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A NEW APPROACH FOR SOLVING NONLINEAR
THOMAS-FERMI EQUATION BASED ON FRACTIONAL ORDER

OF RATIONAL BESSEL FUNCTIONS

KOUROSH PARAND, AMIN GHADERI, HOSSEIN YOUSEFI, MEHDI DELKHOSH

Abstract. In this article, we introduce a fractional order of rational Bessel

functions collocation method (FRBC) for solving the Thomas-Fermi equation.

The problem is defined in the semi-infinite domain and has a singularity at
x = 0 and its boundary condition occurs at infinity. We solve the problem on

the semi-infinite domain without any domain truncation or transformation of

the domain of the problem to a finite domain. This approach at first, obtains a
sequence of linear differential equations by using the quasilinearization method

(QLM), then at each iteration the equation is solves by FRBC method. To
illustrate the reliability of this work, we compare the numerical results of the

present method with some well-known results, to show that the new method

is accurate, efficient and applicable.

1. Introduction

Many problems in mathematics, fluid dynamics, quantum mechanics, astro-
physics, physics, and engineering are arisen on the infinite or semi-infinite domains.
In this section, we have expressed some of the approaches for solving problems which
are defined in unbounded domains and a brief history of Thomas-Fermi equation
that is defined on the semi-infinite domain.

1.1. Solving problems over unbounded domains. Recently, various approaches
have been successfully proposed for solving problems which are arisen on unbounded
domains. Such as numerical, analytical and semi-analytical methods.

Different numerical methods have been introduced to the problems which is
defined in the semi-infinite domain, such as the Finite difference method (FDM)
[56, 14], Finite element method (FEM) [14, 17], Meshfree methods [73, 62, 74], and
Spectral methods [66, 58].

The study of analytical and semi-analytical solutions of differential equations
(DEs) plays an important role in mathematical physics, engineering, and the other
sciences. In the past several decades, various methods for obtaining solutions of
DEs have been presented, such as the Adomian decomposition method [35, 82],
Homotopy perturbation method [36, 78], Variational iteration method [80], Exp-
function method [37] and so on.
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The spectral approximations for DEs on finite domains have achieved great suc-
cess and popularity in recent years, but spectral approximations for DEs on infinite
domains have only received limited attention. Several spectral methods for treating
infinite/semi-infinite domain problems have been utilized by different researchers:
(1) There is an effective approach to solve these problems by applying the basis of
Sinc, Hermite and rational Christov functions that are orthogonal on the interval
(−∞,∞) [32, 68] and the basis of Laguerre polynomials that are orthogonal on the
interval [0,∞) [64, 20]. (2) Another approach for solving such problems which is
based on rational approximations. This method transfers polynomials on interval
[α, β] to functions on interval [0,∞) by using the algebraic mapping x → βx+αL

x+L

that L > 0 is a scaling/stretching factor [75]. The Jacobi polynomials are a class of
classical orthogonal polynomials, also the Gegenbauer polynomials, the Legendre
and Chebyshev polynomials, are special cases of these polynomials which have
been used in several literatures for solving some problems. In some papers have
been provided the collocation method for natural convection heat transfer equa-
tions embedded in porous medium, nonlinear differential equation and nonlinear
integro-differential equation based on rational Gegenbauer, Legendre, Chebyshev
functions [58, 64, 65, 72]. Doha et al have presented Jacobi rational-Gauss colloca-
tion method based on Jacobi rational functions and Gauss quadrature integration
to solve nonlinear Lane-Emden equation [25]. Isik et al have used Bernstein polyno-
mials to solve high order initial and boundary value problems. Their approximate
solution has a better convergence rate than the one found by using the collocation
method [40]. (3) Guo [33, 34] has applied a method that proceeds by mapping the
original problem in an unbounded domain to a problem in a bounded domain, and
then using suitable Jacobi polynomials such as the Gegenbauer polynomials to ap-
proximate the resulting problems. (4) A further approach consists of replacing the
infinite domain with [−K,K] and the semi-infinite domain with [0,K] by choosing
K sufficiently large. This method is named domain truncation [12, 39].

In this investigation, we attempt to introduce a Spectral method based on the
fractional order of rational Bessel functions (FRB) to solve Thomas-Fermi on the
semi-infinite domain.

1.2. Thomas-Fermi equation. One of the most important nonlinear ordinary
differential equations that occurs in semi-infinite interval is Thomas-Fermi equation
as follows [83, 22, 16]:

d2y(x)
dx2

− 1√
x
y3/2(x) = 0, x ∈ [0,∞), (1.1)

where the boundary conditions for this equation are as follows:

y(0) = 1, lim
x→∞

y(x) = 0. (1.2)

The Thomas-Fermi equation appears in the problem of determining the effective
nuclear charge in heavy atoms, and because of its importance to theoretical physics,
computing its solutions has attracted the attention of the Nobel laureates John
Slater (chemistry) [81] and Richard Feynman (physics) [31] and of course Enrico
Fermi [29].

One measure of the rapidity of the convergence of the procedure is provided by
the calculation of the value of the initial slope y′(0) of the Thomas-Fermi potential
[47]. The problem is useful for calculating form-factors and for obtaining effective
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potentials which can be used as initial trial potentials in self-consistent field calcu-
lations. The initial slope y′(0) is difficult to compute by any means and plays an
important role in determining many physical properties of the Thomas-Fermi atom.
It determines the energy of a neutral atom in the Thomas-Fermi approximation:

E =
6
7

(4π
3

)2/3

Z7/3y′(0), (1.3)

where Z is the nuclear charge.
For these reasons, the problem has been studied by many researchers and by the

different techniques have been solved, that a number of them are as follows: Baker
in 1930 [7] studied the singularity of this equation and calculated an analytical
solution as follows:

y(x) = 1−Bx+
4
3
x3/2 − 2

5
Bx5/2 +

1
3
x3 +

3
70
B2x7/2 − 2

15
Bx4 + . . . ,

where −B is the value of the first derivative at the origin that has calculated
y′(0) = −B = −1.588558.

Esposito in 2002 [28] reported an original method, due to Majorana, that leads
to a semi-analytical series solution of the Thomas-Fermi equation with appropriate
boundary conditions in terms of only one quadrature, and proved that the series
expansion is uniformly convergent in the interval [0, 1], and has calculated y′(0) =
−1.588.

Liao in 2003 [49] employed the Homotopy analysis method and gave an explicit
analytic solution of the Thomas-Fermi equation and the related recurrence formula
of constant coefficients. The corresponding mth-order approximation is

y(x) =
m∑
k=0

4k+1∑
n=1

αk,n(1 + x)−n,

where αk,n is defined in [49, Eq. 26]. He calculated y′(0) = −1.58712.
Kobayashi et al in 1955 [46] examined the asymptotic solution of obtained by

Coulson and March [21], and improved their solution:

y(x) =
144
x3

(
1− z + 0.6256974977z2 − 0.3133861150z3 + 0.1373912767z4 − . . .

)
,

where z = F
xc , and F = 13.27097391 and c = 0.7720018726, and calculated y′(0) =

−1.588070972.
Adomian in 1998 [3] introduced a standard decomposition method for solving

Thomas-Fermi equation. As briefly as follows:

y(x) = c1 + c2x+ L−1x−1/2
∞∑
n=0

An (1.4)

where L−1 denotes a two-fold integration, An denotes the Adomian polynomials
generated for y3/2, and c1, c2 are constants of integration. The Adomian decom-
position method employs the recursive relation.

Marinca and Herianu in 2011 [52] used a new method to find an analytical ap-
proximate solution to Thomas-Fermi equation and called it the Optimal Parametric
Iteration Method (OPIM) that this new iteration approach provides us with a con-
venient way to optimally control the convergence of the approximate solution. This
new iteration approach containing a new iteration scheme involves the presence of
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a finite number of initially unknown parameters, which are optimally determined.
In this way, the approximate initial slope is y′(0) = −1.5880659888022421.

Zhu et al in 2012 [93] approximated the original Thomas-Fermi equation by a
nonlinear free boundary value problem (FBVP) and applied an iterative method to
solve the FBVP. They transformed the FBVP to a nonlinear singular BVP defined
on [0, 1] by a change of variables and also employed an adaptive finite element
method based on moving mesh to obtain the best approximate solution at each
iteration. Best approximation obtained by this method is y′(0) = −1.58794357.

A simple and more precise solution to the Thomas-Fermi equation is obtained by
making use of the famous Ritz Variational method. Oulne in 2011 [57] used a new
simple Variational solution of the Thomas-Fermi equation which reproduces the
numerical solution accurately in a wide range with a correct asymptotic behavior
at long distances from the origin and which allows us to calculate with exactness
the initial slope. The proposed solution will be developed in power series which
have the same form as series solutions that have been obtained previously by Baker
[7]. In this method, the approximate initial slope is y′(0) = −1.588071034.

Abbasbandy and Bervillier in 2011 [1] compared three methods based respec-
tively on Taylor (Maclaurin) series, Padé approximates and conformal mappings.
y′(0) = −1.5880710226113753127189 ± 7 ∗ 10−22 was obtained by using the Padé-
Hankel method.

Boyd in 2013 [13] applied collocation method based on the rational Chebyshev
functions on semi-infinite intervals TLn(y;L) which L is a user-choosable numerical.
Boyd employed Newton-Kantorovich iteration to reduce the nonlinear differential
equation to a sequence of linear differential equations, and he has calculated

y′(0) = −1.5880710226113753127186845

with L = 64 and 600 collocation points.
MacLeod in 1992 [50] used two differing approximations on Chebyshev polyno-

mial according to behavior Thomas-Fermi function, one for small x < 40, one for
large x. In this method, the approximate initial slope is y′(0) = −1.5880710226.

Parand et al [59, 71, 8, 63] proposed collocation method on rational Chebyshev,
Hermite polynomials and Sinc functions to solve Thomas-Fermi on semi-infinite
interval without truncating it to a finite domain. These methods reduce the solution
of this problem to the solution of a system of algebraic equations.

Jovanovic et al in 2014 [41] solved the Thomas-Fermi equation by applying a
spectral method using an exponential basis set in a semi-infinite domain. The goal
of the spectral method approach is to find the values of coefficients ai that best
satisfy the equation

y(x) =
N∑
i=1

aiRi, Ri = e−βix, (1.5)

where values of Ri are selected in an intuitive way to cover all the possible decay
rates. They have reported detailed about the convergence rate of the initial slope
y′(0) for an exponential basis set.

Liu and Zhu in 2015 [48] proposed an iterative method based on the Laguerre
pseudospectral approximation which the solution of the Thomas-Fermi equation
as the sum of two parts due to its singularity at the origin. One “singular” part
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is a power series expansion. The other “smooth” part satisfies a nonlinear two-
point boundary value problem. In this method, the approximate initial slope is
y′(0) = −1.588072.

Yao in 2008 [88] solved the Thomas-Fermi equation with a kind of analytic tech-
nique, named Homotopy analysis method and his answer is y′(0) = −1.588004950.

Amore et al in 2014 [5] obtained highly accurate solutions to the Thomas-Fermi
equations for atoms and atoms in very strong magnetic fields. And they apply the
Padé-Hankel method, numerical integration, power series with Padé and Hermite-
Padé approximates and Chebyshev polynomials. They solved Thomas-Fermi for
different x and obtain answers for y(x) and y′(x). Their best answer is y′(0) =
−1.588071022611375312718684509.

Fernandez in 2011 [30] showed that a simple and straightforward rational ap-
proximation to the Thomas-Fermi equation provides the slope at the origin with
unprecedented accuracy and that Padé approximates of relatively low order are
far more accurate than more elaborate approaches proposed recently by other au-
thors. He calculated y(x) for different values of x and compare their method with
Chebyshev and numerical method, and calculated y′(0) = −1.588071022611375313.

Epele et al in 1999 [27] used Padé approximate approach to solving Thomas-
Fermi equation. They have calculated y′(0) = −1.5881.

Khan and Xu in 2007 [44] used an analytic technique, namely the Homotopy
analysis method (HAM). Their best answer for y′(0) was −1.586494973 when they
selected [30,30] for Homotopy-Padé approximations.

The rest of this paper is arranged as follows: Section 2 introduces a novel the
fractional order of rational Bessel functions (FRB). Section 3 describes a brief for-
mulation of quasilinearization method (QLM) introduced in [51]. In section 4 at
first, by utilizing QLM over Thomas-Fermi equation a sequence of linear differen-
tial equations is obtained and then at each iteration the fractional order of rational
Bessel functions collocation method (FRBC) is used for solving the linear differ-
ential equations. We in section 5 compared our solutions with some well-known
results, comparisons show that the present solutions are highly accurate, we also
describe our results via tables and figures. Finally, we give a brief conclusion in
section 6.

2. Fractional order of rational Bessel functions (FRB)

The Bessel functions arise in many problems in physics possessing cylindrical
symmetry, such as the vibrations of circular drumheads and the radial modes in
optical fibers. Bessel functions are usually defined as a particular solution of a
linear differential equation of the second order which known as Bessel’s equation.
Bessel functions first defined by the Daniel Bernoulli on heavy chains (1738) and
then generalized by Friedrich Bessel. More general Bessel functions were studied
by Leonhard Euler in (1781) and in his study of the vibrating membrane in (1764)
[18, 38].

2.1. Definition of Bessel polynomials. The Bessel differential equation of order
n ∈ R is

x2 d
2y(x)
dx2

+ x
dy(x)
dx

+ (x2 − n2)y(x) = 0, x ∈ (−∞,∞). (2.1)
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One of the solutions of equation (2.1) by applying the method of Frobenius as
follows [9]:

Jn(x) =
∞∑
r=0

(−1)r

r!(n+ r)!
(
x

2
)2r+n, (2.2)

where series (2.2) is convergent for all x ∈ (−∞,∞).
Bessel functions and polynomials are used to solve a number of problems in

physics, engineering, mathematics, and etc., such as Blasius equation, Lane-Emden
equations, integro-differential equations of the fractional order, unsteady gas equa-
tion, systems of linear Volterra integral equations, high-order linear complex differ-
ential equations in circular domains, systems of high-order linear Fredholm integro-
differential equations, etc. [70, 60, 69, 23, 79, 90, 89, 84].

Bessel polynomials have been introduced as follows [91]:

Bn(x) =
[N−n2 ]∑
r=0

(−1)r

r!(n+ r)!
(
x

2
)2r+n, x ∈ [0, 1]. (2.3)

where n ∈ N, and N is the number of the basis of Bessel polynomials.
Let Γ = {x : 0 ≤ x ≤ 1} and L2

w(Γ) = {v : Γ → R|v is measurable and
‖v‖w <∞}, where

‖v‖w =
(∫ 1

0

|v(x)|2w(x)dx
)1/2

,

with w(x) = 1, is the norm induced by the inner product of the space L2
w(Γ) as

follows:

〈v(x), u(x)〉w =
∫ 1

0

v(x)u(x)w(x)dx.

Now, suppose that

B = span{B0(x), B1(x), . . . , BN (x)},

where B is a finite-dimensional subspace of L2
w(Γ), dim B = N+1, so B is a closed

subspace of L2(Γ). Therefore, B is a complete subspace of L2(Γ). Assume that
f(x) is an arbitrary element in L2(Γ). Thus f has a unique best approximation in
B subspace, say b̂(x) ∈ B; that is,

∃ b̂(x) ∈ B, ∀b(x) ∈ B, ‖f(x)− b̂(x)‖ ≤ ‖f(x)− b(x)‖. (2.4)

Notice that we can write b(x) vector as a combination of the basis vectors of B
subspace.

We know function of f(x) can be expanded by N+1 terms of Bessel polynomials
as:

f(x) = fN (x) +R(x);

that is,

fN (x) =
N∑
n=0

anBn(x) = ATB(x), (2.5)

where B(x) = [B0(x), B1(x), . . . , BN (x)]T and R(x) ∈ B⊥ that B⊥ is the orthog-
onal complement. So (f(x)− fN (x)) ∈ B⊥ and b(x) ∈ B are orthogonal which we
denote it by

(f(x)− fN (x)) ⊥ b,
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thus f(x)− fN (x) vector is orthogonal over all of basis vectors of B subspace as:

〈f(x)− fN (x), Bi(x)〉w = 〈f(x)−ATB(x), Bi(x)〉w = 0, i = 0, 1, . . . , N,

hence
〈f(x)−ATB(x), BT (x)〉w = 0,

therefore A can be obtained by

〈f(x), BT (x)〉w = 〈ATB(x), BT (x)〉w,
AT = 〈f(x), BT (x)〉w〈B(x), BT (x)〉−1

w , n = 0, 1, . . . , N.

2.2. Definition of FRB. Some researchers have proposed the series expansions∑N
i=0 cix

iα, (α > 0) to solve the fractional differential equations, for instance,
Bhrawy et al constructed shifted fractional-order Jacobi orthogonal functions to
solve the nonlinear initial value problem of fractional order α and a class of time-
fractional partial differential equations with variable coefficient [11]. Authors [42, 2]
have proposed fractional-order Legendre functions to solve fractional-order differen-
tial equations and the time-fractional convection-diffusion equation. Alshbool et al.
have utilized operational matrices of new fractional Bernstein functions for approxi-
mating solutions to fractional differential equations [4]. Parand and Delkhosh have
introduced the fractional order of the Chebyshev functions for solving Volterra’s
population growth model of arbitrary order [67].

Baker [7] proved that the answer to Thomas-Fermi equation is as fractional forms,
for this reason, we have applied new FRB to solve the Thomas-Fermi equation in
the semi-infinite interval, {FBn}:

FBαn (x, L) = Bn(
xα

xα + L
), n = 0, 1, . . . , N

or

FBαn (x, L) =
[N−n2 ]∑
r=0

(−1)r

r!(n+ r)!
(

xα

2(xα + L)
)2r+n, n = 0, 1, . . . , N (2.6)

where α > 0, x ∈ [0,∞), Bn(x) is Bessel polynomials of order n, and the constant
parameter L > 0 is a scaling/stretching factor.

Let Λ = {x : 0 ≤ x < ∞} and L2
w(Λ) = {z : Λ → R|z is measurable and

‖z‖w <∞}, where

‖z‖w =
(∫ ∞

0

|z(x)|2w(x, L)dx
)1/2

,

with w(x, L) = αxα−1L
(xα+L)2 , is the norm induced by the inner product of the space

L2
w(Λ) as follows:

〈z, g〉w =
∫ ∞

0

z(x)g(x)w(x, L)dx.

Now, suppose that

FB = span{FBα0 (x, L), FBα1 (x, L), . . . , FBαN (x, L)},

Let y(x) ∈ L2(Γ) be a function defined over interval [0,∞) can be expanded by
N + 1 terms of FRB as:

yN (x) =
N∑
n=0

anFB
α
n (x, L) = ATFB(x, L), (2.7)
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where FB(x, L) = [FBα0 (x, L), FBα1 (x, L), . . . , FBαN (x, L)]T . Hence

〈y(x)−ATFB(x, L), FBT (x, L)〉w = 0, (2.8)

therefore A can be obtained by

〈y(x), FBT (x, L)〉w = 〈ATFB(x, L), FBT (x, L)〉w,
AT = 〈y(x), FBT (x, L)〉w〈FB(x, L), FBT (x, L)〉−1

w , n = 0, 1, . . . , N.

3. Quasilinearization method (QLM)

The QLM is a generalization of the Newton-Raphson method [19, 77] to solve the
nonlinear differential equation as a limit of approximating the nonlinear terms by an
iterative sequence of linear expressions. Bellman and Kalaba have introduced the
QLM method about fifty years ago [43, 10]. The QLM techniques are based on the
linearization of the high order ordinary/partial differential equation and require the
solution of a linear ordinary differential equation at each iteration. Mandelzweig and
Tabakin [51] have determined general conditions for the quadratic, monotonic and
uniform convergence of the QLM method to solve both initial and boundary value
problems in nonlinear ordinary n-th order differential equations in N -dimensional
space. Recently, the QLM method has been successfully applied by researchers
to solve the various types of fractional differential equations and some ordinary
nonlinear equation [76, 61, 87, 24].

We have considered second-order nonlinear ordinary differential equations in one
variable on the interval [0,∞) as follows:

d2u

dx2
= F (u′(x), u(x), x), (3.1)

with the boundary conditions: u(0) = A, u(∞) = B, where A and B are real
constants and F is nonlinear functions.

By using the QLM for solving (2.8) determines the (r + 1)-th iterative approxi-
mation ur+1(t) as a solution of the linear differential equation:

d2ur+1

dx2
= F (u′r, ur, x) + (ur+1−ur)Fu(u′r, ur, x) + (u′r+1−u′r)Fu′(u′r, ur, x), (3.2)

with the boundary conditions

ur+1(0) = A, ur+1(∞) = B, (3.3)

where r = 0, 1, 2, . . . and the functions Fu = ∂F/∂u and Fu′ = ∂F/∂u′ are func-
tional derivatives of functional F (u′r, ur, x).

4. Solution of Thomas-Fermi equation by FRBC-QLM

By utilizing QLM technique on (1.1), we have

d2yr+1(x)
dx2

− 3
2
√
x

(yr(x))1/2yr+1(x) = − 1
2
√
x

(yr(x))3/2, (4.1)

with the boundary conditions:

yr+1(0) = 1, yr+1(∞) = 0, (4.2)

where r = 0, 1, 2, . . . .
For rapid convergence is actually sufficient that the initial guess be sufficiently

best to ensure the smallness of just one of the quantity qr = k||yr+1− yr||, where k
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is a constant independent of r. Usually, it is advantageous that y0(t) would satisfy
at least one of the boundary conditions (4.2) [76], thus set y0(x) = 1 for the initial
guess of Thomas-Fermi equation. In this paper have been considered two terms

1
x2+1 and x

x2+1 to satisfy boundary conditions (4.2). Thus we can approximate
yr+1(x) by N + 1 basis of FRB as:

yr+1(x) ≈ yN,r+1(x) =
1

x2 + 1
+

x

x2 + 1

N∑
n=0

ĉiFB
α
n (x, L). (4.3)

where α > 0 and r = 0, 1, 2, . . . . In all of the spectral methods, the purpose is to
find ĉi coefficients.

To apply the collocation method, we constructed the residual function for (r+1)-
th iteration in QLM method by substituting yr+1(x) by yN,r+1(x) into (4.1) as
follows:

Resr+1(x) =
d2yN,r+1

dx2
− 3

2
√
x

(yr(x))1/2yN,r+1(x) +
1

2
√
x

(yr(x))3/2. (4.4)

A method for forcing the residual function (4.4) to zero can be defined as collocation
algorithm. There is no limitation to choose the point in the collocation method.
The N + 1 collocation points which are roots of rational Chebyshev functions on
interval [0,∞) (i.e. xi = (1 − cos( (2i−1)Π

2N+2 ))/(1 + cos( (2i−1)Π
2N+2 )), i = 1, 2, . . . , N + 1

[71]) have been substituted Resr+1(x), therefore:

Resr+1(xi) = 0, i = 0, 1, . . . , N + 1. (4.5)

A linear system of equations has been obtained, all of these equations can be solved
by Newton method for the unknown coefficients. We have also done all of the
computations by Maple 2015 on PC with CPU Core i5, Windows 7 64bit, and 8GB
of RAM.

Now we can employ the FRBC-QLM iterative algorithm to solve Thomas-Fermi
equation as follows:
BEGIN

Input variable of I that is the number of iterations of QLM method.
Input variable of N that is the number of basic of the FRB.
Set yN,0(x) = 1.

For r = 0 to I do

Construct the series (4.3) for approximating yr+1(x) as yN,r+1(x).
Construct the linear differential equation (4.4) by using QLM method on
(1.1).
Substitute yN,r+1(x) into the equation (4.4) and create residual function
Resr+1(x).
Now we have N + 1 unknown {ĉi}N0 . To obtain these unknown coefficients,
we need N + 1 equations.
Choose the roots of order N + 1 of Rational Chebyshev functions as N + 1
collocation points: {xi}N0 .
Substitute collocation points {xi}N0 into the Resr+1(x) and create the N+1
equations.
Solve the N + 1 linear equations with N + 1 unknown coefficients, for
calculating yN,r+1(x).
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End For
END

5. Numerical Results

The initial slope y′(0) is difficult to compute by any means and plays an impor-
tant role in determining many physical properties of the Thomas-Fermi atom. It
determines the energy of a neutral atom in the Thomas-Fermi approximation. Za-
itsev et al [92] have shown that the methods of Runge-Kutta and Adams-Bashforth
can apply to solve the Thomas-Fermi equation in the semi-infinite interval, although
their methods are ill-condition and have not high accuracy for more scheme. Ex-
act solution for Thomas-Fermi differential equation, which is defined on the semi-
infinite interval and has a singularity at x = 0 and its boundary condition occurs
at infinity, is not available, so approximating this solution is very important.

Table 1 shows a list of the number of calculations y′(0) of the Thomas-Fermi
potential. As can be seen, some researchers have achieved good results and accu-
racy. The last three rows show best approximations of y′(0) for various value of N
and a fixed value of L = 1 by the present method which shows that the present
solution is highly accurate. Tables 2 and 3 show values obtained of y(x) and y′(x)
by the present method respectively, for different values of N and the 45-th itera-
tion. Obviously, Table 4 and 5 present some numerical example to illustrate the
accuracy and convergence of our suggested method by increasing the number of
points and iterations. It should be mentioned that all calculations are done by
software Maple for various values N and iterations. Figure 1 shows the resulting
graph of Thomas-Fermi equation obtained by the present method for N = 200 and
iteration 45 which tends to zero as x increases by boundary condition y(∞) = 0,
and graphs of residual error of the problem with N = 50, 100, 150, 200, and the
45-th iteration, note that the residual error decreases with the increase of the col-
location points. Comparing the computed results by this method with the others
shows that this method provides more accurate and numerically stable solutions
than those obtained by other methods.

6. Conclusion

The fundamental goal of this paper has been to construct an approximation to
the solution of nonlinear Thomas-Fermi equation in a semi-infinite interval which
has a singularity at x = 0 and its boundary condition occurred in infinity. In the
above discussion, we applied a new method to solve the Thomas-Fermi equation
that is nonlinear ordinary differential equation on a semi-infinite interval. By using
an analytical method for solving Thomas-Fermi equation has proved that the answer
to this problem is as fractional forms [7]. So for the first time, we solved the problem
based on the new fractional order of rational Bessel functions without any domain
truncation or transformation of the domain of the problem to a finite domain. In
this work, first, by utilizing QLM over Thomas-Fermi equation a sequence of linear
differential equations is obtained. Second, at each iteration the linear differential
equation is solved by novel FRBC method. We obtained accurately to 30 decimal
places for initial slope, y′(0) = −1.588071022611375312718684509423, only by using
200 collocation points and successfully have been applied to find the most accurate
values of y(x) and y′(x). A known open problem in spectral methods is finding
the optimal value for L [12], but in this paper, for simplicity, we set L = 1. The
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Graphs of residual error Graph of y(x)

Figure 1. Graphs of residual error with N = 50, 100, 150, 200,
and iteration 45, and Thomas-Fermi graph obtained by present
method.

numerical results of solving this problem show that this method is higher accurate
than obtained results of other famous methods. Finally, the comparison results have
shown that the present method is an acceptable approach and good candidate to
solve this type of problems that occur in the semi-infinite interval and the nonlinear
singular two point boundary value problems effectively.
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Thomas-Fermi equation, Appl. Math. Comput., 105 (1999) 11-19.
[87] A. Yakar; Initial time difference quasilinearization for Caputo fractional differential equa-

tions, Adv. Diff. Eq., 1 (2012), 1-9.

[88] B. Yao; A series solution to the Thomas-Fermi equation, Appl. Math. Comput., 203 (2008),

396-401.
[89] S. Yuzbasi; A numerical approach for solving a class of the nonlinear Lane-Emden type

equations arising in astrophysics, Math. Method Appl. Sci., 34 (2011), 2218-2230.
[90] S. Yuzbasi, M. Sezer; A numerical method to solve a class of linear integro-differential equa-

tions with weakly singular kernel, Math. Method Appl. Sci., 35 (2012), 621-632.

[91] S. Yuzbasi, N. Sahin, M. Sezer; Bessel polynomial solutions of high-order linear Volterra

integro-differential equations, Comput. Math. Appl., 62 (2011), 1940-1956.



18 K. PARAND, A. GHADERI, H. YOUSEFI, M. DELKHOSH EJDE-2016/331

[92] N. A. Zaitsev, I. V. Matyushkin, D. V. Shamonov; Numerical Solution of the Thomas-Fermi

Equation for the Centrally Symmetric Atom, Russ. Microlectron., 33 (2014), 372-378.

[93] S. Zhu, H. Zhu, Q. Wu, Y. Khan; An adaptive algorithm for the Thomas-Fermi equation,
Numer. Algor., 59 (2012), 359-372.

[94] Y. Zhao, Z. Lin, Z. Liu, S. Liao; The improved homotopy analysis method for the Thomas-

Fermi equation, Appl. Math. Comput., 218 (2012), 8363-8369.

Kourosh Parand (corresponding author)
Department of Computer Sciences, Shahid Beheshti University, G.C., Tehran, Iran.

Department of Computer Sciences, Department of Cognitive Modelling, Institute for
Cognitive and Brain Sciences, Shahid Beheshti University, G.C., Tehran, Iran

E-mail address: k parand@sbu.ac.ir

Amin Ghaderi
Department of Computer Sciences, Shahid Beheshti University, G.C., Tehran, Iran

E-mail address: amin.g.ghaderi@gmail.com

Hossein Yousefi

Department of Computer Sciences, Shahid Beheshti University, G.C., Tehran, Iran

E-mail address: hyousefi412@gmail.com

Mehdi Delkhosh

Department of Computer Sciences, Shahid Beheshti University, G.C., Tehran, Iran
E-mail address: mehdidelkhosh@yahoo.com


	1. Introduction
	1.1. Solving problems over unbounded domains
	1.2. Thomas-Fermi equation

	2. Fractional order of rational Bessel functions (FRB)
	2.1. Definition of Bessel polynomials
	2.2. Definition of FRB

	3. Quasilinearization method (QLM)
	4. Solution of Thomas-Fermi equation by FRBC-QLM
	5. Numerical Results
	6. Conclusion
	References

