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SOLVING THE STOKES PROBLEM IN A DOMAIN WITH
CORNERS BY THE MORTAR SPECTRAL ELEMENT METHOD

AZHAR AL SALEM, NEJMEDDINE CHORFI

Abstract. In this article, we implement the mortar spectral element method

for the Stokes problem on a domain within corners. We consider the Strang
and Fix algorithm, which permits to enlarge the discrete space of the velocity

by the first singular function. The usefulness of this method is confirmed by

the numerical results presented here.

1. Introduction

The solution of the Stokes equation in a domain of R2 with corners is divided
into a regular part and a linear combination of singular functions [15, 16]. To
take into account these singularities, we propose to decompose the domain. The
domain decomposition method consists in dividing the domain of resolution into
sub-domains of smaller sizes and simpler geometries. The emergence of parallel
computing and the development of effective codes (Message Passing Interface) have
motivated the use of the decomposition domain methods. For these methods the
matching conditions at the interfaces are decisive for a good approximation of the
solution. One of the most used method is the Mortar Element Method [8]. The
advantage of this method is that it admits a weak matching condition type, which
gives flexibility on the geometry and on the choice of the functional spaces.

The approximation of singular functions which appear on the decomposition of
the solution was done for the first time by Babuška et al [3, 4] for the p-version of the
finite element method. This work was adapted by Bernardi et al [6] for the spectral
method. They proved that the approximation order of these singular functions
by polynomials is better than that given by the general theory of the spectral
approximation [7]. We use these approximation results to implement the Strang
and Fix [20] algorithm in the case of the Stokes problem. This algorithm consists
in enlarging the discrete space of the velocity by the first singular function. We
are interested in this work by the implementation of the mortar spectral element
method for the Stokes problem in a domain with corners. We first deduce the
matrix system which is solved using Uzawa algorithm [13]. Next, we present some
numerical results showing the interest of using the Strand and Fix algorithm for
this type of problems.
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An outline of this paper is as follows. In section 2, we present the geometry
of the domain and the continuous problem, we give the singular functions and
some regularity results. In section 3, we present the discrete problem and the error
result obtained from the discretization of the Stokes problem by the mortar spectral
method. Section 4 is devoted to the implementation of the mortar spectral element
method. We describe the matrix system and its resolution algorithm. Finally, we
present some numerical results which confirm the interest of the method.

2. Continuous problem and singular functions

Let Ω be a polygonal domain of R2 simply connected and Γ be its connected
boundary. The generic point in Ω is denoted by x = (x, y). We suppose that there
exists a finite number of vertex Γj for j ∈ {1, . . . , J}, J is a positive integer such
that

Γ = ∪Jj=1Γj .

We consider cj the corner of Ω made by Γj and Γj+1, and αj its measure. Let
Hs(Ω) be the Sobolev space of order s ∈ R, H1

0 (Ω) the subspace of H1(Ω) of
functions which vanish on the boundary Γ and the space

L2
0(Ω) = {q ∈ L2(Ω) :

∫
Ω

q(x) dx = 0}.

We introduce the Stokes problem on the domain Ω in the velocity and pressure
formulation:

For a forcing term f in [H−1(Ω)]2, we try to find the velocity u ∈ [H1
0 (Ω)]2 and

the pressure p ∈ L2
0(Ω) such that

−ν∆u +∇p = f in Ω
div u = 0 in Ω
u = 0 on Γ,

(2.1)

where ν is the viscosity of the fluid that is supposed to be positive and constant.
Problem (2.1) has the following variational formulation:

For f in [H−1(Ω)]2, find u in [H1
0 (Ω)]2 and p in L2

0(Ω) such that for all v in
[H1

0 (Ω)]2 and for all q in L2(Ω):

a(u,v) + b(v, p) = 〈f ,v〉
b(u, q) = 0,

(2.2)

where

a(u,v) = ν

∫
Ω

∇u∇vdx,

b(u, q) = −
∫

Ω

(div u)qdx.

We denote by 〈·, ·〉 the duality pairing between H−1(Ω) and H1
0 (Ω).

We use the Cauchy-Schwarz and Poincaré inequalities to prove that the bilinear
form a(·, ·) is continuous on the space [H1

0 (Ω)]2 × [H1
0 (Ω)]2, elliptic on [H1

0 (Ω)]2,
and that the bilinear form b(·, ·) is continuous on the space [H1

0 (Ω)]2 × L2(Ω).
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The bilinear form b(·, ·) satisfies the following Inf-Sup condition [9]: There exists a
positive constant γ such that

∀t ∈ L2
0(Ω), sup

v∈[H1
0 (Ω)]2

b(v, t)
‖v‖[H1(Ω)]2

≥ γ‖t‖L2(Ω).

Then we deduce that for all f in the space [H−1(Ω)]2, the problem (2.2) has a
unique solution (u, p) in [H1

0 (Ω)]2 × L2
0(Ω), such that

‖u‖[H1(Ω)]2 + γ‖p‖L2(Ω) ≤ C‖f‖[H−1(Ω)]2 ,

where C is a positive constant [14, 22].
The incompressibility condition div u = 0 on the connected domain Ω allows

us to deduce that there exists a stream function ψ in the space H2
0 (Ω) such that

[14, 18]
u = curl(ψ).

This allows us to deduce that the problem (2.2) is equivalent to the following
problem: For f ∈ [L2(Ω)]2, find ψ ∈ H2

0 (Ω) such that

−ν∆2ψ = curl(f) in Ω
ψ = 0 on Γ
∂ψ

∂n
= 0 on Γ ,

where n is the outward normal unit vector to Ω on Γ.
Because of its fundamental importance in the study of singularities and the reg-

ularity of the solution ψ, we consider the characteristic equation of the bi-Laplacian
operator [16, 19]:

sin2 αjz = z2 sin2 αj . (2.3)

Next, we consider a partition of the domain Ω in rectangles Ωi, 1 ≤ i ≤ I,
satisfying

Ω̄ = ∪Ii=1Ω̄i, Ωi ∩ Ωj = ∅ for i 6= j.

We suppose that the intersection of each Ω̄i, 1 ≤ i ≤ I, with the boundary Γ is
either empty or a corner or one of several entire edges of Ωi. The edge of the
Ωi are parallel to the coordinate axes. We choose a non-convex domain, and we
assume that the non-convex angle α is equal to 3π

2 or to 2π (case of the crack).
The treatment of the singular function is processed locally, then we suppose that
the non-convex corner is unique.

Assumption 1. Let c be the corresponding corner of α. We define
∑

the open
domain in Ω such that

∑̄
is the union of the Ω̄k which contains c. We consider

that the origin of the coordinate axes is at the point c and we introduce a system
of polar coordinates (r, θ). For technical reasons, we lead to assume the following
conforming property: if the intersection of Ω̄i and Ω̄j , i 6= j, it contains either c,
or both an edge of Ωi and Ωj .

If the angle α is equal to 3π/2, equation (2.3) has two roots in the band 0 <
Re(z) < 1. When we approximate those roots by the Newton method we find
z1 ' 0, 544484 and z2 ' 0, 908529.

Let V be a neighborhood of the corner c, we introduce the functions

η1(r, θ) = r1+z1β1(θ), η2(r, θ) = r1+z2β2(θ),
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where
β1(θ) = 2.093

(
cos(0.459θ)− cos(1.544θ)

)
+ 1.093

(
2.193 sin(0.459θ)

− 0.647 sin(1.544θ)
)
,

β2(θ) = 4.302
(

cos(0.092θ(− cos(1.908θ)
)
− 1.815

(
10.869 sin(0.092θ)

− 0.524 sin(1.908θ)
)
.

If f belongs to [L2(Ω)]2, the velocity u is decomposed as:

u = ur + us

such that ur is in the space H2(Ω) ∩H1
0 (Ω) and

us = λ1κ1 + λ2κ2

where κi(r, θ) = curl(ηi(r, θ)) ∈ [H(1+zi)−ε(V )]2, λi ∈ R are the two singularity
coefficients, i ∈ {1, 2}, for all ε > 0.

In the case of the crack, for f in [L2(Ω)]2, the velocity is written in the form

u = ur + us,

ur is in [H2(Ω) ∩H1
0 (Ω)]2 and there exists two real constants λ1 and λ2 such that

us = λ1κ1 + λ2κ2

with

κ1(r, θ) = r1/2(3 sin θ sin
θ

2
, 3(1− cos θ) sin

θ

2
),

κ2(r, θ) = r1/2(2 sin
θ

2
+ sin θ cos

θ

2
, (1− cos θ) cos

θ

2
),

where κ1 and κ2 belong to the space [H
3
2−ε(V )]2, for all ε positive [11, 16].

3. Discrete problem and the error estimate

We start by recalling the basic results of the mortar spectral element method.
Since the discretization is based on the Galerkin method, we have to define the
discrete problem and give the quadrature formula which is used for the numerical
integration.

We denote by δ = (N1, N2, . . . , NI) the discretization parameter where Ni ≥ 2,
1 ≤ i ≤ I. Let PN (Ωi) be the space of polynomials on Ωi. The restriction of the
discrete functions to Ωi will belong to PNi(Ωi).

Let us recall the Gauss-Lobatto quadrature formula: there exists a unique set
of nodes such that ξ0 = −1, ξN = 1, ξNj ∈] − 1, 1[, 1 ≤ j ≤ (N − 1), and a set of
(N + 1) positive weights ρNj , 0 ≤ j ≤ N , such that for any polynomial ϕ2N−1 with
degree less than or equal to 2N − 1,∫ 1

−1

ϕ2N−1(ς)dς =
N∑
j=0

ϕ2N−1(ξNj )ρNj . (3.1)

Let F i be the affine bijection from ]− 1, 1[2 into Ωi. We consider the local discrete
scalar product: For u, v continuous functions on Ω̄i,

(u, v)Ni =
|Ωi|
4

Ni∑
j=0

Ni∑
l=0

(uoF i)(ξNij , ξNil )(voF i)(ξNij , ξNil )ρNij ρNil , (3.2)
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where |Ωi| is the measure of Ωi.
We consider Γi,j , 1 ≤ i ≤ I, 1 ≤ j ≤ 4, the edges of Ωi and we denote by

γil = Ω̄i∩Ω̄l, i 6= l, γil is not necessarily an entire edge Γi,j since the decomposition
is in general not conforming. We suppose that the boundary ∂Ω is composed of
entire edges of the Ωi.

We define the skeleton of the decomposition:

S = ∪Kk=1γk and γk ∩ γk′ = ∅ for k 6= k′,

where γk is called mortar. γk is assumed to be an entire edge of one rectangle Ωi,
denoted by Ωi(k). For any nonnegative integer n and for any segment γ, Pn(γ) is
the space of polynomials with degree less or equal to n on γ. We define Wδ the
mortar functions space by:

Wδ = {ψ ∈ L2(S) : ∀k, 1 ≤ k ≤ K,ψ/γk ∈ PNi(k)(γk)}.

The discrete space Xδ represents the space of functions wδ in L2(Ω) such that we
have the following properties: [8, Chap 3, §1]
• the restriction of wδ to Ωi, 1 ≤ i ≤ I, belongs to PNi(Ωi);
• wδ vanishes on ∂Ω;
• the mortar function φ defined on S by

φ/γk = wδ/Ωi(k)/γk, 1 ≤ k ≤ K,

satisfies, for 1 ≤ i ≤ I and for any edge Γ of Ωi contained in S: for all χ ∈ PNi−2(Γ),∫
Γ

(wδ/Ωi − φ)(τ)χ(τ)dτ = 0. (3.3)

Let Yδ = Xδ ×Xδ be the discrete space of the discrete velocity. For the discrete
pressure we consider the space:

Mδ = {pδ ∈ L2(Ω) : pδ/Ωi ∈ PNi−2(Ωi) and
∫

Ω

pδ(x)dx = 0}.

The space Mδ corresponds to the case where the pressure has no spurious modes
(see [5, 17]). We define the following norm on Yδ:

‖wδ‖ =
( I∑
i=1

‖wδ/Ωi‖
2
[H1(Ωi)]2

)1/2

.

We are expanding the discrete space of the velocity Yδ. Let κ1 = (κ1
1, κ

2
1) be the

first singular function of the velocity [12]. We denote by Y ∗δ the space

Y ∗δ = Yδ + Rκ1.

If u∗δ is in Y ∗δ , there exists uδ = (uδ1, uδ2) in Yδ and λ1 in R such that

u∗δ = uδ + λ1κ1.

Since κ1 is in the space [H1(Ω)]2, we consider the norm on the space Y ∗δ for all
u∗δ = uδ + λ1κ1 in Y ∗δ :

‖uδ‖∗ =
(
‖uδ‖2 + |λ1|2‖κ1‖2

)1/2
.

Therefore, the discrete problem is defined as follows: for a continuous data function
f = (f1, f2) on Ω̄, find u∗δ = (u∗δ1, u

∗
δ2) = (uδ1 + λ1κ

1
1, uδ2 + λ1κ

2
1) in Y ∗δ and pδ in
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Mδ such that for all v∗δ = (v∗δ1, v
∗
δ2) = (vδ1 + µ1κ

1
1, vδ2 + µ1κ

2
1) in Y ∗δ and for all qδ

in Mδ,
a∗δ(u

∗
δ ,v
∗
δ) + b∗δ(v

∗
δ , pδ) = (f ,v∗δ)δ

b∗δ(u
∗
δ , qδ) = 0,

(3.4)

such that
a∗δ(u

∗
δ ,v
∗
δ) = a∗1δ(u

∗
δ1, v

∗
δ1) + a∗2δ(u

∗
δ2, v

∗
δ2),

where the bilinear form a∗kδ(·, ·), k ∈ {1, 2} is defined by

a∗kδ(u
∗
δk, v

∗
δk) =

I∑
i=1

(
(∇uδk,∇vδk)Ni + λ1

∫
Ωi

∇κk1∇vδkdx+ µ1

∫
Ωi

∇uδk∇κk1dx

+ λ1µ1

∫
Ωi

(∇κk1)2dx
)
.

Since we know κk1 , k ∈ {1, 2}, we can compute exactly the value of the integral∫
Ωi

(∇κk1)2dx. To approximate the integral
∫

Ωi
∇κk1∇vδkdx, and

(f ,v∗δ)δ = (f1, v
∗
δ1)δ + (f2, v

∗
δ2)δ

such that

(fk, v∗δk)δ = (fk, vδk)δ + µ1

∫
Ω

fk(x, y)κk1(x, y)dx

we use the algorithm presented in [1].
As div κ1 = 0, for u∗δ = uδ + λ1κ1 in Y ∗δ and qδ in Mδ, we have

b∗δ(u
∗
δ , qδ) = −

( I∑
i=1

(div uδ, qδ)Ni + λ1

∫
Ωi

div κ1qδdx
)

= bδ(uδ, qδ).

Let
V ∗δ = {v∗δ ∈ Y ∗δ , b∗δ(v∗δ , qδ) = 0, ∀qδ ∈Mδ}

be the kernel of the bilinear form b∗δ(·, ·).
The bilinear form a∗δ(·, ·) is continuous on the space Y ∗δ by respecting the norm

‖.‖∗. There exists a positive constant ν independent of δ such that for all u∗δ ,v
∗
δ in

Y ∗δ
|a∗δ(u∗δ ,v∗δ)| ≤ ν‖u∗δ‖∗‖v∗δ‖∗.

In order to prove that the problem (3.4) is well posed, we need to define the following
norm on the space Y ∗δ :

‖v∗δ‖∗∗ =
( I∑
i=1

‖v∗δ/Ωi‖
2
[H1(Ωi)]2

)1/2

for all vδ ∈ Y ∗δ .

The bilinear form a∗δ(·, ·) is elliptic relative to the norm ‖ · ‖∗∗. There exists a
positive constant β independent of δ such that for all u∗δ in Y ∗δ ,

a∗δ(u
∗
δ ,u
∗
δ) ≥ β‖u∗δ‖2∗∗.

We have the following Inf-Sup condition on the bilinear form b∗δ(·, ·), which es-
tablishes the compatibility between the spaces Y ∗δ and Mδ: there exists a constant

γδ = inf(N−
1
2

i ), 1 ≤ i ≤ I such that [5]

∀tδ ∈Mδ, sup
u∗δ∈Y

∗
δ

b∗δ(u
∗
δ , tδ)

‖u∗δ‖∗
≥ γδ‖tδ‖L2(Ω).
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Then we can conclude that problem (3.4) has a unique solution (u∗δ , pδ) in the space
Y ∗δ ×Mδ such that

‖u∗δ‖∗∗ + γδ‖p‖L2(Ω) ≤ C‖f‖[L2(Ω)]2 ,

where C is a positive constant.
Since the equivalence constant for the two norms ‖ · ‖∗ and ‖ · ‖∗∗ depends on

the discrete parameter δ, we prefer to keep the norm ‖ · ‖∗ and proving an Inf-Sup
condition on the bilinear form a∗δ(·, ·). There exists a constant µ > 0 independent
of δ such that [10] for all u∗δ ∈ V ∗δ ,

sup
v∗δ∈V

∗
δ

a∗δ(u
∗
δ ,v
∗
δ)

‖v∗δ‖∗
≥ µ‖u∗δ‖L2(Ω). (3.5)

From the Inf-Sup condition (3.5) on the bilinear form a∗δ(·, ·) and the Strang’s
lemma, we conclude the following error estimate

‖u− u∗δ‖∗ ≤ C
(

inf
v∗δ∈V

∗
δ

{
‖u− v∗δ‖∗ + sup

w∗δ∈ Y ∗δ

(a− a∗δ)(v∗δ ,w∗δ)
‖w∗δ‖∗

}
+ sup

w∗δ∈ Y ∗δ

∫
Ωi

fw∗δ dx dy − (f,w∗δ)δ
‖w∗δ‖∗

+ sup
wδ∈V ∗δ

∑I
i=1

∑I
i=1

∫
γil

(−ν ∂u∂n + pn)[w∗δ ]

‖w∗δ‖∗

)
,

(3.6)

where u is the solution of (2.1), u∗δ is the solution of (3.4), [w∗δ ] is the jump of w∗δ
through the edge γil and C is a positive constant independent of δ.

If we decompose the solution as:

u = ur + λ1κ1 + λ2κ2,

and we estimate each term of (3.6), the error between the continuous velocity u of
problem (2.1) and the discrete velocity u∗δ , of problem (3.4) is

‖u− u∗δ‖∗ ≤ C sup
{ I∑
i=1

N−σii ,

I∑
i=1

N−ρii

}
‖f‖[Hs−2(Ω)]2

where f belongs to the space [Hs−2(Ω)]2, s > 0, such that f/Ωi in the space
[Hρi(Ωi)]2, ρi > 1 and for all ε > 0, σi is given by

σi =


s− 1 if Ω̄i contains no corner Ω̄i
inf{s− 1, 2z2(π2 )− ε} if Ω̄i contains corners different of c
inf{s− 1, 2z2(α)− ε} if Ω̄i contains c

z2(α) is the second real solution of the equation (2.3) in the band 0 < Re(z) < 1
for the angle α.

For a regular data f and N = inf1≤i≤INi, then for all ε positive we remark that

• If α = 3π
2 , then the order of convergence is N ε−1,816;

• If α = 2π, then the order of convergence is N ε−1.

We conclude that we double the order of convergence when we compare with the
case without the Strang and Fix algorithm [6, 12].
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4. Implementation and numerical results

We present in this section the implementation of the Strang and Fix algorithm
for the spectral element method of the Stokes problem. We consider just the first
singular function on the velocity for α = 3π

2 and the case of the crack α = 2π. To
simplify the implementation we neglect the singularity of the pressure. We start by
choosing the basis for the discrete spaces of the velocity and the pressure. Then, we
write the matrix system corresponding to the discrete problem (3.4). Afterward,
we describe the iterative method for solving the matrix system. Finally, we present
some numerical results showing that the Strang and Fix algorithm is an efficient
method. We notice that the computation are performed with MATLAB code.

4.1. Choice of basis. To define the matrix system of the discrete problem, we
have to choose a basis of the discrete spaces Y ∗δ = X∗δ ×X∗δ and Mδ. These basis
are naturally defined through a local basis (on each sub-domain) and determine the
structure of the matrix system. The choice of the resolution method is inherent in
this structure. Let ϕNj the Lagrange interpolating polynomials defined on [−1, 1]
of degree less or equal to N such that

ϕNj ∈ PN ([−1, 1]), ϕNj (ξl) = δlj , 0 ≤ l, j ≤ N

where δlj is the Kronecker symbol. The polynomial ϕNj is defined as

ϕNj (ξ) =
−1

N(N + 1)
(1− ξ2)L

′

N (ξ)
(ξ − ξj)

∀ξ ∈ [−1, 1],

where LN is the Legendre polynomials defined on [−1, 1] of degree less than or equal
to N . We denote ξil = F i(ξl) and the polynomial ϕNil satisfies ϕNil ◦F i = ϕNl , then
for all vδ in the space Xδ,

vδ(x, y)/Ωi =
Ni∑
l=0

Ni∑
j=0

vl,jNiϕ
Ni
l (x)ϕNij (y)

where vl,jNi = vδ(ξil , ξ
i
j)/Ωi .

For each v∗δ in X∗δ , there exists (vδ, λ1) in Xδ × R such that v∗δ = vδ + λ1κ
k
1 ,

k ∈ {1, 2} then

v∗δ (x, y)/Ωi =
Ni∑
l=0

Ni∑
j=0

vl,jNiϕ
Ni
l (x)ϕNij (y) + λ1κ

k
1/Ωi

. (4.1)

Now, we have to choose a basis for the space of the discrete pressure Mδ. Let
the polynomial ϕ̄Nj in the space PN−2(]− 1, 1[) defined by

ϕ̄Nj (x) =
ϕNj (x)

(1− x2)
.

We recall the following equalities that will be used later. For 0 ≤ l, j ≤ N we have

ϕN
′

l (ξj) =
LN (ξj)

LN (ξl)(ξj − ξl)
, ϕN

′

l (ξl) = 0

ϕ̄Nl (ξ0) =
1
2
ϕ′l(ξ0), ϕ̄Nl (ξN ) =

1
2
ϕ′l(ξN ).
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The family of polynomials ϕ̄Nl ϕ̄
N
j for 1 ≤ l, j ≤ N − 1 is a basis of the space

PN−2(Ω). Let ϕ̄Nil the polynomials such that ϕ̄Nil ◦F i = ϕ̄Nl , then for all qδ belongs
to Mδ

qδ(x, y)/Ωi =
Ni−1∑
l=1

Ni−1∑
j=1

ql jNi ϕ̄
Ni
l (x)ϕ̄Nij (y). (4.2)

where ql jNi = qδ(ξil , ξ
i
j)(1− ξil

2)(1− ξij
2) (see [2]).

4.2. Matrix system and algorithm of resolution. In this section we formulate
the discret problem (3.4) as a matrix system using the basis of the velocity and the
pressure spaces.

For u∗δ in the space Y ∗δ we have u∗δ = uδ + λ1κ1, where λ1 is the first singular
coefficient related to the first singular function κ1 = (κ1

1, κ
2
1). Although in the

reality we have only one singular coefficient λ1 in R, we will suppose that we have
two unknowns λ1

1 and λ2
1 to maintain the symmetry of the problem. The numerical

results of λ1
1 and λ2

1 are approximatively equal to λ1.
Having (4.1) and (4.2) we obtain the matrix system

AU +BTP = F

BU = 0
(4.3)

where (U,P ) are, respectively, the vector of admissible unknowns of the velocity
and the vector of admissible unknowns of the pressure. The components of U are
the values of the solution on the nodes of the sub-domains and the nodes on the
corresponding boundaries. The components of P are the values of the pressure on
the internal nodes of the sub-domains.

Construction of the matrix A. We note that the matrix A is written in the form

A =
(
Ã1 0
0 Ã2

)
where the matrices Ãk, for k ∈ {1, 2} are symmetric matrices such that:

• the diagonal entries are [Ãk]i,i =
(
∇(ϕNil ϕNij );∇(ϕNip ϕNiq )

)
Ni

, 1 ≤ l, j ≤
Ni − 1 and 1 ≤ p, q ≤ Ni − 1, which represents the Laplace operator with
the Neumann boundary condition on each sub-domain Ωi, 1 ≤ i ≤ I;

• the entries on the last row and last column are [Ãk]i,I+1 = [Ãk]I+1,i =∫
Ωi
∇κk1∇(ϕNip ϕNiq ) dx dy where 1 ≤ i ≤ NΣ, and NΣ is the number of

rectangles contained in
∑

;
• the bottom right entry is [Ãk]I+1,I+1 =

∫
Ω

(∇κk1)2 dx dy;
• the other entries are zero.

Construction of the matrix B. The matrix B is written as B = [B1, B2] where
Bk = [B, 0], k ∈ {1, 2}, B is composed by the matrices

Bi = −
(

div(ϕNil ϕNij , ϕNil ϕNij ), (ϕ̄Nip ϕ̄Niq )
)
Ni
,

for 1 ≤ l, j ≤ (Ni − 1), 1 ≤ p, q ≤ Ni − 1 and 1 ≤ i ≤ I, which represents the
gradient operator on each sub-domain Ωi.

In the following i is omitted for simplicity,

−
(

div(ϕNl ϕ
N
j , ϕ

N
l ϕ

N
j ), (ϕ̄Np ϕ̄

N
q )
)
N
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= −
N∑
m=0

N∑
n=0

(
ϕNl
′
(ξm)ϕNj (ξn) + ϕNl (ξm)ϕNj

′
(ξn)

)
ϕ̄Np (ξm)ϕ̄Nq (ξn)ρmρn,

thus for p 6= l we have(
ϕNl
′
ϕNj , ϕ̄

N
p ϕ̄

N
q

)
N

= −1
2

ρj
(1− ξ2

j )LN (ξl)

( ρ0

LN (ξp)(ξ0 − ξl)(ξ0 − ξp)

+
2LN (ξp)ρp

(ξp − ξl)(1− ξp2)
− ρN

(ξN − ξp)(ξN − ξl)LN (ξp)

)
δjq

and for p = l,(
ϕNl
′
ϕNj , ϕ̄

N
p ϕ̄

N
q

)
N

= −1
2

ρj
(1− ξ2

j )LN (ξl)LN (ξp)

( ρ0

(ξ0 − ξl)(ξ0 − ξp)
− ρN

(ξN − ξp)(ξN − ξl)

)
δjq.

We note that if l = j = 0 and l = j = N are made in the same way, with
some modifications. We denote by F =

(
F1 F2 0

)T the second member where
Fk, k ∈ {1, 2} are given by

Fk =


(ϕN1
p ϕN1

q , fk)N1

. . .
(ϕNIp ϕNIq , fk)NI∫

Ω
fkκ

k
1dx

 .

Solution of the matrix system. System (4.3) has false degrees of freedom, which are
the values of the velocity on the boundary nodes of the sub-domains. These values
are found by the action of the matching matrix Q̃ on the mortar functions. They
are linked by the integral matching condition (3.3). The calculation of this matrix
is local for each pair edge-mortar.

We consider φ a mortar function such that:

φ/γk =
Ni(k)∑
j=0

φkjϕ
Ni(k)
j (s), 1 ≤ k ≤ K, s ∈ [−1, 1].

Now, we determine a basis of the test function space PNi−2(Γ) that identifies with
PNi−2(]− 1, 1[)

χ/Γ =
Ni−1∑
p=1

χpη
Ni−2
p (s)

where

ηNi−2
p (s) =

(−1)Nk−pLNi(s)
(ξp − s)

, p ∈ {1, . . . , Ni − 1},

(more details are given in [21]). Hence, the integral matching condition (3.3) is
written as wδ = Q̃φ. Then, we present the matching global matrix Q. wilj/internal

wilj/boundary
λ1


︸ ︷︷ ︸

w∗δ

=

I 0 0
0 Q̃ 0
0 0 1


︸ ︷︷ ︸

Q

wilj/internal
φkj
λ1


︸ ︷︷ ︸

w̃∗δ

,

for 1 ≤ i ≤ I, and 1 ≤ k ≤ K.



EJDE-2016/337 STOKES PROBLEM IN A DOMAIN WITH CORNERS 11

The matrix Q is used to uncouple the system (4.3) to be solved locally. The
transpose of the matrix Q purges the vector of unknowns from the false degrees of
freedom. So the resulting system is

QTAQŨ + QTBTP = QTF

BQŨ = 0,
(4.4)

where Q =
(
Q 0
0 Q

)
, Ũ is composed with the values of the velocity on the internal

nodes and the mortar functions on the skeleton. To solve the system (4.4) we apply
the Uzawa algorithm which is appropriate for the Stokes problem (see [14, 22]). We
consider

Ã = QTAQ, B̃ = BQ and F̃ = QTF.

We uncouple the two unknowns Ũ and P . The matrix Ã is invertible since the
bilinear form a∗δ(·, ·) is elliptic. The first equation of the system (4.4) is written as

Ũ = Ã−1
(
F̃ − B̃P

)
. (4.5)

By inserting (4.5) in the second equation of the system (4.4) we obtain(
B̃Ã−1B̃T

)
P = Ã−1F̃ . (4.6)

To find the discrete pressure P , the linear system (4.6) is solved by the gradient
conjugate method since the matrix B̃Ã−1B̃T is symmetric and positive define. We
apply the same method on the system (4.5) to find the discrete velocity Ũ .
Uzawa algorithm

• Let P0 arbitrary.
• Initialization step: ÃŨ0 = F̃ − B̃TP0

• Iterations: m ≥ 0 From Ũm and Pm:

Gm = −B̃Ũm
ÃVm = B̃TGm

ρm =
‖Gm‖2

(B̃TGm, Vm)
Pm+1 = Pm − ρmGm
Ũm+1 = Ũm + ρmVm.

4.3. Numerical results. In this section we present some numerical tests which are
in accordance with the theoretical results given in [12]. We provide the behavior of
the error between the continuous solution and the discrete one. The convergence
tests are done with analytical and singular solutions. The tests are established on
two non convex domains which correspond respectively to the case where α = 2π
and α = 3π

2 see Figure 1.
If we denote by N the degree of the polynomial in Ω̄i, 1 ≤ i ≤ I which contains

the singular point c. Then, the degree of the polynomial in the other rectangular
sub-domains is chosen less than N and is fixed for each numerical tests.

Next, we present some numerical cases to show the efficiency of the method which
consists in the use of the domain decomposition method associated to Strang and
Fix algorithm.
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Figure 1. Spectral mesh of the domain when α = 2π (left) and
α = 3π

2 (right).

We consider the viscosity ν = 1, and the pressure equal to p(x, y) = xy for all the
error curves test. The given solution for the velocity is the first singular function
in the two situations:

(i) for α = 3π/2 the first singularity is constructed using the formula

κ1(r, θ) = curl(η1(r, θ)) =
(cos(θ)

r

∂η1

∂θ
+ sin(θ)

∂η1

∂r
,

sin(θ)
r

∂η1

∂θ
− cos(θ)

∂η1

∂r

)
(4.7)

where

η1(r, θ) = r1.544
(

2.093
(

cos(0.459θ)− cos(1.544θ)
)

+ 1.093
(
2.193 sin(0.459θ)− 0.647 sin(1.544θ)

))
.

(ii) for α = 2π the first singularity is

κ1(r, θ) = r1/2(3 sin θ sin
θ

2
, 3(1− cos θ) sin

θ

2
). (4.8)

Figure 2 (resp. 3) presents the convergence curves of the error on the velocity for
the solution issued from (4.7) (resp. (4.8)). We present the semi logarithmic scale
(for N varying from 5 to 60) and the Logarithmic scale for proving the slope. We
remark that the obtained results for the error and slopes using Strang and Fix
algorithm are better than those without.

Figure 2. Error curves for the solution defined from (4.7)
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Figure 3. Error curves for the solution defined from (4.8).

In the second test we choose an analytic velocity u = curl(φ), φ is the stream
function

φ(x, y) = sin(πx)2 sin(πy)2. (4.9)

Figure 4 corresponds from left to right to the semi logarithmic error curves with
respect to N for α = 3π/2 and α = 2π in the case of the regular solution issued from
(4.9). We obtain a good convergence with or without Strang and Fix algorithm.
This is so because the Strang and Fix algorithm does not improve the convergence
for a regular function.

Figure 4. Error curves for the solution from (4.9), for α = 3π/2
and α = 2π.

The given solution for the velocity is the second singular function in the two
situations:
(i) for α = 3π

2 the second singularity constructed using the formula

κ2(r, θ) = curl(η2(r, θ)) =
(cos(θ)

r

∂η2

∂θ
+sin(θ)

∂η2

∂r
,

sin(θ)
r

∂η2

∂θ
−cos(θ)

∂η2

∂r

)
(4.10)

where

η2(r, θ) = r1.908
(

4.302
(

cos(0.092θ)− cos(1.908θ)
)

− 1.815
(
10.869 sin(0.092θ)− 0.524 sin(1.908θ)

))
.
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(ii) for α = 2π the second singularity is

κ2(r, θ) = r1/2(2 sin
θ

2
+ sin θ cos

θ

2
, (1− cos θ) cos

θ

2
). (4.11)

We present in Figure 5 from left to right the convergence curves of the error corre-
sponding to the second singular function defined in (4.10) for α = 3π/2 (respectively
in (4.11) for α = 2π). We remark that we do not obtain a good convergence with
or without Strang and Fix algorithm. If we want to improve this convergence we
have to add the second singular function to the discrete space X∗δ which is difficult
to implement numerically.

Figure 5. Error curves for the solution defined from (4.10), re-
spectively from (4.11).

Figure 6 presents from left to right and top to bottom the values of the two
components of the velocity and of the pressure corresponding to the less regular
data function f = (f1, f2), with

f1 = |x|0.5 f2 = |y|0.5 (4.12)

obtained with N = 60.

Conclusion. This paper dealt with the implementation of the mortar decompo-
sition domain. This technique is applied to the spectral element method for ap-
proximating the standard velocity pressure formulation of the Stokes problem. We
implemented Strang and Fix algorithm, which consists to enlarge the discrete space
of the velocity by the first singular function. The obtained error curves confirm that
Strang and Fix algorithm applied with the mortar spectral method is a good tool
to improve the convergence order of the error. The extension of this method to
the non linear Navier-Stokes equations and to the three axisymmetric domain is
presently under consideration.
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