
of the Riemann solutions of (1.1) and (1.2) according to the relation between u−
and u+ as follows: R + J when u+ > u−, S + J when u− − 1 < u+ < u− and δS
when u+ ≤ u− − 1.

3. Interactions of classical waves

To study the perturbed Riemann problem (1.1) and (1.3) is in essence to study
the wave interaction problem for the system (1.1). It is remarkable that the Rie-
mann solution of (1.1) and (1.2) may contain the delta shock wave or not. In order
to cover all the cases completely, our discussion should be divided into two parts
according to the appearance of delta shock wave or not at the initial time. In this
section, we are mainly concerned with the wave interaction problem which does not
involve the delta shock wave at the initial time. Then, we have four possibilities
according to the different combinations of the classical waves from (−ε, 0) and (ε, 0)
as follows: (1) S + J and S + J ; (2) R + J and S + J ; (3) S + J and R + J ;
(4) R+ J and R+ J .
Case 3.1: S + J and S + J . First of all, let us consider the situation that both a
shock wave followed by a contact discontinuity emit from the initial points (−ε, 0)
and (ε, 0) respectively (see Figure 2). The occurrence of this case depends on the
conditions u−−1 < um < u− and u+ < um < u+ + 1, from which we can easily get
u+ < u−. The propagation speed of the first contact discontinuity J1 is τ1 = 2um+1
and that of the second shock wave S2 is σ2 = um + u+. Thus, it is easy to see that
J1 overtakes S2 in finite time. The intersection (x1, t1) is determined by

x1 + ε = (2um + 1)t1,

x1 − ε = (um + u+)t1,
(3.1)

which implies

(x1, t1) =
(ε(3um + u+ + 1)

um − u+ + 1
,

2ε
um − u+ + 1

)
. (3.2)

It can be shown that a new local Riemann problem for the system (1.1) will be
formulated at the intersection (x1, t1) with the initial data

(u, v)(x, t1) =

{
(u1, v1), x < x1,

(u2, v2), x > x1,
(3.3)

where

(u1, v1) =
(
um,−v− ·

um − u− − 1
um − u− + 1

)
, (3.4)
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(u2, v2) =
(
u+,−vm ·

u+ − um − 1
u+ − um + 1

)
. (3.5)

To solve the new Riemann problem (1.1) and (3.3), one can see that a new shock
wave followed by a new contact discontinuity will be generated after the interaction
between J1 and S2. Let us denote them by S3 and J3 respectively. One can see that
the propagation speeds of S3 and J3 are the same as those of S2 and J2 respectively
for the reason that u1 = um and u2 = u+.

Then, S3 and S1 intersect at the point (x2, t2), which can be calculated by

x2 + ε = (u− + um)t2,

x2 − ε = (um + u+)t2.
(3.6)

An easy calculation leads to

(x2, t2) =
(ε(2um + u+ + u−)

u− − u+
,

2ε
u− − u+

)
. (3.7)

As before, a new local Riemann problem for system (1.1) will also be formulated
at the intersection (x2, t2) with the initial data

(u, v)(x, t2) =

{
(u−, v−), x < x2,

(u3, v3), x > x2,
(3.8)

in which

(u3, v3) =
(
u+,−v1 ·

u+ − um − 1
u+ − um + 1

)
. (3.9)

--

66

xx

tt

p
(x1, t1)

(x2, t2) p

p
p
©3

S1

(x3, t3)

J1
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(a) u− − 2 < u+ < u− − 1 (b) u− − 1 < u+ < u−

Figure 2. Interactions between S+J and S+J for two different
situations where both u− − 1 < um < u− and u+ < um < u+ + 1
should be satisfied.

It is easy to get u−−2 < u+ < u− from u−−1 < um < u− and u+ < um < u++1.
In what follows, we can obtain two different situations according to the values u+

and u− − 1, which may be described by using the lemma below.

Lemma 3.1. For the local Riemann problem (1.1) and (3.8), if u− − 2 < u+ <
u−− 1, then a new delta shock wave will be generated; otherwise, if u−− 1 < u+ <
u−, then there is also a new shock wave followed by a new contact discontinuity.
Finally, the global solutions of the perturbed Riemann problem (1.1) and (3.1) can
be illustrated in Figure 2, in which both u− − 1 < um < u− and u+ < um < u+ + 1
should be satisfied.
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Proof. If u− − 2 < u+ < u− − 1, then a delta shock wave δS is generated after
the coalescence of S1 and S3 at the point (x2, t2) (see Figure 2(a)), whose propa-
gation speed and strength can be calculated by the generalized Rankine-Hugoniot
conditions (2.13). Thus, one can easily get that the propagation speed of δS is
σδ = u−+u+. Consequently, the delta shock wave δS propagates with an invariant
speed u− + u+ for the reason that u3 = u2 = u+. On the other hand, the strength
changes at the different growth rates due to the differences among v3, v2 and v+.

In what follows, the delta shock wave δS intersects J3 and consequently J2 in
finite time. The intersection (x3, t3) of δS and J3 can be calculated by

x3 − x2 = (u− + u+)(t3 − t2),

x3 − x1 = (2u+ + 1)(t3 − t1),
(3.10)

which implies

x3 =
ε(u+ + u− − 2um)(u+ + u−)

(u− − u+)(u− − u+ − 1)
+
ε(3um − 3u+ − 1)(u+ + u−)
(um − u+ + 1)(u− − u+ − 1)

+
ε(2um − u+ − u−)

u− − u+
,

t3 =
ε(u− + u+ − 2um)

(u− − u+)(u− − u+ − 1)
+

ε(3um − 3u+ − 1)
(um − u+ + 1)(u− − u+ − 1)

.

(3.11)

After δS passes through (x3, t3), it still propagates with the invariant speed u−+u+

and overtakes J2 at the intersection (x4, t4), which is determined by

x4 − x2 = (u− + u+)(t4 − t2),

x4 − ε = (2u+ + 1)t4,
(3.12)

such that we have

(x4, t4) =
( 2ε(2u+ + 1)(u− − um)

(u− − u+)(u− − u+ − 1)
+ ε,

2ε(u− − um)
(u− − u+)(u− − u+ − 1)

)
. (3.13)

After the time t4, the delta shock wave passes through J2 and moves forwards with
the same speed as before.

Thus, the strength of delta shock wave δS can be calculated respectively by

β(t) =
(

(u− − u+)(v− + v3)− (v3 − v−)
)

(t− t2), for t2 ≤ t ≤ t3, (3.14)

β(t) = β(t3) +
(

(u− − u+)(v− + v2)− (v2 − v−)
)

(t− t3), for t3 < t ≤ t4,
(3.15)

β(t) = β(t4) +
(

(u− − u+)(v− + v+)− (v+ − v−)
)

(t− t4), for t > t4. (3.16)

Otherwise, if u−−1 < u+ < u−, then a new shock wave (denotes by S4) followed
by a new contact discontinuity (denotes by J4) appears after the time t2 (see Figure
2(b)). The propagation speed of S4 is σ4 = u− + u+, which leads to σ3 < σ4 < σ1

for u+ < um < u−. The propagation speed of J4 is still 2u+ + 1, which is equal
to those of J3 and J2. It is clear that the intermediate state between S4 and J4 is
given by

(u4, v4) =
(
u+,−v− ·

u+ − u− − 1
u+ − u− + 1

)
. (3.17)
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Thus, the global solutions of the perturbed Riemann problem (1.1) and (1.3)
can be illustrated by Figure 2(a) for u− − 2 < u+ < u− − 1 and Figure 2(b) for
u− − 1 < u+ < u−, respectively. The proof is complete. �

Case 3.2: R + J and S + J . In this case, we investigate the interaction between
a rarefaction wave followed by a contact discontinuity starting from (−ε, 0) and
a shock wave followed by a contact discontinuity starting from (ε, 0) (see Figure
3). This case happens if and only if u− < um and u+ < um < u+ + 1, such that
we have u− − 1 < u+. The propagation speed of the contact discontinuity J1 is
τ1 = 2um + 1 and that of the shock wave S1 is σ1 = um + u+. Thus, it is easy to
see that J1 and S1 intersect in finite time. The intersection (x1, t1) is also given by
(3.2) which is the same as that of Case3.1.

Analogously, the new local Riemann problem will also be formulated at (x1, t1),
which also gives rise to a new shock wave S2 and a new contact discontinuity J3

after the time t1. For the propagation speed of the shock wave S2 is σ2 = um + u+

and that of the wave front in the rarefaction wave R is 2um, S2 and R will meet
whose first intersection (x2, t2) is determined by

x2 + ε = 2umt2,

x2 − ε = (um + u+)t2,
(3.18)

which means that

(x2, t2) =
(ε(3um + u+)

um − u+
,

2ε
um − u+

)
. (3.19)

The shock wave begins to enter the rarefaction wave fan after the interaction
of S2 and R happens. At the same time, the new shock wave S3 and contact
discontinuity J4 are generated and propagate forwards. Here we use Γ : x = x(t)
to express the curve of S3 who has the changing state variables (u4, v4) on the
left-hand side and (u5, v5) on the right-hand side. It follows from (2.1) that

v4 · e2u4 = v− · e2u− ,

x+ ε = 2u4t,
(3.20)

which enables us to have

(u4, v4) =
(x+ ε

2t
, v− exp

(
2u− −

x+ ε

t

))
. (3.21)

On the other hand, we always have u5 = u3 = u+ for all the characteristic lines in
the rarefaction wave become the contact discontinuities when across the shock wave
S3. In addition, if the matched state (u5, v5) can be connected to the corresponding
one (u4, v4) by a shock wave, then they should satisfy

v5

v4
=
u4 − u5 + 1
u5 − u4 + 1

. (3.22)

Through a tedious and detailed calculation, one obtains

(u5, v5) =
(
u+, v− ·

x+ ε− 2t(u+ − 1)
2t(u+ + 1)− x− ε

· exp
(

2u− −
x+ ε

t

))
. (3.23)

Thus, the curve of S3 is determined by

σ3(t) =
dx

dt
= u+ +

x+ ε

2t
, (3.24)
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in which the initial condition x(t2) = x2 is given by (3.19), whose unique solution
may be written as

x(t) = 2u+t+ 2
√

2εt(um − u+)− ε, t ≥ t2. (3.25)

It follows from (3.24) and (3.25) that

d2x

dt2
= −1

2

√
2ε(um − u+)

t3
< 0, (3.26)

which means that S3 begins to decelerate and is not a straight line any more after
the time t2.

Taking into account the comparison of values between u− and u+, let us also
use the following lemma to explain that if S3 is able to cancel the rarefaction wave
R completely or not.
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Figure 3. Interaction between R+J and S+J for two situations
where both u− < um and u+ < um < u+ + 1 should be satisfied.

Lemma 3.2. If u−−1 < u+ < u−, then the shock wave S3 has the ability to cancel
the whole rarefaction wave R completely in finite time. Otherwise, if u+ > u−, then
the shock wave S3 has no ability to penetrate the rarefaction wave R completely in
finite time and finally takes the line x+ ε = 2u+t as its asymptote.

Proof. If u−−1 < u+ < u−, then the shock wave S3 is continuous to penetrate the
rarefaction wave R and is able to cancel the whole rarefaction wave R completely in
finite time (see Figure 3(a)). During the process of penetration, the local Riemann
problem will be formulated on every point of the shock curve S3 and new contact
discontinuities will be continuously produced along with the shock curve S3. This is
due to the fact that the shock curve S3 has the varying left state (u4, v4) supported
on each characteristic line in the rarefaction wave fan R which should be connected
with the matched right state (u5, v5) exactly by a shock wave followed by a contact
discontinuity. It is clear to see that all the contact discontinuities have the same
propagation speed 2u+ + 1, thus they are parallel to each other. Finally, S3 will
meet the wave back in the rarefaction wave R at the intersection (x3, t3), which can
be calculated by

x3 + ε = 2u−t3,

x3 = 2u+t3 + 2
√

2εt3(um − u+)− ε.
(3.27)
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Thus, we have

(x3, t3) =
(4εu−(um − u+)

(u− − u+)2
− ε, 2ε(um − u+)

(u− − u+)2

)
. (3.28)

After the time t3, the shock wave is denoted with S4 whose propagation speed
is σ4 = u−+u+. The state (u6, v6) between S4 and J5 has the same representation
as that in (3.17). Consequently, a new shock wave S4 followed by a contact discon-
tinuity J5 will be generated after the time t3, in which the propagation speeds of
S4 and J5 are σ4 = u− + u+ and τ5 = 2u+ + 1 respectively.

Otherwise, if u+ > u−, then the shock wave S3 is continuous to penetrate the
rarefaction wave R but unable to cancel the whole R completely in finite time (see
Figure 3(b)). During the process of penetration, it can be derived from (3.24) and
(3.25) that

σ3(t) =
dx

dt
= 2u+ +

√
2ε(um − u+)

t
. (3.29)

Thus, it is shown that σ3(t)→ 2u+ as t→∞ for given ε > 0. Thus, when u+ > u−,
the shock wave S3 has the characteristic line x(t) = 2u+t−ε in the rarefaction wave
fan R as its asymptote in the end. �

Case 3.3: S+J and R+J . Let us consider the situation that the shock wave S1

plus the contact discontinuity J1 emanates from (−ε, o) and the rarefaction wave R1

plus another contact discontinuity J2 emits from (ε, 0) (see Fig.4). The occurrence
of this case depends on the conditions u− − 1 < um < u− and um < u+, which
implies that u− − 1 < u+. The propagation speed of J1 is τ1 = 2um + 1 and that
of the wave back in the rarefaction wave R1 is 2um. Thus, it is easy to see that J1

and R1 meet at a time. The intersection (x1, t1) is determined by

x1 + ε = (2um + 1)t1,
x1 − ε = 2umt1,

(3.30)

which implies

(x1, t1) =
(
ε(4um + 1), 2ε

)
. (3.31)

The contact discontinuity J1 begins to enter the rarefaction wave fan after the
interaction between J1 and R1 occurs. It can be derived directly from (2.1) that
the state variable (u2, v2) in R1 can be determined by

vm · e2um = v2 · e2u2 ,

x− ε = 2u2t,
(3.32)

which implies

(u2, v2) =
(x− ε

2t
, vm exp

(
2um −

x− ε
t

))
. (3.33)

It is remarkable that the values of u on the both sides of the contact discontinuity
should be equal. In other words, the rarefaction wave cannot change its direction
when across J1. Thus, the state variable (u3, v3) in R2 can also be determined by

v1 · e2u1 = v3 · e2u3 ,

x− ε = 2u3t,
(3.34)

such that
(u3, v3) =

(x− ε
2t

, v1 exp
(

2u1 −
x− ε
t

))
, (3.35)
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in which (u1, v1) is given by (3.4). Therefore, the contact discontinuity J1 crosses
the rarefaction wave R1 with a varying propagation speed, which is determined by

dx

dt
= 2u2 + 1,

x− ε = 2u2t,
(3.36)

together with the initial condition x1 = x(t1) given by (3.31), which enables us to
obtain

x(t) = t ln
t

2ε
+ 2umt+ ε. (3.37)

It follows from (3.36) and (3.37) that

d2x

dt2
=

1
t
> 0, (3.38)

which means that J3 begins to accelerate and is not a straight line any more after
the interaction between J1 and R1.

Furthermore, it is shown that the contact discontinuity J1 has the ability to
penetrate the entire rarefaction wave R1 fully in finite time and the terminal point
(x2, t2) can be calculated by

x2 = t2 ln
t2
2ε

+ 2umt2 + ε,

x2 − ε = 2u+t2,
(3.39)

which implies

(x2, t2) =
(

4εu+ exp(2u+ − 2um) + ε, 2ε exp(2u+ − 2um)
)
. (3.40)

After the time t2, the contact discontinuity is denoted with J3. The state between
J2 and J3 is given by

(u4, v4) = (u+, vm exp(2um − 2u+)). (3.41)

The contact discontinuity J3 is parallel to J2 for the reason that u4 = u+. Similarly,
the state (u5, v5) between R2 and J3 can be calculated by

(u5, v5) = (u+, v1 exp(2u1 − 2u+)). (3.42)

Now, let us consider the interaction between S1 and R2. The propagation speed
of S1 is σ1 = u− + um and that of the wave back in the rarefaction wave R2 is still
equal to 2um. Thus, it is easy to see that S1 catches up with R2 in finite time and
the interaction (x3, t3) can be calculated by

x3 − ε = 2umt3,

x3 + ε = (u− + um)t3,
(3.43)

which implies

(x3, t3) =
(ε(3um + u−)

u− − um
,

2ε
u− − um

)
. (3.44)

After the time t3, the shock wave enters the region of the rarefaction wave fan
R2 and is denoted with S2 during the process of penetration. It is noticed that the
state on the right-hand side of the shock wave S2 is (u3, v3), in which u3 varies from
um to u+ for u1 = um and u5 = u+. To study the problem that the shock wave
S2 penetrates the rarefaction wave R2 is essential to study infinitely many local
Riemann problems. There is still a shock wave followed by a contact discontinuity
for a local Riemann problem provided that u− − 1 < u3 < u−. Thus, there are
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infinitely many contact discontinuities generated during the process of penetration.
As before, the value u3 does not change when these contact discontinuities pass
through the rarefaction wave R2. Therefore, the curve of the shock wave S2 can be
determined by

dx

dt
= u− + u3,

x− ε = 2u3t,
(3.45)

and the initial condition x3 = x(t3) is given by (3.44), which has a unique solution

x(t) = 2u−t− 2
√

2εt(u− − um) + ε. (3.46)

It follows from (3.45) and (3.46) that

d2x

dt2
=

1
2

√
2ε(u− − um)

t3
> 0, (3.47)

which means that S2 also accelerates during the process of penetration.
As in Lemma 3.2, according to the values u+ and u− − 1, let us also use the

following lemma to explain that if S2 is able to cancel the rarefaction wave R2

completely or not.
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Lemma 3.3. If u− − 1 < u+ < u−, then the shock wave S2 has the ability to
cancel the whole rarefaction wave R2 completely in finite time and a new shock
wave followed by a new contact discontinuity will be generated at last. Otherwise, if
u+ > u−, then the shock wave S2 is unable to pass through the whole R2 completely
and finally takes the line x− ε = 2u−t as its asymptote.

Proof. If u−− 1 < u+ < u−, then the shock wave S2 is able to penetrate the whole
R2 fully at (x4, t4) (see Figure 4(a)), which can be calculated by

x4 − ε = 2u+t4,

x4 = 2u−t4 − 2
√

2εt4(u− − um) + ε,
(3.48)

namely

(x4, t4) =
(4εu+(u− − um)

(u− − u+)2
+ ε,

2ε(u− − um)
(u− − u+)2

)
. (3.49)
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After the time t4, we denote the shock wave by S3 whose propagation speed is
σ3 = u−+u+. Obviously, a new contact discontinuity J4 will be produced with the
speed τ4 = 2u+ + 1. In addition, the state (u6, v6) between S3 and J4 is given by

(u6, v6) =
(
u+,−v− ·

u+ − u− − 1
u+ − u− + 1

)
. (3.50)

Otherwise, if u+ > u−, then the shock wave S2 is unable to cancel the whole R2

completely in finite time and ultimately has x(t) = 2u−t+ ε as its asymptote (see
Figure 4(b)). �

Case 3.4: R+J and R+J . In this case, we are concerned with the situation that
both a rarefaction wave followed by a contact discontinuity start from the initial
points (−ε, 0) and (ε, 0) respectively. The occurrence of this case depends on the
condition u− < um < u+. For this case, we need only to consider the situation
that a contact discontinuity penetrates a rarefaction wave, which can be dealt with
similarly to that for Case 3.3. The details are omitted here.

4. Interactions of delta shock waves with classical waves

It is known that the delta shock wave occurs in the Riemann solution of (1.1)
and (1.2) for some specific Riemann initial data. It is interesting to investigate
the interactions between the delta shock wave with the other elementary waves,
including shock wave, rarefaction wave and contact discontinuity. As before, we
continue to study the perturbed Riemann problem (1.1) and (1.3) but we need
to require that at least one delta shock wave generates at (−ε, 0) or (ε, 0). More
precisely, we need to consider five possibilities when the delta shock wave is involved
at the initial time, according to the different combinations from (−ε, 0) and (ε, 0)
as follows: (1) δS and S + J ; (2) S + J and δS; (3) δS and δS; (4) δS and
R+ J ; (5) R+ J and δS.

In addition, it should be emphasized that the interactions between the delta
shock wave with the other elementary waves for the system (1.4) have been consid-
ered in [17] by using the method of split delta function. In order for completeness
and self-contained, we utilize a somewhat different technique from that in [17] to
study the perturbed Riemann problem (1.1) and (1.3) when the delta shock wave
is involved at the initial moment. In addition, the systems (1.1) and (1.4) are de-
rived from very different physical models and used to describe different physical
phenomena. Let us see [8, 25] for the detailed comparison and contrast between
the two systems.
Case 4.1: δS and S + J . For this case, we draw our attention on the interaction
between a delta shock wave starting from (−ε, 0) and a shock wave followed by a
contact discontinuity starting from (ε, 0) (see Figure 5(a)). This requires that both
um ≤ u− − 1 and um − 1 < u+ < um should be satisfied. The propagation speed
of the delta shock wave δS1 is σδ1 = u− + um and that of the shock wave S is
σ = um + u+. Thus, δS1 overtakes S in finite time whose intersection is given by

(x1, t1) =
(ε(u− + 2um + u+)

u− − u+
,

2ε
u− − u+

)
. (4.1)

In addition, the strength of delta shock wave before the time t1 can be calculated
by

β(t) =
(

(u− − um)(v− + vm)− (vm − v−)
)
t for 0 ≤ t ≤ t1. (4.2)
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Then, the generalized Riemann problem for the system (1.1) with the delta type
initial data is formulated at (x1, t1), in which the initial data are expressed as

u|t=t1 =

{
u−, x < x1,

u1, x > x1,
v|t=t1 = β(t1)δ(x1,t1) +

{
v−, x < x1

v1, x > x1,
(4.3)

where (u1, v1) = (u+,−vm · u+−um−1
u+−um+1 ) can be calculated by the same formula as in

(3.5).
For u1 = u+ < um ≤ u−− 1, a new delta shock wave δS2 will be generated after

the interaction between δS1 and S. The curve of δS2 is determined by the equation

σδ2 =
dx

dt
= u− + u1 = u− + u+ (4.4)

and the initial condition x(t1) = x1 given by (4.1), which enables us to get the
unique exact solution

x(t) = (u− + u+)
(
t− 2ε

u− − u+

)
+
ε(u− + 2um + u+)

u− − u+
for t ≥ t1. (4.5)

The propagation speed of δS2 is σδ2 = u−+u+ and that of the contact discontinuity
J is τ = 2u+ + 1. Thus, it is easy to see that δS2 intersects J at a time. The
intersection (x2, t2) is determined by

x2 − x1 = (u− + u+)(t2 − t1),

x2 − ε = (2u+ + 1)t2,
(4.6)

which means

(x2, t2) =
( 2ε(2u+ + 1)(u− − um)

(u− − u+)(u− − u+ − 1)
+ ε,

2ε(u− − um)
(u− − u+)(u− − u+ − 1)

)
. (4.7)

In addition, the strength of delta shock wave between t1 and t2 can also be calcu-
lated by

β(t) = β(t1) +
(

(u− − u+)(v− + v1)− (v1 − v−)
)

(t− t1) for t1 < t ≤ t2. (4.8)

After the time t2, the delta shock wave passes through J with the same propa-
gation speed as before, but is at the different growth rates for the strength of delta
shock wave. This is due to the fact that the propagation speed of delta shock wave
is calculated by σδ = ul + ur which is controlled completely by the state variable
u, where ul stands for the state on the left-hand side of delta shock curve and ur
expresses the state on the right-hand side of delta shock curve. Taking into account
u1 = u+, we always have the states ul = u− and ur = u+ on two sides of delta
shock curve such that the propagation speed of delta shock wave keeps u− + u+

invariant after the time t1. On the other hand, the strength of delta shock wave
depends on both the state variables u and v. Thus, the growth rate of delta shock
wave also changes when across J for the reason that the state variable v changes
from v1 to v+. After the time t2, the strength of delta shock wave can be calculated
by

β(t) = β(t2) +
(

(u− − u+)(v− + v+)− (v+ − v−)
)

(t− t2) for t > t2. (4.9)

Case 4.2: S + J and δS. In this case, we are concerned with the situation that
a shock wave followed by a contact discontinuity starts from (−ε, 0) and a delta
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shock wave emits from (ε, 0). This case arises when both u− − 1 < um < u− and
u+ ≤ um− 1 occur. This situation can be dealt with similarly to that for Case 4.1.
Let us draw Figure 5(b) to illustrate this situation for comparison and then give
the detailed explanations for Figure 5(b) below. The propagation speeds of J and
δS1 are given by τ = 2um + 1 and σδ1 = um + u+ respectively, such that they will
meet at the intersection given by

(x1, t1) =
(ε(3um + 1 + u+)

um + 1− u+
,

2ε
um + 1− u+

)
. (4.10)

--
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.

The state (u1, v1) between S and J can be calculated by the same formula as
in (3.4). For u1 = um, the delta shock wave δS1 cannot change its direction when
across J . Thus, the intersection of S and δS1 can be calculated by

x2 + ε = (u− + um)t2,

x2 − ε = (um + u+)t2,
(4.11)

in which u− + um is the propagation speed of S, such that we have

(x2, t2) =
(ε(u− + 2um + u+)

u− − u+
,

2ε
u− − u+

)
. (4.12)

Consequently, the generalized Riemann problem for the system (1.1) with the delta
type initial data is also formulated at (x2, t2), in which the initial data are expressed
as

u|t=t2 =

{
u−, x < x2,

u+, x > x2,
v|t=t2 = β(t2)δ(x2,t2) +

{
v−, x < x2

v+, x > x2.
(4.13)

We can obtain u+ < u− − 1 from um < u− and u+ ≤ um − 1, thus the interaction
between S and δS1 generates a new delta shock wave denoted with δS2 in Figure
5(b).

In addition, the strength of delta shock wave can be calculated respectively by

β(t) =
(

(um − u+)(vm + v+)− (v+ − vm)
)
t for 0 ≤ t ≤ t1, (4.14)
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β(t) = β(t1) +
(

(um − u+)(v1 + v+)− (v+ − v1)
)

(t− t1) for t1 < t ≤ t2, (4.15)

β(t) = β(t2) +
(

(u− − u+)(v− + v+)− (v+ − v−)
)

(t− t2) for t > t2, (4.16)

in which v1 = −v− · um−u−−1
um−u−+1 is given by (3.4).

Case 4.3: δS and δS. In this case, we consider the interaction of two delta shock
waves starting from (−ε, 0) and (ε, 0) respectively. This case happens if and only
if um ≤ u− − 1 and u+ ≤ um − 1. Let us use δS1 and δS2 to denote the delta
shock waves originating from the initial points (−ε, 0) and (ε, 0) respectively. The
propagation speed of δS1 is u− + um and that of δS2 is um + u+, and thus they
will meet in finite time and the intersection of δS1 and δS2 can also be calculated
by the formula (4.12). Before the time t1 = 2ε

u−−u+
, the strengths of δS1 and δS2

can be calculated respectively by

β1(t) =
(

(u− − um)(v− + vm)− (vm − v−)
)
t, (4.17)

β2(t) =
(

(um − u+)(vm + v+)− (v+ − vm)
)
t. (4.18)

At the point (x1, t1), the delta-type initial data can also be formulated as

u|t=t1 =

{
u−, x < x1,

u+, x > x1,
v|t=t1 = β(t1)δ(x1,t1) +

{
v−, x < x1

v+, x > x1,
(4.19)

in which the strength β(t1) = β1(t1) +β2(t1) is the sum of the strengths of δS1 and
δS2 at the point (x1, t1) and thus can be calculated by

β(t1) =
2ε

u− − u+
·
(

(u−−um)(v−+vm)+(um−u+)(vm+v+)−(v+−v−)
)
. (4.20)

It can be obtained that u+ ≤ u− − 2, thus the wave interaction has a relatively
simpler structure for this case, namely two delta shock waves coalesce into one delta
shock wave when they meet. Let us use δS3 to denote the new delta shock wave
whose strength can be calculated by

β(t) = β(t1) +
(

(u− − u+)(v− + v+)− (v+ − v−)
)

(t− t1) for t > t1, (4.21)

in which t1 = 2ε
u−−u+

and β(t1) is given by (4.20).

Case 4.4: δS and R + J . In this case, let us investigate the interaction between
a delta shock wave δS1 emanating from (−ε, 0) and a rarefaction wave R1 followed
by a contact discontinuity J1 starting from (ε, 0) (see Fig.6). This is possible to
happen if and only if both um ≤ u−−1 and um < u+ hold. The propagation speed
of the delta shock wave δS1 is σδ1 = u− + um and the wave back in the rarefaction
wave propagates with the speed 2um. Thus, δS1 and R intersect at the point

(x1, t1) =
(ε(3um + u−)

u− − um
,

2ε
u− − um

)
, (4.22)

and the strength of delta shock wave at (x1, t1) is given by

β(t1) =
(

(u− − um)(v− + vm)− (vm − v−)
)
t1. (4.23)
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After the time t1, the delta shock wave enters the rarefaction wave fan R1 where
it is denoted with δS2, whose expression can be calculated by

σδ2(t) =
dx

dt
= u− +

x− ε
2t

, (4.24)

where the initial condition x(t1) = x1 is given by (4.22), which has a unique solution

x(t) = 2u−t− 2
√

2εt(u− − um) + ε, for t ≥ t1. (4.25)

Thus, we have d2x
dt2 > 0, namely δS2 begins to accelerate when it enters the rarefac-

tion wave fan R1. As before, it is easy to get that the state (u1, v1) in R1 and the
state (u2, v2) between R1 and J1 are given respectively by

(u1, v1) =
(x− ε

2t
, vm exp(2um −

x− ε
t

)
)
, (4.26)

(u2, v2) =
(
u+, vm exp(2um − 2u+)

)
. (4.27)

In view of the different relations among the values u+, u− and u− − 1, the
discussions should be divided into three different cases which can be fully depicted
in the following lemma.
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Figure 6. Interactions between δS and R + J for two different
situations where both um ≤ u− − 1 and um < u+ should be satis-
fied.

Lemma 4.1. If u+ < u−− 1, then the delta shock wave is able to cancel the whole
rarefaction wave R1 completely in finite time. Otherwise, if u− − 1 < u+, then the
delta shock wave is unable to cancel the whole R1 completely in finite time and is
divided into a shock wave and a delta contact discontinuity when it passes through
the characteristic line with the state satisfying u1 = u− − 1.

Proof. If u+ < u− − 1, then δS2 is able to cancel the whole R1 at (x2, t2) which
can be calculated by

x2 − ε = 2u+t2,

x2 = 2u−t3 − 2
√

2εt2(u− − um) + ε,
(4.28)

namely,

(x2, t2) =
(4εu+(u− − um)

(u− − u+)2
+ ε,

2ε(u− − um)
(u− − u+)2

)
. (4.29)
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The strength of δS2 during the process of penetration can be calculated by

β(t) = β(t1) +
(

(u− − u1)(v− + v1)− (v1 − v−)
)

(t− t1), for t1 < t ≤ t2, (4.30)

in which t1, β(t1) and (u1, v1) are given by (4.22), (4.23) and (4.26) respectively.
After the time t2, the situation is similar to that for Case 4.1. In other words,
the delta shock wave δS3 propagates with the invariant speed u− + u+, only the
strength of δS3 adds up at the different rates when it passes through J1.

Otherwise, if u− − 1 < u+, then the delta shock wave is unable to cross the
entire R1 in finite time and should be decomposed into a shock wave S and a
delta contact discontinuity δJ when it passes through the characteristic line with
u1 = u− − 1 in the rarefaction wave fan R1. This is due to the fact that the
inequality u−1 < u+ cannot always hold for the varying states (u, v) supported on
the characteristic lines in the rarefaction wave fan R1. More precisely, the critical
point for the decomposition of δS2 into S and δJ can be calculated by

x2 − ε = 2(u− − 1)t2,

x2 = 2u−t2 − 2
√

2εt2(u− − um) + ε,
(4.31)

which enables us to have

(x2, t2) =
(

4ε(u− − um)(u− − 1) + ε, 2ε(u− − um)
)
. (4.32)

The curve of the delta contact discontinuity δJ can be calculated as

τδ(t) =
dx

dt
=
x− ε
t

+ 1, (4.33)

in which the initial condition x(t2) = x2 is given by (4.32). Analogously, the
expression of δJ can be given in the form

x(t) = t
(

ln t− ln(2ε(u− − um)) + 2u− − 2
)

+ ε, t ≥ t2. (4.34)

As in Case 3.3, the delta contact discontinuity δJ is able to penetrate the whole
R1 in finite time and finally propagates forwards with the invariant speed 2u+ + 1.

Let us turn our attention on the shock wave S. Actually, the shock wave S is the
continuation of the delta shock wave δS2. Thus, the curve of the shock wave S can
also be expressed by (4.25). Consequently, the shock wave S continues to penetrate
the rarefaction wave R2 and the situation is similar to that for Case 3.3. For the
reason that the propagation speed of S depends entirely on the state variable u
on both sides of the shock curve, in which the left-hand state variable u is always
u− and the right-hand state variable u supported on each characteristic line in the
rarefaction wave fan remains unchanged when the characteristic line passes through
δJ and J . That is to say, we need also consider two subcases u− − 1 < u+ < u−
and u+ > u−, which can be illustrated by Lemma 3.3. �

Case 4.5: R+J and δS. In the end, we study the situation when the rarefaction
wave R followed by the contact discontinuity J1 starts from (−ε, 0) and the delta
shock wave δS1 starts from (ε, 0) (see Fig.7). This case arises when both u− < um
and u+ ≤ um − 1 happen. The propagation speeds of J1 and δS1 are τ1 = 2um + 1
and σδ1 = um + u+, respectively. Thus, δS1 and J1 meet in finite time whose
intersection is

(x1, t1) =
(ε(3um + u+ + 1)

um − u+ + 1
,

2ε
um − u+ + 1

)
. (4.35)
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The strength of δS1 at (x1, t1) is

β(t1) =
(

(um − u+)(vm + v+)− (v+ − vm)
)
t1. (4.36)

After the time t1, the delta shock wave δS1 passes through J1 with the same
speed as before and consequently enters the rarefaction wave R from the point
(x2, t2) which can be obtained as

(x2, t2) =
(ε(3um + u+)

um − u+
,

2ε
um − u+

)
. (4.37)

The strength of δS1 at (x2, t2) can be calculated as

β(t2) = β(t1) +
(

(u1 − u+)(v1 + v+)− (v+ − v1)
)

(t2 − t1), (4.38)

in which
(u1, v1) =

(
um, v− exp(2u− − 2um)

)
. (4.39)

After the time t2, the delta shock wave enters the rarefaction wave fan R where
it is denoted with δS2. As before, the curve of δS2 is determined by

σδ2(t) =
dx

dt
= u+ +

x+ ε

2t
, (4.40)

in which the initial condition x(t2) = x2 is given by (4.37). It is easy to obtain a
unique solution

x(t) = 2u+t+ 2
√

2εt(um − u+)− ε, t ≥ t2. (4.41)

It follows from (4.40) and (4.41) that d2x
dt2 < 0, which means that δS2 begins to

decelerate and is not a straight line any more.
The state (u2, v2) in the rarefaction wave R can be obtained as

(u2, v2) =
(x+ ε

2t
, vm exp

(
2u− −

x+ ε

t

))
. (4.42)

As in Lemma 4.1, one can see that if u− > u+ +1, then the delta shock wave is able
to cancel the whole rarefaction wave R completely in finite time and consequently
propagates with the invariant speed u− + u+. Otherwise, if u− < u+ + 1, then the
delta shock wave cannot cross the whole rarefaction wave R completely in finite
time and may be also divided into a shock wave and a delta contact discontinuity
when it passes through the characteristic line with the state satisfying u2 = u+ + 1
in the rarefaction wave fan R.

Analogously, the critical point for the decomposition of δS2 into S and δJ can
be calculated by

x3 + ε = 2(u+ + 1)t3,

x3 = 2u+t3 + 2
√

2εt3(um − u+)− ε,
(4.43)

which enables us to obtain

(x3, t3) =
(

4ε(um − u+)(u+ + 1)− ε, 2ε(um − u+)
)
. (4.44)

Consequently, the curve of δJ can be expressed as

x(t) = (2u+ + 1)(t− 2ε(um − u+)) + 4ε(um − u+)(u+ + 1)− ε. (4.45)

On the other hand, the shock wave S is still the continuation of the delta shock
wave δS2 and can be expressed by (4.41). Consequently, the shock wave S continues
to penetrate the rarefaction wave R. If u+ < u− < u+ + 1, then the shock wave S
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Figure 7. Interactions between R + J and δS for two different
situations where both u− < um and u+ ≤ um − 1 should be satis-
fied.

is able to penetrate the whole R completely in finite time. Otherwise, if u− < u+,
then the shock wave S cannot penetrate R completely in finite time and finally has
the line x+ ε = 2u+t as its asymptote.

5. Discussions and conclusions

So far, the wave interaction problems for the system (1.1) have been investigated
in detail. The global solutions of the perturbed Riemann problem (1.1) and (1.3)
are constructed fully for all the situations. Now, we are in a position to consider
whether the limits of the solutions of the perturbed Riemann problem (1.1) and
(1.3) are the corresponding ones of the Riemann problem (1.1) and (1.2) or not as
ε→ 0. Let us take Case 4.4 as an example to explain our problem in detail.

With um ≤ u− − 1 and um < u+ in mind for Case 4.4, we first consider the
situation that u+ ≤ u− − 1. It is easy to see that all the points (−ε, 0), (ε, 0),
(x1, t1), (x2, t2) and (x3, t3) tend to the origin (0, 0) and coincide with each other,
such that there is only a delta shock wave with the propagation speed u− + u+ in
the limit situation. If u− − 1 < u+ < u−, then the shock wave is able to cancel
the whole rarefaction wave completely. It can be seen from (4.23) and (4.30) that
β(t2) tends to zero for the reason that t2 tends to zero as ε→ 0, which implies that
the delta shock wave disappears and the delta contact discontinuity becomes the
contact discontinuity in the limit situation. Furthermore, we can see that all the
contact discontinuities coincide with each other in the limit situation for they have
the same propagation speed and start from the origin (0, 0). Thus, there is still
S+J for u−−1 < u+ < u− in the limit situation. Otherwise, if u+ > u−, then the
limit situation is similar and the difference only lies in that the shock wave is unable
to cancel the rarefaction wave completely. Thus, there is R+ J for u+ > u− in the
limit situation. Gathering the above results together, we can see that the limits of
the solutions of the perturbed Riemann problem (1.1) and (1.3) are identical with
the corresponding ones of the Riemann problem (1.1) and (1.2) as ε → 0 for Case
4.4.

The above method can also be generalized to the other cases and one can discover
that the large-time asymptotic solutions of the perturbed Riemann problem (1.1)
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and (1.3) indeed coincide with the corresponding ones of the Riemann problem (1.1)
and (1.2). That is to say, the large-time asymptotic solutions of the perturbed
Riemann problem (1.1) and (1.3) is the delta shock wave for u+ ≤ u− − 1, the
shock wave followed by the contact discontinuity for u− − 1 < u+ < u− and the
rarefaction wave followed by the contact discontinuity for u+ > u−. Let us call
that the solutions of the Riemann problem (1.1) and (1.2) are stable with respect
to the specific small perturbations (1.3) of the Riemann initial data (1.2) provided
that the solutions of the perturbed Riemann problem (1.1) and (1.3) converge to
the ones of the corresponding Riemann problem (1.1) and (1.2) as ε → 0 in the
sense of distributions in all kinds of situations. In a word, we can summarize our
results in the following theorem.

Theorem 5.1. The limits of the solutions to the perturbed Riemann problem (1.1)
and (1.3) are identical with the corresponding ones to the Riemann problem (1.1)
and (1.2) as ε → 0 for all kinds of situations. Thus, the conclusion can be drawn
that the solutions to the Riemann problem (1.1) and (1.2) are stable with respect to
such a local small perturbation (1.3) of the Riemann initial data (1.2).
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