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HOMOGENIZATION OF IMMISCIBLE COMPRESSIBLE
TWO-PHASE FLOW IN DOUBLE POROSITY MEDIA

LATIFA AIT MAHIOUT, BRAHIM AMAZIANE,

ABDELHAFID MOKRANE, LEONID PANKRATOV

Abstract. A double porosity model of multidimensional immiscible com-
pressible two-phase flow in fractured reservoirs is derived by the mathematical

theory of homogenization. Special attention is paid to developing a general
approach to incorporating compressibility of both phases. The model is writ-

ten in terms of the phase formulation, i.e. the saturation of one phase and

the pressure of the second phase are primary unknowns. This formulation
leads to a coupled system consisting of a doubly nonlinear degenerate para-

bolic equation for the pressure and a doubly nonlinear degenerate parabolic

diffusion-convection equation for the saturation, subject to appropriate bound-
ary and initial conditions. The major difficulties related to this model are in

the doubly nonlinear degenerate structure of the equations, as well as in the

coupling in the system. Furthermore, a new nonlinearity appears in the tem-
poral term of the saturation equation. The aim of this paper is to extend the

results of [9] to this more general case. With the help of a new compactness re-

sult and uniform a priori bounds for the modulus of continuity with respect to
the space and time variables, we provide a rigorous mathematical derivation of

the upscaled model by means of the two-scale convergence and the dilatation
technique.

1. Introduction

The modeling of displacement process involving two immiscible fluids is of con-
siderable importance in groundwater hydrology and reservoir engineering such as
petroleum and environmental problems. More recently, modeling multiphase flow
received an increasing attention in connection with gas migration in a nuclear waste
repository and sequestration of CO2. Furthermore, fractured rock domains corre-
sponding to the so-called Excavation Damaged Zone (EDZ) receives increasing at-
tention in connection with the behaviour of geological isolation of radioactive waste
after the drilling of the wells or shafts, see, e.g., [50].

A fissured medium is a structure consisting of a porous and permeable matrix
which is interlaced on a fine scale by a system of highly permeable fissures. The
majority of fluid transport will occur along flow paths through the fissure system,
and the relative volume and storage capacity of the porous matrix is much larger
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than that of the fissure system. When the system of fissures is so well developed
that the matrix is broken into individual blocks or cells that are isolated from each
other, there is consequently no flow directly from cell to cell, but only an exchange
of fluid between each cell and the surrounding fissure system. Therefore the large-
scale description will have to incorporate the two different flow mechanisms. For
some permeability ratios and fissure widths, the large-scale description is achieved
by introducing the so-called double porosity model. It was introduced first for
describing the global behaviour of fractured porous media by Barenblatt et al.
[16]. It has been since used in a wide range of engineering specialties related to
geohydrology, petroleum reservoir engineering, civil engineering or soil science. For
more details on the physical formulation of such problems see, e.g., [17, 49, 51].

During recent decades mathematical analysis and numerical simulation of mul-
tiphase flows in porous media have been the subject of investigation of many re-
searchers owing to important applications in reservoir simulation. There is an
extensive literature on this subject. We will not attempt a literature review here
but will merely mention a few references. Here we restrict ourselves to the mathe-
matical analysis of such models. We refer, for instance, to the books [13, 27, 31, 36,
43, 45, 52] and the references therein. The mathematical analysis and the homog-
enization of the system describing the flow of two incompressible immiscible fluids
in porous media is quite understood. Existence, uniqueness of weak solutions to
these equations, and their regularity has been shown under various assumptions on
physical data; see for instance [3, 13, 14, 25, 27, 28, 29, 36, 48] and the references
therein. A recent review of the mathematical homogenization methods developed
for incompressible immiscible two-phase flow in porous media and compressible
miscible flow in porous media can be viewed in [4, 44, 45]. We refer for instance to
[18, 19, 20, 21, 22, 41, 42] for more information on the homogenization of incom-
pressible, single phase flow through heterogeneous porous media in the framework
of the geological disposal of radioactive waste.

The double porosity problem was first studied in [15], and was then revisited in
the mathematical literature by many other authors. Here we restrict ourself to the
mathematical homogenization method as described in [45] for flow and transport
in porous media. For a recent review of the methods developed for flow through
double porosity media, we refer for instance to [12, 15, 23, 30, 32, 34, 53] and the
references therein.

However, as reported in [9], the situation is quite different for immiscible com-
pressible two-phase flow in porous media, where, only recently few results have been
obtained. In the case of immiscible two-phase flows with one (or more) compressible
fluids without any exchange between the phases, some approximate models were
studied in [37, 38, 39]. Namely, in [37] certain terms related to the compressibility
are neglected, and in [38, 39] the mass densities are assumed not to depend on the
physical pressure, but on Chavent’s global pressure. In the articles [26, 40, 46, 47],
a more general immiscible compressible two-phase flow model in porous media is
considered for fields with a single rock type and [10] treated the case with several
types of rocks. In [4, 11] homogenization results were obtained for water-gas flow
in porous media using the phase formulation, i.e. where the phase pressures and
the phase saturations are primary unknowns.

Let us also mention that, recently, a different approach based on a new global
pressure concept was introduced in [5, 7] for modeling immiscible, compressible
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two-phase flow in porous media without any simplifying assumptions. The resulting
equations are written in a fractional flow formulation and lead to a coupled system
which consists of a nonlinear parabolic equation (the global pressure equation) and a
nonlinear diffusion-convection one (the saturation equation). This new formulation
is fully equivalent to the original phase equations formulation, i.e. where the phase
pressures and the phase saturations are primary unknowns. For this model, an
existence result is obtained in [8] and homogenization results in [6].

Let us note that all the aforementioned homogenization works are restricted to
the case where the wetting phase (water) is incompressible while the non-wetting
phase (gas) is compressible, contrarily to the present work. In this paper we extend
our previous results obtained in [9] to the more complex case where both phases
are compressible which is more reasonable in gas reservoir engineering. The major
difficulties related to this model are in the nonlinear degenerate structure of the
equations, as well as in the coupling in the system. In this case a new nonlinearity
appears in the temporal term of the saturation equation. The compactness result
used in [9] is no longer valid. To obtain these results we elaborated a new approach
based on the ideas from [24, 35] to establish a new compactness result and uniform
a priori bounds for the modulus of continuity with respect to the space and time
variables.

In this paper, we will be concerned with a degenerate nonlinear system of
diffusion-convection equations in a periodic domain modeling the flow and trans-
port of immiscible compressible fluids through heterogeneous porous media, taking
into account capillary and gravity effects. We consider double porosity media, i.e.
we consider a porous medium made up of a set of porous blocks with permeability
of order ε2 surrounded by a system of connected fissures, ε, is a small parameter
which characterizes the periodicity of the blocks. There are two kinds of degener-
acy in the studied system. The first one is the classical degeneracy of the capillary
diffusion term and the second one represents the evolution terms degeneracy. In
both cases the presence of degeneracy weakens the energy estimates and makes a
proof of compactness results more involved.

The outline of the rest of the paper is as follows. In Section 2 we describe
the physical model and formulate the corresponding mathematical problem. We
also provide the assumptions on the data and a weak formulation of the problem
in terms of the global pressure and the saturation. Section 3 is devoted to the
presentation of some a priori estimates for the solutions of the problem. They
are essentially based on an energy equality. In Section 4, firstly we construct the
extensions of the saturation and the global pressure functions defined in the fissures
system and secondly we prove a compactness result adapted to our model. It’s
based on the compactness criterion of Kolmogorov–Riesz–Fréchet (see, e.g., [24,
35]). Finally, we formulate the corresponding two–scale convergence results. In
Section 5 we are dealing with the dilations of the functions defined in the matrix
part. Firstly, we introduce the notion of the dilation operator and describe its
properties. Secondly, we derive the system of equations for the dilated functions
and obtain the corresponding uniform estimates for them. Finally, we formulate
the convergence results for the dilated functions. The main result of the paper is
formulated in Section 6 and its proof is given in Section 7. The proof is based on
the two-scale convergence and the dilation techniques.
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2. Formulation of the problem

The outline of the section is as follows. First, in subsection 2.1 we present the
model equations which are valid in fractures and rock matrix. A fractional flow
formulation using the notion of the global pressure is discussed in subsection 2.2.
Then in the last subsection 2.3, we give the definition of a weak solution to our
system.

2.1. Microscopic model. We consider a reservoir Ω ⊂ Rd (d = 2, 3) which is
assumed to be a bounded, connected Lipschitz domain with a periodic microstruc-
ture. More precisely, we will scale this periodic structure by a parameter ε which
represents the ratio of the cell size to the whole region Ω and we assume that
0 < ε � 1 is a small parameter tending to zero. Let Y := (0, 1)d be a periodicity
cell; we pave Rd with Y . We assume that Ym is an open set with piecewise smooth
boundary ∂Ym such that Ym b Y and we reproduce Ym by periodicity, obtaining
a periodic open set M in Rd. We denote by F the periodic set F := Rd \M, which
is obtained from the set Yf := Y \ Ym. Thus Y = Ym ∪ Yf ∪ Γfm, where Γfm
denotes the interface between the two media. Finally, we denote by χf and χm the
characteristic functions of the sets F and M. Then χm(xε ) is the periodic function
of period εY which takes the value 1 in the set Mε, union of the sets obtained from
εYm by translations of vectors ε

∑n
i=1 ki~ei, where ki ∈ Z and ~ei, 1 ≤ i ≤ d, is the

canonical basis of Rd, and which takes the value 0 in the set Fε, complementary in
Rd of this union. In other words, χm(xε ) is the characteristic function of the set Mε,
while χf (xε ) is the characteristic function of Fε. Now we can define the subdomains
Ωεr with r = “f ′′ or “m′′ corresponding to the porous medium with the index “r′′.
We set:

Ωεm := {x ∈ Ω : χεm(x) = 1} and Ωεf :=
{
x ∈ Ω : χεf (x) = 1

}
.

Then Ω = Ωεm ∪ Γεfm ∪ Ωεf , where Γεfm := ∂Ωεf ∩ ∂Ωεm ∩ Ω and the subscript m
and f refer to the matrix and fracture, respectively. For the sake of simplicity, we
assume that Ωεm ∩ ∂Ω = ∅. We also set:

ΩT := Ω× (0, T ), Ωεr,T := Ωεr × (0, T ), and Γε,Tf,m := Γεf,m × (0, T ), (2.1)

where T > 0 is fixed.
We consider an immiscible compressible two-phase flow system in a porous

medium which fills the domain Ω. We focus here on the general case where both
phases are compressible, the phases being ` and g. Let Φε(x) be the porosity of
the reservoir Ω; Kε(x) be the absolute permeability tensor of Ω; Sε` = Sε` (x, t),
Sεg = Sεg(x, t) be the phase saturations; kr,` = kr,`(Sε` ), kr,g = kr,g(Sεg) be the rela-
tive permeabilities of the phases; pε` = pε`(x, t), p

ε
g = pεg(x, t) be the phase pressures;

ρ`, ρg be the phase densities and Pc the capillary pressure.
In what follows, for the sake of presentation simplicity we neglect the source

terms, and we denote Sε = Sε` . The model for the two-phase flow is described by
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(see, e.g., [27, 31, 43]):

0 6 Sε 6 1 in ΩT ;

Φε(x)
∂ Ξε`
∂t
− div

{
Kε(x)λ`(Sε)ρ`(pε`)

(
∇pε` − ρ`(pε`)~g

)}
= 0 in ΩT ;

Φε(x)
∂ Ξεg
∂t
− div

{
Kε(x)λg(Sε)ρg(pεg)

(
∇pεg − ρg(pεg)~g

)}
= 0 in ΩT ;

Pc(Sε) = pεg − pε` in ΩT ,

(2.2)

where λg(Sε) = λ̃g(1−Sε); Ξε` := Sερ`(pε`) and Ξεg := (1−Sε)ρg(pεg); each function
γε := Sε, p`, pg, Ξε` , and Ξεg is defined as:

γε(x, t) = χεf (x)γεf (x, t) + χεm(x)γεm(x, t). (2.3)

The velocities of the phases ~qε` , ~q
ε
g are defined by Darcy–Muskat’s law:

~qε` := −Kε(x)λ`(Sε` )
(
∇pε` − ρ`(pε`)~g

)
with λ`(Sε` ) :=

kr,`
µ`

(Sε` ); (2.4)

−→
qεg := −Kε(x)λ̃g(Sεg)

(
∇pεg − ρg(pεg)~g

)
with λ̃g(Sεg) :=

kr,g
µg

(Sεg) (2.5)

with ~g, µ`, µg being the gravity vector and the viscosities, respectively.
Now we specify the boundary and initial conditions. We suppose that the bound-

ary ∂Ω consists of two parts Γ1 and Γ2 such that Γ1 ∩ Γ2 = ∅, ∂Ω = Γ1 ∪ Γ2. The
boundary conditions are given by

pεg(x, t) = 0 = pε`(x, t) on Γ1 × (0, T ); (2.6)

~qε` · −→ν =
−→
qεg · −→ν = 0 on Γ2 × (0, T ). (2.7)

Finally, the initial conditions read

Sε(x, 0) = S0(x) and pεg(x, 0) = p0
g(x) in Ω. (2.8)

2.2. A fractional flow formulation. In the sequel, we use a formulation obtained
after transformation using the concept of the global pressure introduced in [13, 27].
The global pressure is defined as follows:

P ε = pε` −G`(Sε) = pεg −Gg(Sε), (2.9)

where the functions G`(Sε), Gg(Sε) are given by:

Gg(Sε) := Gg(0) +
∫ Sε

0

λ`(s)
λ(s)

P ′c(s)ds, (2.10)

G`(Sε) = Gg(Sε)− Pc(Sε), (2.11)

with λ(s) := λ`(s) + λg(s), the total mobility.
Performing some simple calculations, we obtain the following properties for the

global pressure which will be used in the sequel:

λ`(Sε)∇pε` + λg(Sε)∇pεg = λ(Sε)∇P ε , (2.12)

∇G`(Sε) = −λg(S
ε)

λ(Sε)
P ′c(S

ε)∇Sε. (2.13)

Notice that from (2.10), (2.13) we obtain

λ`(Sε)∇G`(Sε) = ∇β(Sε) and λg(Sε)∇Gg(Sε) = −∇β(Sε) , (2.14)
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where

β(Sε) :=
∫ Sε

0

α(u) du with α(s) :=
λg(s)λ`(s)

λ(s)
|P ′c(s)|. (2.15)

Furthermore, we have the important relation

λg(Sε)|∇pεg|2 + λ`(Sε)|∇pε` |2 = λ(Sε)|∇P ε|2 + |∇b(Sε)|2, (2.16)

where

b(s) :=
∫ s

0

a(ξ)dξ with a(s) :=

√
λg(s)λ`(s)

λ(s)
|P ′c(s)|. (2.17)

If we use the global pressure and the saturation as new unknown functions, then
problem (2.2) reads

0 6 Sε 6 1 in ΩT ;

Φε(x)
∂Θε

`

∂t
− div

{
Kε(x)ρ̃ε`

[
λ`(Sε)∇P ε +∇β(Sε)− λ`(Sε)ρ̃ε`~g

]}
= 0 in ΩT ;

Φε(x)
∂Θε

g

∂t
− div

{
Kε(x)ρ̃εg

[
λg(Sε)∇P ε −∇β(Sε)− λg(Sε)ρ̃gε~g

]}
= 0 in ΩT ,

(2.18)
we introduced the notation

ρ̃ε` := ρ`(P ε +G`(Sε)) and ρ̃εg := ρg(P ε +Gg(Sε)); (2.19)

Θε
` = Θ`(Sε, P ε) := Sερ̃ε` and Θε

g = Θg(Sε, P ε) := (1− Sε)ρ̃εg. (2.20)

The system (2.18) is completed by the following boundary and initial conditions.

P ε = 0 on Γ1 × (0, T ); (2.21)

Qε` · −→ν = Qεg · −→ν on Γ2 × (0, T ) (2.22)

where Qε` and Qεg are defined by:

Qε` := −Kε(x)ρ̃ε`
[
λ`(Sε)∇P ε +∇β(Sε)− λ`(Sε)ρ̃ε`~g

]
,

Qεg := −Kε(x)ρ̃εg
[
λg(Sε)∇P ε −∇β(Sε)− λg(Sε)ρ̃εg~g

]
.

Finally, the initial conditions read

Sε(x, 0) = S0(x) and P ε(x, 0) = P 0(x) in Ω. (2.23)

2.3. A weak formulation of the problem. Let us begin this section by stating
the following assumptions.

(A1) The porosity Φ = Φ(y) is a Y -periodic function defined by: Φε(x) =
χεf (x)Φf + χεm(x)Φm with 0 < Φf ,Φm < 1, where Φf and Φm are con-
stant that do not depend on ε.

(A2) The absolute permeability tensor Kε is given by:

Kε(x) := Kfχ
ε
f (x) I + ε2Kmχ

ε
m(x)I,

where I is the unit tensor and Kf , Km are positive constants that do not
depend on ε.

(A3) The density ρk = ρk(p), (k = `, g) is a monotone C1-function in R such
that

ρk(p) = ρmin for p 6 pmin; ρk(p) = ρmax for p > pmax;

ρmin < ρk(p) < ρmax for pmin < p < pmax.
(2.24)



EJDE-2016/52 IMMISCIBLE COMPRESSIBLE TWO-PHASE FLOW 7

ρmin, ρmax, pmin, pmax are constants such that 0 < ρmin < ρmax < +∞ and
0 < pmin < pmax < +∞.

(A4) The capillary pressure function Pc ∈ C1([0, 1]; R+). Moreover, P ′c(s) < 0 in
[0, 1] and Pc(1) = 0.

(A5) The functions λ`, λg belong to the space C([0, 1]; R+) and satisfy the fol-
lowing properties:
(i) 0 6 λ`, λg 6 1 in [0, 1];
(ii) λ`(0) = 0 and λg(1) = 0;
(iii) there is a positive constant L0 such that λ`(s) = λ`(s)+λg(s) > L0 > 0

in [0, 1].
Moreover, λ`(s) ∼ sκ` as s→ 0 and λg(s) ∼ (1−s)κg as s→ 1 (κ`,κg > 0).

(A6) The function α given by (2.15) is a continuous function in [0, 1]. Moreover,
α(0) = α(1) = 0 and α > 0 in (0, 1).

(A7) The function β−1, inverse of β defined in (2.15) is a Hölder function of
order θ with θ ∈ (0, 1) on the interval [0, β(1)]. Namely, there exists a
positive constant Cβ such that for all s1, s2 ∈ [0, β(1)], |β−1(s1)−β−1(s2)| 6
Cβ |s1 − s2|θ.

(A8) The initial data for the global pressure and the saturation defined in (2.23)
are such that P 0 ∈ L2(Ω) and 0 6 S0 6 1.

Assumptions (A1)–(A8) are classical and physically meaningful for existence results
and homogenization problems of two-phase flow in porous media. They are similar
to the assumptions made in [10] that dealt with the existence of a weak solution of
the studied problem.

Next we introduce the Sobolev space

H1
Γ1

:= {u ∈ H1(Ω) : u = 0 on Γ1},

wich is a Hilbert space when it is equipped with the norm

‖u‖H1
Γ1(Ω)

= ‖∇u‖(L2(Ω))d .

Definition 2.1. We say that the pair of functions 〈P ε, Sε〉 is a weak solution to
problem (2.18)–(2.23) if

(i) 0 6 Sε 6 1 a.e in ΩT .
(ii) P ε ∈ L2(0, T ;H1

Γ1
(Ω)).

(iii) The boundary conditions (2.21)–(2.22) are satisfied.
(iv) For any ϕ`, ϕg ∈ C1([0, T ];H1

Γ1
(Ω)) satisfying ϕ`(T ) = ϕg(T ) = 0, we have

−
∫

ΩT

Φε(x)Θε
`

∂ϕε`
∂t

dx dt+
∫

Ω

Φε(x)Θ0
`ϕ

0
` dx

+
∫

ΩT

Kε(x)ρ̃ε`
{
λ`(Sε)

(
∇P ε − ρ̃ε`~g

)
+∇β(Sε)

}
· ∇ϕε` dx dt = 0;

(2.25)

−
∫

ΩT

Φε(x)Θε
g

∂ϕεg
∂t

dx dt+
∫

Ω

Φε(x)Θ0
gϕ

0
g dx

+
∫

ΩT

Kε(x)ρ̃εg
{
λg(Sε)

(
∇P ε − ρ̃εg~g

)
−∇β(Sε)

}
· ∇ϕε` dx dt = 0,

(2.26)

where ρ̃εg and ρ̃ε` are defined in (2.19); ϕ0
` = ϕ`(0, x), ϕ0

g = ϕg(0, x); Θ0
` =

S0ρ`(P 0 +G`(S0)) and Θ0
g = (1− S0)ρg(P 0 +Gg(S0)).
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According to [10], under conditions (A1)–(A8), for each ε > 0, problem (2.25)–
(2.26) has at least one weak solution.

In what follows C,C1, . . . denote generic constants that do not depend on ε.

3. A priori estimates

To obtain the needed uniform estimates for the solution of problem (2.2) (or the
equivalent problem (2.18)), we follow the choice of the test functions as in [9]:

R`(pε`) =
∫ pε

`

0

dξ

ρ`(ξ)
and Rg(pεg) =

∫ pε
g

0

dξ

ρg(ξ)
. (3.1)

Then, as in [9], the following results hold.

Lemma 3.1. Let 〈pεg, pε`〉 be a solution to (2.2). Then we have the energy equality

d

dt

∫
Ω

Φε(x)ζε(x, t) dx+
∫

Ω

Kε(x)
{
λ`(Sε)∇pε` ·

[
∇pε` − ρ`(pε`)~g

]
+ λg(Sε)∇pεg ·

[
∇pεg − ρg(pεg)~g

]}
dx = 0

(3.2)

in the sense of distributions. Here

ζε := SεR`(pε`) + (1− Sε)Rg(pεg) + F (Sε),

where Rk(p) := ρk(p)Rk(p) − p, (k = `, g) and F (s) :=
∫ s

1
Pc(u) du. Moreover,

ζε > 0 in ΩT .

Lemma 3.2. Let 〈pεg, pε`〉 be a solution to (2.2). Then

‖
√
Kε(x)λ`(Sε)∇pε`‖L2(ΩT ) + ‖

√
Kε(x)λg(Sε)∇pεg‖L2(ΩT ) 6 C. (3.3)

Corollary 3.3. Let 〈pεg, pε`〉 be a solution to (2.2). Then

‖
√
λ`(Sεf )∇pε`,f‖L2(Ωε

f,T ) + ‖
√
λg(Sεf )∇pεg,f‖L2(Ωε

f,T )

+ ε‖
√
λ`(Sεm)∇pε`,m‖L2(Ωε

m,T ) + ε‖
√
λg(Sεm)∇pεg,m‖L2(Ωε

m,T ) 6 C.
(3.4)

Then we obtain the following uniform a priori estimates for the functions P ε

and β(Sε).

Lemma 3.4. Let the pair of functions 〈P ε, Sε〉 be a solution to (2.18). Then
‖∇β(Sεf )‖L2(Ωε

f,T ) + ‖∇P εf ‖L2(Ωε
f,T ) + ε‖∇β(Sεm)‖L2(Ωε

m,T )

+ ε‖∇P εm‖L2(Ωε
m,T ) 6 C.

(3.5)

Moreover,

‖P εf ‖L2(Ωε
f,T ) + ‖β(Sε)‖L2(ΩT ) 6 C, (3.6)

‖P εm‖L2(Ωε
m,T ) 6 C. (3.7)

Now we pass to the uniform bounds for the time derivatives of the functions Θε
g

and Sε. In a standard way (see, e.g., [4, 9]) we can prove the following lemma.

Lemma 3.5. Let the pair of functions 〈P ε, Sε〉 be a solution to (2.18). Then for
r = f,m,

{∂t(ΦrΘε
`,r)}ε>0 is uniformly bounded in L2(0, T ;H−1(Ωεr)); (3.8)

{∂t(ΦrΘε
g,r)}ε>0 is uniformly bounded in L2(0, T ;H−1(Ωεr)). (3.9)
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4. Convergence of {P εf }ε>0, {Sεf}ε>0, {Θε
`,f}ε>0, {Θε

g,f}ε>0

In this section, we obtain compactness results that will be used in passing to
the limit as ε tends to zero in the weak formulation. The compactness result used
in [9] is no longer valid. To obtain these results we elaborated a new approach
based on the ideas from [24, 35] to establish a new compactness result and uniform
a priori bounds for the modulus of continuity with respect to the space and time
variables. It is achieved in several steps. First, in subsection 4.1 we extend the
function Sεf from the subdomain Ωεf to the whole Ω and obtain uniform estimates
for the extended function S̃εf . Then in Section 4.2, using the uniform estimates
for the function P̃ εf which follow from Lemma 3.4, the definition of the extension
operator, and the corresponding bounds for S̃εf , we prove the compactness result
for the families {Θ̃ε

`,f}ε>0 and {Θ̃ε
g,f}ε>0, where Θ̃ε

`,f , Θ̃ε
g,f are extensions of the

functions Θε
`,f , Θε

g,f from the subdomain Ωεf to the whole Ω which will be specified
at the end of subsection 4.1. Finally, in subsection 4.3 we formulate the two–scale
convergence which will be used in the derivation of the homogenized system.

4.1. Extensions of the functions Sεf , Θε
`,f , Θε

g,f . Consider the function Sεf . To
extend Sεf , following the ideas of [23], we use the monotone function β defined in
(2.15). Let us introduce the function

βεf (x, t) := β(Sεf ) =
∫ Sε

f

0

α(u) du. (4.1)

Then it follows from condition (A6) that 0 6 βεf 6 maxs∈[0,1] α(s) a.e. in Ωεf,T .
Furthermore, from (3.5) we have

‖∇βεf‖L2(Ωε
f,T ) 6 C. (4.2)

Let Πε : H1(Ωεf ) → H1(Ω) be the standard extension operator cf. [1]. Then we
have

0 6 β̃εf := Πεβεf 6 max
s∈[0,1]

α(s) a.e. in ΩT , ‖∇β̃εf‖L2(ΩT ) 6 C.

Now we can extend the function Sεf from the subdomain Ωεf to the whole Ω. We
denote this extension by S̃εf and define it as:

S̃εf := (β)−1(β̃εf ).

This implies that∫
ΩT

|∇β( S̃εf )|2 dx dt 6 C , 0 6 S̃εf 6 1 a.e. in ΩT . (4.3)

Finally consider the sequences {Θε
`,f}ε>0 and {Θε

g,f}ε>0. We recall that Θε
`,f :=

ρ`
(
P εf + G`(Sεf )

)
Sεf and Θε

g,f := ρg
(
P εf + Gg(Sεf )

)
(1 − Sεf ). Then we define the

extension of the function Θε
f to the whole Ω by

Θ̃ε
`,f := ρ`(P̃ εf +G`(S̃εf ))S̃εf and Θ̃ε

g,f := ρg(P̃ εf +Gg(S̃εf ))(1− S̃εf ), (4.4)

where P̃ εf := ΠεP εf is the extension of the function P εf .
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4.2. Compactness of the sequences {Θ̃ε
`,f}ε>0, {Θ̃ε

g,f}ε>0. The following con-
vergence result is valid.

Proposition 4.1. Under our standing assumptions there exist the functions L1, L2

such that

Θ̃ε
`,f → L1 strongly in L2(ΩT ), (4.5)

Θ̃ε
g,f → L2 strongly in L2(ΩT ). (4.6)

Proof. We will prove the convergence result for the sequence {Θ̃ε
`,f}ε>0, the corre-

sponding result for the sequence {Θ̃ε
g,f}ε>0 can be obtained by similar arguments.

The scheme of the proof is as follows. We apply the compactness criterion of
Kolmogorov-Riesz-Fréchet (see, e.g., [24, 35]) in the space L1(ΩT ). To this end we
have to obtain the moduli of continuity with respect to the space and temporal
variables (see Lemmata 4.2, 4.6 below). Finally, the uniform boundedness of the
function Θε

`,f imply the desired convergence result (4.5) in the space L2(ΩT ). �

We start with the following result which can be proved by arguments similar to
those from Lemma 4.2 in [9].

Lemma 4.2 (Modulus of continuity with respect to the space variable). Let con-
ditions (A1)–(A8) be fulfilled. Then for |∆x| sufficiently small,∫ T

0

∫
Ω

∣∣Θ̃ε
`,f (x+ ∆x, t)− Θ̃ε

`,f (x, t)
∣∣2 dx dt 6 C |∆x|θ, (4.7)

where θ ∈ (0, 1) is defined in condition (A7).

Now we turn to the derivation of the modulus of continuity with respect to the
temporal variable. To do this, for any δ > 0, we introduce the functions

Sε,δr := min
{

1− δ,max(δ, Sεr)
}

with r = f,m.

Let us estimate the norm of the function Sε,δr (r = f,m) in L2(0, T ;H1(Ωεr,T )).

Lemma 4.3. Under our standing assumptions,

‖Sε,δf ‖L2(0,T ;H1(Ωε
f,T )) + ε‖Sε,δm ‖L2(0,T ;H1(Ωε

m,T )) 6 C δ
−η, (4.8)

where η := (κ` + κg) and C is a constant that does not depend on ε, δ.

Proof. We consider the function Sε,δf , the estimate for the function Sε,δm can be
obtained in a similar way. It is evident that Sε,δf (as well as Sεf ) belongs to the
space L2(Ωεf,T ). Now we are going to estimate ∇Sε,δf . From Lemma 3.4 we know
that

‖∇β(Sεf )‖L2(Ωε
f,T ) 6 C.

Then it is clear that

‖∇β(Sε,δf )‖L2(Ωε
f,T ) 6 ‖∇β(Sεf )‖L2(Ωε

f,T ) 6 C, (4.9)

where C is a constant that does not depend on ε, δ. Moreover, condition (A5)
implies the inequalities:

λ`(S
ε,δ
f ) > C1δ

κ` and λg(S
ε,δ
f ) > C2δ

κg . (4.10)



EJDE-2016/52 IMMISCIBLE COMPRESSIBLE TWO-PHASE FLOW 11

Then taking into account the definition of the functions β and α (see (2.15)) and
conditions (A4), (A5), from (4.10), we have that

α(Sε,δf ) > C1δ
(κ`+κg) with C1 :=

C1C2

2
min
s∈[0,1]

|P ′c(s)|. (4.11)

Then from (4.9), (4.11)

C > ‖∇β(Sε,δf )‖2L2(Ωε
f,T ) =

∫ T

0

∫
Ωε

f

α2(Sε,δf )|∇Sε,δf |
2 dx dt

> C2
1δ

2(κ`+κg)

∫ T

0

∫
Ωε

f

|∇Sε,δf |
2 dx dt

= C2
1δ

2(κ`+κg)‖∇Sε,δf ‖
2
L2(Ωε

f,T ).

(4.12)

The inequality (4.11) implies that

‖∇Sε,δf ‖
2
L2(Ωε

f,T ) 6 C δ
−2(κ`+κg) (4.13)

and inequality (4.8) is proved. This completes the proof of Lemma 4.3. �

In what follows we use a technical lemma which can be proved using the Fubini
theorem.

Lemma 4.4. For h sufficiently small, 0 < h < T
2 and for integrable functions

G1(t), G2(t) it holds:∫ T

0

G1(t)
(∫ min(t+h,T )

max(t,h)

G2(τ) dτ
)
dt =

∫ T

h

G2(t)
(∫ t

t−h
G1(τ) dτ

)
dt.

Now, for ε > 0 and 0 < h < T
2 , let us introduce the function

ϕε,δ,h(x, t) :=
∫ min(t+h,T )

max(t,h)

h∂−hΘε,δ
` (x, τ) dτ,

with ∂−hv(t) :=
v(t)− v(t− h)

h
,

(4.14)

where
Θε,δ
` (x, t) := ρ`(P ε +G`(Sε,δ))Sε,δ. (4.15)

The properties of ϕε,δ,h are described by the next lemma.

Lemma 4.5. Let ε > 0, 0 < δ < 1, and let h > 0 be small enough. There exist
a constant C which does not depend on ε, δ, and h such that for the sequence of
functions defined by (4.14) it holds

ϕε,δ,h ∈ L2(0, T ;H1
Γ1

(Ω)); (4.16)

ϕε,δ,h(x, T ) = 0; (4.17)

‖ϕε,δ,h‖L2(ΩT ) 6 C h; (4.18)

‖∇ϕε,δ,h‖L2(Ωε
f,T ) 6 C h δ

−η; (4.19)

ε‖∇ϕε,δ,h‖L2(Ωε
m,T ) 6 C h δ

−η. (4.20)

Here
η := (κ` + κg). (4.21)
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Proof. The regularity property (4.16) follows immediately from Lemma 3.4 and
Lemma 4.3. Moreover, taking into account that Sε = 1 and P ε = const on Γ1 ×
(0, T ) (see Section 2), according to the definition of the function Sε,δ, we have that
ϕε,δ,h = 0 on Γ1 × (0, T ).

Result (4.17) follows directly from the definition of the function ϕε,δ,h. In fact,

ϕε,δ,h(x, T ) =
∫ min(T+h,T )

max(T,h)

h∂−hΘε,δ
` (x, τ) dτ =

∫ T

T

h ∂−hΘε,δ
` (x, τ) dτ = 0.

Bound (4.18) also follows immediately from the definition of ϕε,δ,h since min(t+
h, T )−max(t, h) 6 h and the function Θε,δ

` is uniformly bounded in L∞(ΩT ).
For bound (4.19), we have

‖∇ϕε,δ,h‖2L2(Ωε
f,T )

6
∫

Ωε
f,T

[ ∫ min(t+h,T )

max(t,h)

∣∣∇Θε,δ
`,f (x, τ)−∇Θε,δ

`,f (x, τ − h)
∣∣ dτ]2 dx dt := Jε,δ.

(4.22)

Let us estimate the right-hand side of (4.22). Since [min(t+h, T )−max(t, h)] 6 h,
from Cauchy’s inequality, for a.e. (x, t) ∈ Ωεf,T we obtain∫ min(t+h,T )

max(t,h)

∣∣∇Θε,δ
`,f (x, τ)−∇Θε,δ

`,f (x, τ − h)
∣∣dτ

6 h1/2
[ ∫ min(t+h,T )

max(t,h)

∣∣∇Θε,δ
`,f (x, τ)−∇Θε,δ

`,f (x, τ − h)
∣∣2dτ]1/2.

Therefore, from this inequality we obtain

Jε,δ 6 C h
∫ T

0

∫
Ωε

f

[ ∫ min(t+h,T )

max(t,h)

∣∣∇Θε,δ
`,f (x, τ)−∇Θε,δ

`,f (x, τ−h)
∣∣2 dτ] dx dt. (4.23)

Now we apply Lemma 4.4 with G1(t) := 1 and G2(t) := |∇Θε,δ
`,f (x, τ)−∇Θε,δ

`,f (x, τ −
h)|2 in the right–hand side of (4.23). We have:∫ T

0

[ ∫ min(t+h,T )

max(t,h)

∣∣∇Θε,δ
`,f (x, τ)−∇Θε,δ

`,f (x, τ − h)
∣∣2 dτ] dt

=
∫ T

h

∣∣∇Θε,δ
`,f (x, t)−∇Θε,δ

`,f (x, t− h)
∣∣2 [ ∫ t

t−h
1 dτ

]
dt

= h

∫ T

h

∣∣∇Θε,δ
`,f (x, t)−∇Θε,δ

`,f (x, t− h)
∣∣2 dt.

Then, by (4.23), we deduce that

Jε,δ

6 C h2

∫
Ωε

f

∫ T

h

∣∣∇Θε,δ
`,f (x, t)−∇Θε,δ

`,f (x, t− h)
∣∣2 dt dx

6 Ch2
[ ∫

Ωε
f

∫ T

h

∣∣∇Θε,δ
`,f (x, t)

∣∣2 dt dx+
∫

Ωε
f

∫ T

h

∣∣∇Θε,δ
`,f (x, t− h)

∣∣2 dt dx]
6 C h2‖∇Θε,δ

`,f‖
2
L2(Ωε

f,T ).

(4.24)
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It remains to estimate the right-hand side of (4.24). To this end we rewrite
∇Θε,δ

`,f as follows:

∇Θε,δ
`,f = ρ`

(
P ε +G`(Sε,δ)

)
∇Sε,δ + ρ′` S

ε,δ∇P ε + ρ′` S
ε,δ∇G`(Sε,δ). (4.25)

Then, from (4.25), conditions (A3), (A5), and the definition of the function G`, we
have

‖∇Θε,δ
`,f‖

2
L2(Ωε

f,T )

6 ρ2
max‖∇Sε,δ‖2L2(Ωε

f,T ) + C
[
‖∇P ε‖2L2(Ωε

f,T ) + ‖P ′c∇Sε,δ‖2L2(Ωε
f,T )

]
.

(4.26)

To estimate the right-hand side of (4.26), we make use of condition (A4), bound
(4.8), and Lemma 4.3. Taking into account that δ is sufficiently small, we obtain

‖∇Θε,δ
`,f‖

2
L2(Ωε

f,T ) 6 C δ
−2(κ`+κg). (4.27)

Now, from (4.22), (4.24), and (4.27), for δ sufficiently small, we obtain

‖∇ϕε,δ,h‖2L2(Ωε
f,T ) 6 C h

2 δ−2(κ`+κg) (4.28)

and the bound (4.19) is proved.
The proof of the bound (4.20) can be done by arguments similar to ones used in

the proof of (4.19). This completes the proof of Lemma 4.5. �

Now we are in a position to estimate the modulus of continuity of the function
Θ̃ε
`,f .

Lemma 4.6 (Modulus of continuity with respect to time ). Under our standing
assumptions, for all h ∈ (0, T ) and δ sufficiently small, we have∫ T

h

∫
Ω

∣∣Θ̃ε
`,f (x, t)− Θ̃ε

`,f (x, t− h)
∣∣2 dx dt 6 Chσ with σ := min

{1
2
,

1
2η
}
, (4.29)

where η is defined in (4.21) and C is a constant which does not depend on ε and h.

Proof. Let us insert the function ϕε,δ,h = ϕε,δ,h(x, t) in equation (2.25). We have∫
ΩT

Φε(x)
∂Θε

`

∂t
ϕε,δ,h dx dt

+
∫

ΩT

Kε(x)ρ̃ε`
{
λ`(Sε)

(
∇P ε − ρ̃ε`~g

)
+∇β(Sε)

}
· ∇ϕε,δ,h dx dt = 0.

(4.30)

Taking into account the definition of the function ϕε,δ,h and condition (A1), for the
first term in the left-hand side of (4.30), we have

Iε1(ϕε,δ,h) : =
∫

ΩT

Φε(x)
∂Θε

`

∂t
ϕε,δ,h dx dt

=
∫ T

0

∫
Ωε

f

Φf
∂Θε

`,f

∂t

[ ∫ min(t+h,T )

max(t,h)

h∂−hΘε,δ
`,f (x, τ) dτ

]
dx dt

+
∫ T

0

∫
Ωε

m

Φm
∂Θε

`,m

∂t

[ ∫ min(t+h,T )

max(t,h)

h∂−hΘε,δ
`,m(x, τ) dτ

]
dx dt.
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Now Lemma 4.4 implies

Iε1(ϕε,δ,h) =
∫ T

h

∫
Ωε

f

Φf h ∂−hΘε,δ
`,f (x, t)

[ ∫ t

t−h

∂Θε
`,f

∂τ
, dτ
]
dx dt

+
∫ T

h

∫
Ωε

m

Φm h ∂−hΘε,δ
`,m(x, t)

[ ∫ t

t−h

∂Θε
`,m

∂τ
dτ
]
dx dt

= Φf
∫ T

h

∫
Ωε

f

{
Θε
`,f (x, t)−Θε

`,f (x, t− h)
}

×
{

Θε,δ
`,f (x, t)−Θε,δ

`,f (x, t− h)
}
dx dt

+ Φm
∫ T

h

∫
Ωε

m

{
Θε
`,m(x, t)−Θε

`,m(x, t− h)
}

×
{

Θε,δ
`,m(x, t)−Θε,δ

`,m(x, t− h)
}
dx dt

: = J
ε,δ
f + Jε,δm .

(4.31)

Considering the integrand in the first term of (4.31), we have[
Θε
`,f (x, t)−Θε

`,f (x, t− h)
] [

Θε,δ
`,f (x, t)−Θε,δ

`,f (x, t− h)
]

=
∣∣Θε

`,f (x, t)−Θε
`,f (x, t− h)

∣∣2
+
[
Θε
`,f (x, t)−Θε

`,f (x, t− h)
] [

Θε,δ
`,f (x, t)−Θε

`,f (x, t)
]

−
[
Θε
`,f (x, t)−Θε

`,f (x, t− h)
] [

Θε,δ
`,f (x, t− h)−Θε

`,f (x, t− h)
]

: =
∣∣Θε

`,f (x, t)−Θε
`,f (x, t− h)

∣∣2 + T ε,δ,h
1 (x, t)− T ε,δ,h

2 (x, t).

(4.32)

Then the first term in the right–hand side of (4.31) can be rewritten as

J
ε,δ
f = Φf

∫ T

h

∫
Ωε

f

∣∣Θε
`,f (x, t)−Θε

`,f (x, t− h)
∣∣2 dx dt

+ Φf
∫ T

h

∫
Ωε

f

T ε,δ,h
1 (x, t) dx dt− Φf

∫ T

h

∫
Ωε

f

T ε,δ,h
2 (x, t) dx dt.

(4.33)

It is easy to see that∣∣Θε,δ
`,f (x, t)−Θε

`,f (x, t)
∣∣ 6 C δ and

∣∣Θε,δ
`,f (x, t− h)−Θε

`,f (x, t− h)
∣∣ 6 C δ,

where C is a constant that does not depend on ε, δ, h. Let us consider, for example,
the first bound, the second one can be obtained by similar arguments. We have∣∣Θε

`,f (x, t)−Θε,δ
`,f (x, t)

∣∣
6
∣∣ρ`(P ε +G`(Sεf ))Sεf − ρ`(P ε +G`(Sεf ))Sε,δf

∣∣
+
∣∣ρ`(P ε +G`(Sεf ))Sε,δf − ρ`(P

ε +G`(S
ε,δ
f ))Sε,δf

∣∣
6 ρmax

∣∣Sεf − Sε,δf ∣∣+
∣∣ρ`(P ε +G`(Sεf ))− ρ`(P ε +G`(S

ε,δ
f ))

∣∣
6 ρmaxδ + ρ′`

∣∣G`(Sεf )−G`(Sε,δf )
∣∣

6 ρmaxδ + ρ′`
∣∣Pc(Sεf )− Pc(Sε,δf )

∣∣
6 ρmaxδ + ρ′` P

′
c

∣∣Sεf − Sε,δf ∣∣ 6 C δ.

(4.34)



EJDE-2016/52 IMMISCIBLE COMPRESSIBLE TWO-PHASE FLOW 15

Since the function Θε
`,f is uniformly bounded in ΩT , from (4.33) and (4.34) we

have

J
ε,δ
f = Φf

∫ T

h

∫
Ωε

f

∣∣Θε
`,f (x, t)−Θε

`,f (x, t− h)
∣∣2 dx dt+ jε,δf (4.35)

with
∣∣jε,δf ∣∣ 6 Cδ, where C is a constant that does not depend on ε, δ, h.

In a similar way, one obtains

Jε,δm = Φm
∫ T

h

∫
Ωε

m

∣∣Θε
`,m(x, t)−Θε

`,m(x, t− h)
∣∣2 dx dt+ jε,δm (4.36)

with
∣∣jε,δm ∣∣ 6 Cδ, where C is a constant that does not depend on ε, δ, h. Then we

obtain

Iε1(ϕε,δ,h) > Φf
∫ T

h

∫
Ωε

f

∣∣Θε
`,f (x, t)−Θε

`,f (x, t− h)
∣∣2 dx dt+ jε,δf + jε,δm . (4.37)

Next, we estimate the right-hand side of (4.30). To this end we use the notation:∫
ΩT

Kε(x)ρ̃ε`
{
λ`(Sε)

(
∇P ε−ρ̃ε`~g

)
+∇β(Sε)

}
·∇ϕε,δ,h dx dt =: Iεf (ϕε,δ,h)+Iεm(ϕε,δ,h).

We have∣∣Iεf (ϕε,δ,h)
∣∣+
∣∣Iεm(ϕε,δ,h)

∣∣
6 ‖Kf ρ̃

ε
`

{
λ`(Sεf )∇P εf +∇β(Sεf )− ρ̃ε`λ`(Sεf )~g

}
‖L2(Ωε

f,T )‖∇ϕε,δ,h‖L2(Ωε
f,T )

+ ε‖Kmρ̃
ε
`

{
λ`(Sεm)∇P εm +∇β(Sεm)− ρ̃ε`λ`(Sεm)~g

}
‖L2(Ωε

m,T )

× ε‖∇ϕε,δ,h‖L2(Ωε
m,T ).

(4.38)

Then for Iεf (ϕε,δ,h), Iεm(ϕε,δ,h) from (A3), (A5), the a priori estimates (3.5), (4.19),
and (4.20) we obtain ∣∣Iεf (ϕε,δ,h)

∣∣+
∣∣Iεm(ϕε,δ,h)

∣∣ 6 C1 h δ
−η. (4.39)

From (4.30), (4.37), and (4.39), we obtain the bound∫ T

h

∫
Ωε

f

∣∣Θε
`,f (x, t)−Θε

`,f (x, t− h)
∣∣2 dx dt 6 C1hδ

−η + C2δ. (4.40)

Now we set: δ = δ(h) = h1/2η. Then from (4.40) we have∫ T

h

∫
Ωε

f

∣∣Θε
`,f (x, t)−Θε

`,f (x, t−h)
∣∣2 dx dt 6 C hσ with σ := min{1

2
,

1
2η
}. (4.41)

Finally, taking into account the fact that the extension is by reflection, from
(4.41), we obtain the desired estimate (4.29) and Lemma 4.6 is proved. �

By the Kolmogorov-Riesz-Fréchet compactness criterion, the compactness of the
sequences {Θ̃ε

`,f}ε>0, {Θ̃ε
g,f}ε>0 is a consequence of Lemmata 4.2, 4.6 (evidently,

with the corresponding change of the index ”`” by ”g” for the sequence {Θ̃ε
g,f}ε>0).

It assures the following convergence results:

Θ̃ε
`,f → L1 strongly in L1(ΩT ), (4.42)

Θ̃ε
g,f → L2 strongly in L1(ΩT ). (4.43)
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Now taking into account the L∞-boundedness of the functions Θ̃ε
`,f , Θ̃ε

g,f we, finally,
arrive to the desired convergence results (4.5), (4.6). This completes the proof of
Proposition 4.1.

Corollary 4.7. There exist the functions P, S ∈ L2(ΩT ) such that (up to a subse-
quence), we have

P̃ εf → P a.e in ΩT ; (4.44)

S̃εf → S a.e in ΩT . (4.45)

Proof. By Proposition 4.1 we conclude that there exist the functions L1, L2 such
that

Θ̃ε
`,f → L1 strongly in L2(ΩT ) and a.e. in ΩT ;

Θ̃ε
g,f → L2 strongly in L2(ΩT ) and a.e. in ΩT .

Now, we will use the fact that the function D given by

D(S̃εf , P̃
ε
f ) = (Θ̃ε

`,f (S̃εf , P̃
ε
f ), Θ̃ε

g,f (S̃εf , P̃
ε
f ))

is a diffeomorphism from [0, 1] × R to D([0, 1] × R) (for more details see [7]) so
it has continuous inverse. Therefore, almost everywhere in ΩT convergence of
Θ̃ε
r,f (S̃εf , P̃

ε
f ) (r ∈ {`, g}) implies (4.44) and (4.45). Corollary 4.7 is proved.

4.3. Two–scale convergence results. In this section, taking into account the
compactness results from the previous section, we formulate the convergence results
for the sequences {P̃ εf }ε>0, {S̃εf}ε>0, {Θ̃ε

r,f}ε>0 with r ∈ {`, g}. In this paper the
homogenization process for the problem is rigorously obtained by using the two-
scale approach, see, e.g., [2]. For reader’s convenience, let us recall the definition
of the two-scale convergence.

Definition 4.8. A sequence of functions {vε}ε>0 ⊂ L2(ΩT ) two-scale converges to
v ∈ L2(ΩT ×Y ) if ‖vε‖L2(ΩT ) 6 C, and for any test function ϕ ∈ C∞(ΩT ;Cper(Y ))
the following relation holds

lim
ε→0

∫
ΩT

vε(x, t)ϕ(x,
x

ε
, t) dx dt =

∫
ΩT×Y

v(x, y, t)ϕ(x, y, t) dy dx dt.

This convergence is denoted by vε(x, t) 2s
⇀ v(x, y, t).

Now we summarize the convergence results for the sequences {P̃ εf }ε>0, {S̃εf}ε>0,
{Θ̃ε

r,f}ε>0 (r ∈ {`, g}). They are given by the following lemma.

Lemma 4.9. There exist a function S such that 0 6 S 6 1 a.e. in ΩT , and
functions P ∈ L2(0, T ;H1(Ω)), P1, β1 ∈ L2(ΩT ;H1

per(Y )) such that up to a subse-
quence,

S̃εf → S strongly in L2(ΩT ) and a.e. in ΩT ; (4.46)

β(S̃εf )→ β(S) strongly in L2(ΩT ); (4.47)

P̃ εf → P strongly in L2(ΩT ) and a.e. in ΩT ; (4.48)

P̃ εf ⇀ P weakly in L2(0, T ;H1(Ω)); (4.49)

Θ̃ε
`,f ⇀ ρ`(P + G` (S))S strongly in L2(ΩT ); (4.50)

Θ̃ε
g,f ⇀ ρg(P + Gg(S))(1− S) strongly in L2(ΩT ); (4.51)
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∇P̃ εf (x, t) 2s−→ ∇P (x, t) +∇yP1(x, t, y); (4.52)

∇β(S̃εf )(x, t) 2s−→ ∇β(S)(x, t) +∇yβ1(x, t, y). (4.53)

The proof of the above lemma is based on the a priori estimates obtained in
Section 3, Proposition 4.1, Corollary 4.7, and two-scale convergence arguments
similar to those in [2] (see also Lemma 4.8 from [4] for similar arguments).

5. Dilation operator and convergence results

It is known that by the nonlinearities and the strong coupling of the problem,
the two–scale convergence does not provide an explicit form for the source terms
appearing in the homogenized model, see for instance [23, 32, 53]. To overcome
this difficulty the authors make use of the dilation operator. Here we refer to
[15, 23, 32, 53] for the definition and main properties of the dilation operator. Let
us also notice that the notion of the dilation operator is closely related to the
notion of the unfolding operator. We refer here, e.g., to [33] for the definition and
the properties of this operator.

The outline of the section is as follows. First, in Section 5.1 we introducethe defi-
nition of the dilation operator and describe its main properties. Then in Section 5.2
we obtain the equations for the dilated saturation and the global pressure functions
and the corresponding uniform estimates. Finally, in Section 5.3 we consider the
convergence results for the dilated functions.

5.1. Definition of the dilation operator and its main properties.

Definition 5.1. For a given ε > 0, we define a dilation operator Dε mapping
measurable functions defined in Ωεm,T to measurable functions defined in ΩT × Ym
by

(Dεψ)(x, y, t) :=

{
ψ(cε(x) + εy, t), if cε(x) + εy ∈ Ωεm;
0, otherwise,

(5.1)

where cε(x) := εk if x ∈ ε(Ym + k). Here k ∈ Zd denotes the lattice translation
point of the ε-cell domain which contains x.

The basic properties of the dilation operator are given by the following lemma
(see [15, 53]).

Lemma 5.2. Let v, w ∈ L2(0, T ;H1(Ωεm)). Then we have

∇yDεv = εDε(∇xv) a.e. in ΩT × Ym; (5.2)

‖Dεv‖L2(ΩT×Ym) = ‖v‖L2(ΩT );

‖∇yDεv‖L2(ΩT×Ym) = ε‖Dε∇x v‖L2(Ωε
m,T );

(Dεv,Dεw)L2(ΩT×Ym) = (v, w)L2(Ωε
m,T );

(Dεv, w)L2(ΩT×Ym) = (v,Dεw)L2(ΩT×Ym).

The following lemma gives the link between the two-scale and the weak conver-
gence (see, e.g., [23]).

Lemma 5.3. Let {vε}ε>0 be a uniformly bounded sequence in L2(Ωεm,T ) that sat-
isfies the conditions:

(i) Dεvε ⇀ v0 weakly in L2(ΩT ;L2
per(Ym));
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(ii) 1εm(x)vε 2s
⇀ v? ∈ L2(ΩT ;L2

per(Ym)).

Then v0 = v? a.e. in ΩT × Ym.

Also we have the following result (see, e.g., [32, 53]).

Lemma 5.4. If vε ∈ L2(Ωεm,T ) and 1εm(x)vε 2s→ v ∈ L2(ΩT ;L2
per(Ym)) then Dεvε

converges to v strongly in Lq(ΩT × Ym), where ” 2s→ ” denotes the strong two–scale
convergence. If v ∈ L2(ΩT ) is considered as an element of L2(ΩT × Ym) constant
in y, then Dεv converges strongly to v in L2(ΩT × Ym).

5.2. Dilated functions DεSεm, D
εP εm and their properties. Let us introduce

the following notation for the dilated functions defined on the matrix part of the
reservoir Ω:

pεm := DεP εm, sεm := DεSεm, ϑεm := Dεβεm = β(sεm), (5.3)

and
θε`,m := DεΘε

`,m = ρ`(pεm +G` (sεm)) sεm,

θεg,m := DεΘε
g,m = ρg(pεm +Gg (sεm)) (1− sεm).

(5.4)

The goal of this section is to derive the equations for the dilated functions sεm, p
ε
m

and using Lemma 5.2 to obtain the corresponding uniform estimates.
First, we establish the following result.

Lemma 5.5. For any ε > 0 and for a.e. x ∈ Ω, the dilated functions sεm, p
ε
m

defined by (5.3) are the solutions of the system

0 6 sεm 6 1;

Φm
∂θε`,m
∂t

− divy
{
Kmρ` (sεm, p

ε
m)
[
λ`(sεm)∇pεm

+∇ϑεm − ελ`(sεm)ρ` (sεm, p
ε
m)~g

]}
= 0;

Φm
∂θεg,m
∂t

− divy
{
Km ρg(sε, pεm)

[
λg(sεm)∇pεm

−∇ϑεm − ελg(sεm)ρg(sεm, p
ε
m)~g

]}
= 0

(5.5)

in L2(0, T ;H−1(Ym)). Here ρk (sεm, p
ε
m) := ρk(pεm +Gk (sεm)) (k = `, g).

The proof of the above can be done by the arguments similar to those used in
the proof of [53, Lemma 6.7].

We complete system (5.5) with the boundary and initial conditions. The bound-
ary conditions are

pεm(x, y, t) = P εf (εy + cε(x), t), ϑεm(x, y, t) = βεf (εy + cε(x), t) (5.6)

in H1/2(Γfm) for (x, t) ∈ Ωεm,T , where βεf := β(Sεf ). The initial conditions are

pεm(x, y, 0) = DεP 0
m(x, y), sεm(x, y, 0) = DεS0

m(x, y) in Ω× Ym. (5.7)

For x outside the matrix part by the definition (5.1), we set

pεm(x, y, t) = sεm(x, y, t) = 0 in H1/2(Γfm) for x ∈ Ω \ Ωεm, t ∈ (0, T ). (5.8)
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Remark 5.6. There is no confusion that in (5.7) we use again the notation Dε,
for the dilatation operator defined for L2(Ω)-functions which maps them to the
functions in L2(Ω× Ym) by the formula

(Dεϕ)(x, y) := ϕ(εy + cε(x)). (5.9)

Remark 5.7. We note that problem (5.5) with non-homogeneous Dirichlet bound-
ary conditions (5.6) and initial conditions (5.7) corresponds to a family of problems
in Ym × (0, T ) parameterized by the slow variable x and depending on it through
the boundary data (5.6).

The following lemma contains the uniform a priori estimates for the dilated
solutions sεm, p

ε
m of (5.5).

Lemma 5.8. Let (pεm, s
ε
m) be a solution to (5.5)-(5.7). There exists a constant C

that does not depend on ε and such that

0 6 sεm 6 1 a.e. in ΩT × Ym; (5.10)

‖pεm‖L2(ΩT ;H1
per(Ym)) + ‖ϑεm‖L2(ΩT ;H1

per(Ym)) 6 C; (5.11)

‖∂t(Φm θε`,m)‖L2(ΩT ;H−1
per(Ym)) + ‖∂t(Φm θεg,m)‖L2(ΩT ;H−1

per(Ym)) 6 C; (5.12)

where ϑεm := Dεβεm = β(sεm).

Proof. Statement (5.10) is evident. The uniform estimate (5.11) easy follow from
the uniform bounds (3.5), (3.7), and Lemma 5.2. The bound (5.12) follows from
Lemmata 5.2, 3.5. The proof is complete. �

5.3. Convergence results for the dilated functions pεm, s
ε
m, θ

ε
`,m, θ

ε
g,m. In this

section we establish convergence results which will be used below to obtain the
homogenized system. From Lemmata 5.3, 5.8 we get the following convergence
results.

Lemma 5.9. Let (pεm, s
ε
m) be a solution to (5.5)–(5.7). Then (up to a subsequence),

χεm S
ε
m

2s
⇀ s ∈ L2(ΩT ;L2

per(Ym)), sεm ⇀ s weakly in L2(ΩT × Ym); (5.13)

χεm P
ε
m

2s
⇀ p ∈ L2(ΩT ;L2

per(Ym)), pεm ⇀ p weakly in L2(ΩT ;H1(Ym)); (5.14)

ε∇xP εm
2s
⇀ ∇yp ∈ L2(ΩT ;L2

per(Ym)); (5.15)

χεmβ(Sεm) 2s
⇀ ϑ?; β(sεm) ⇀ ϑ? weakly in L2(ΩT ;H1(Ym));

ε∇xβ(Sεm) 2s
⇀ ∇yϑ?,

(5.16)

where χεm = χεm(x) is the characteristic function of the subdomain Ωεm.

Remark 5.10. The limit ϑ? will be identified below. More precisely, it will be
shown that ϑ? = β(s).

It is clear that the convergence results of Lemma 5.9 above are not sufficient
for derivation of the equations for the limit functions s, p. In order to overcome
this difficulty, we introduce the restrictions of the dilated functions sεm, pεm which
are defined below. The key feature of the newly introduced functions is that they
possess more compactness properties than the dilated functions introduced in (5.3),
(5.4). To this end, following [32], we fix x = x0 ∈ Ω and define the restrictions of
sεm, pεm to the ε–cell containing the point x0. These functions are defined in the
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domain Ym× (0, T ) and are constants in the slow variable x. In order to obtain the
uniform estimates for the restricted functions (they are similar to the corresponding
estimates for P εf , Sεf from Section 3) we make use of the estimates (5.10)–(5.11).
Then we proceed as follows. First, we define the restrictions of sεm, pεm to a cell Kε

x0

which is a cube containing x0 ∈ Ω and the length ε. We denote by k(x0, ε) ∈ Zd
such that Kε

x0
:= ε

(
Y + k(x0, ε)

)
. Due to the definition of the dilation operator,

the functions sεm, pεm are constant in x in Kε
x0

. The restricted functions are given
by:

sεm,x0
(y, t) :=

{
sεm, if x ∈ Kε

x0
;

0, otherwise;
pεm,x0

(y, t) :=

{
pεm, if x ∈ Kε

x0
;

0, otherwise.
(5.17)

For any ε > 0, the pair of functions (sεm,x0
, pεm,x0

) is a solution to (5.5)–(5.7) in
Ym × (0, T ).

Now we obtain the uniform, in ε, for the functions sεm,x0
, pεm,x0

defined in (5.17),
for a.e. x0 ∈ Ω. We have.

Lemma 5.11. For a.e. x0 ∈ Ω, there is a constant C = C(x0) which does not
depend on ε and such that

‖pεm,x0
‖L2(0,T ;H1

per(Ym)) + ‖ϑεm,x0
‖L2(0,T ;H1

per(Ym)) 6 C(x0), (5.18)

‖∂t(Φm θε`,m,x0
)‖L2(0,T ;H−1

per(Ym)) + ‖∂t(Φm θεg,m,x0
)‖L2(0,T ;H−1

per(Ym)) 6 C; (5.19)

where

θε`,m,x0
:= ρ`(pεm,x0

+G` (sεm,x0
)) sεm,x0

,

θεg,m,x0
:= ρg(pεm,x0

+Gg (sεm,x0
)) (1− sεm,x0

).

Next we establish a compactness for the families {θε`,m,x0
}ε>0 and {θεg,m,x0

}ε>0.
We obtain this compactness result by applying [4, Lemma 4.2].

Proposition 5.12. Under our standing assumptions, for a.e. x0 ∈ Ω, the families
{θεw,m,x0

}ε>0 and {θεg,m,x0
}ε>0 are compact sets in L2(Ym × (0, T )).

6. Formulation of the main result

We study the asymptotic behavior of the solution to problem (2.2) (through the
equivalent problem (2.18)) as ε → 0. In particular, we are going to show that the
effective model is

0 6 S 6 1 in ΩT ;

Φ?
∂Ξ?`
∂t
− divx

{
K? ρ` λ`(S)

[
∇P` − ρ`~g

]}
= Q` in ΩT ;

Φ?
∂Ξ?g
∂t
− divx

{
K? ρg λg(S)

[
∇Pg − ρg~g

]}
= Qg in ΩT ;

Pc(S) = Pg − P` in ΩT .

(6.1)

Here we use the following notation:
• S, P`, Pg denote the homogenized water saturation, water pressure, and gas
pressure, respectively.
• Φ? denotes the effective porosity and is given by

Φ? := Φf
|Yf |
|Ym|

, (6.2)
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where |Yr| is the measure of the set Yr, r = f,m.
• K? is the homogenized tensor with the entries K?

ij defined by:

K?
ij :=

Kf

|Ym|

∫
Yf

[∇yξi + ~ei][∇yξj + ~ej ] dy, (6.3)

where ξj is a solution of the auxiliary problem

−∆yξj = 0 in Yf ;

∇yξj · ~ν = −~ej · ~ν on Γfm;

y 7→ ξj(y) Y -periodic.
(6.4)

• The functions Ξ?` ,Ξ
?
g are

Ξ?` := Sρ` (P`) and Ξ?g := (1− S)ρg (Pg). (6.5)

For almost all point x ∈ Ω a matrix block Ym ⊂ Rd is suspended topologically.
Equations for flow in a matrix block are given by

0 6 s 6 1 in ΩT × Ym;

Φm
∂θ?`
∂t
− divy

{
Km ρ`(p`)λ` (s)∇yp`

}
= 0 in ΩT × Ym;

Φm
∂θ?g
∂t
− divy

{
Kmρg(pg)λg(s)∇ypg

}
= 0 in ΩT × Ym;

Pc(s) = pg − p` in ΩT × Ym.

(6.6)

Here we use the following notation:
• s, p`, pg denote the water saturation, the water and gas pressures in the block
Ym, respectively.
• The functions θ?` , θ

?
g are defined by

θ?` := sρ`(p`) and θ?g := (1− s)ρg(pg). (6.7)

For any x ∈ Ω and t > 0, the matrix-fracture sources are given by

Q` := − Φm
|Ym|

∫
Ym

∂θ?`
∂t

(x, y, t) dy and Qg := − Φm
|Ym|

∫
Ym

∂θ?g
∂t

(x, y, t) dy. (6.8)

The boundary conditions for the effective system (6.1) are given by

Pg(x, t) = P`(x, t) = 0 on Γ1 × (0, T );

K?ρg(Pg)λg(S)
(
∇Pg − ρg(Pg)~g

)
· ~ν = 0 on Γ2 × (0, T );

K?ρ`(P`)λ` (S)
(
∇P` − ρ`(P`)~g

)
· ~ν = 0 on Γ2 × (0, T ).

(6.9)

The interface conditions for the system (6.6) are given by:

P`(x, t) = p`(x, y, t) on ΩT × Γfm;

Pg(x, t) = pg(x, y, t) on ΩT × Γfm.
(6.10)

Finally, the initial conditions read

S(x, 0) = S0(x) and Pg(x, 0) = p0
g(x) in Ω, (6.11)

s(x, y, 0) = S0(x) and pg(x, y, 0) = p0
g(x) in Ω× Ym. (6.12)

The main result of the paper reads as follows.
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Theorem 6.1. Let assumptions (A1)–(A8) be fulfilled. Then the solution of initial
problem (2.2) converges (up to a subsequence) in the two-scale sense to a weak
solution of homogenized problem (6.1).

7. Proof of Theorem 6.1

The proof of the homogenization result will be done in several steps. Using
the convergence and compactness results from Section 4 we pass to the limit in
equations (2.25), (2.26). This is done in Section 7.1. The passage to the limit in
the matrix blocks makes use of the dilation operator defined in Section 5 above.
In the passage to the limit in (2.25), (2.26) we see that the homogenized equations
contain, first of all, the corrector functions P1, β1 defined in Lemma 4.9 as well as
non–explicit limits L`,m, Lg,m (see Section 7.1). The corrector functions are then
identified in Section 7.2. Having obtained the homogenized equations in terms of
the global pressure and saturation, we can reformulate these equations in terms of
new unknown functions that it is naturally to call the homogenized phase pressures.
They are defined as follows: P` := P + G`(S) and Pg := P + Gg(S). However, in
these equations the limits L`,m, Lg,m are still non identified. To obtain the explicit
form of these limits we make use of the ideas from [32]. This completes the proof
of the main result of the paper.

7.1. Passage to the limit in the equation (2.25), (2.26). We set

ϕ`(x,
x

ε
, t) : = ϕ(x, t) + εζ(x,

x

ε
, t)

= ϕ(x, t) + εζ1(x, t) ζ2(
x

ε
)

= ϕ(x, t) + εζε(x, t),

(7.1)

where ϕ ∈ D(ΩT ), ζ1 ∈ D(ΩT ), ζ2 ∈ C∞per(Y ), and plug the function ϕ` in (2.25).
This yields

− Φf
∫

ΩT

χεf (x)Θ̃ε
`,f

[∂ϕ
∂t

+ ε
∂ζε

∂t

]
dx dt

+Kf

∫
ΩT

χεf (x)ρ̂ε`,f
{
λ`(S̃εf )

[
∇P̃ εf − ρ̂ε`,f ~g

]
+∇β(S̃εf )

}
× [∇ϕ+ ε∇xζε +∇yζε] dx dt

− Φm
∫

ΩT

χεf (x) Θε
`,m

[∂ϕ
∂t

+ ε
∂ζε

∂t

]
dx dt

+ ε2Km

∫
ΩT

χεf (x) ρ̂ε`,m
{
λ`(Sεm)(∇P εm − ρ̂ε`,m~g) +∇β(Sεm)

}
× [∇ϕ+ ε∇xζε +∇yζε] dx dt = 0,

(7.2)

where

ρ̂ε`,f := ρ`(S̃εf , P̃
ε
f ) := ρ`(P̃ εf +G`(S̃εf )),

ρ̂ε`,m := ρ` (Sεm, P
ε
m) := ρ`(P εm +G`(Sεm)).

(7.3)
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Taking into account the convergence results from Lemmata 4.9, 5.9, we pass to
the two-scale limit in (7.2) as ε→ 0 and get the first homogenized equation

− |Yf |Φf
∫

ΩT

Θ?
`

∂ϕ

∂t
dx dt

+Kf

∫
ΩT×Yf

ρ`

{
λ`(S)

[
∇P +∇yP1 − ρ`~g

]
+
[
∇β +∇yβ1

]}
·Υϕ dy dx dt

= Φm
∫

ΩT×Ym

L`,m(x, y, t)
∂ϕ

∂t
(x, t) dy dx dt,

(7.4)

where
ρ` := ρ`

(
P +G`(S)

)
and Θ?

` := S ρ`; (7.5)
the function Υϕ is Υϕ := [∇ϕ+ ζ1∇yζ2], finally, the function L`,m = L`,m(x, y, t) is
defined as a two-scale limit of the sequence {Θε

`,m}ε>0 as ε→ 0. Namely,

Θε
`,m

2s
⇀ L`,m ∈ L2(ΩT ;L2

per(Ym)). (7.6)

In a similar way we pass to the two–scale limit in equation (2.26) and get the
second homogenized equation

− |Yf |Φf
∫

ΩT

Θ?
g

∂ϕ

∂t
dx dt

+Kf

∫
ΩT×Yf

ρg

{
λg(S)

[
∇P +∇yP1 − ρg~g

]
−
[
∇β +∇yβ1

]}
·Υϕ dy dx dt

= Φm
∫

ΩT×Ym

Lg,m(x, y, t)
∂ϕ

∂t
(x, t) dy dx dt,

(7.7)

where
ρg := ρg

(
P +Gg(S)

)
and Θ?

g := (1− S) ρg; (7.8)

the function Lg,m = Lg,m(x, y, t) is defined as a two-scale limit of the sequence
{Θε

g,m}ε>0 as ε→ 0. Namely,

Θε
g,m

2s
⇀ Lg,m ∈ L2(ΩT ;L2

per(Ym)). (7.9)

7.2. Identification of the corrector functions P1, β1 and homogenized
equations. Step 1. Identification of P1. Consider the equations (7.4), (7.7).
We set ϕ ≡ 0. We get: Taking into account that ρ`, ρg are strictly positive and do
not depend on y, we obtain∫

Yf

{
λ`(S)

[
∇P +∇yP1 − ρ`~g

]
+
[
∇β +∇yβ1

]}
· ∇ζ2(y) dy = 0, (7.10)∫

Yf

{
λg(S)

[
∇P +∇yP1 − ρg~g

]
−
[
∇β +∇yβ1

]}
· ∇ζ2(y) dy = 0. (7.11)

Now adding (7.10) and (7.11), we obtain∫
Yf

{
λ(S)

[
∇P +∇yP1

]
−
[
λ`(S) ρ` + λg(S) ρg

]
~g
}
· ∇yζ2(y) dy = 0. (7.12)

Taking into account condition (A4), from (7.12), we obtain∫
Yf

{
∇P − X(S, P )~g +∇yP1

}
· ∇yζ2(y) dy = 0, (7.13)
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where

X(S, P ) :=
λ`(S) ρ` + λg(S)ρg

λ(S)
. (7.14)

Now we proceed in a standard way (see, e.g., [45]). Let ξj be a solution of

−∆yξj = 0 in Yf ;

∇yξj · ~νy = −~ej · ~νy on Γfm
y 7→ ξj(y) Y -periodic.

(7.15)

Then the function P1 can be represented as

P1(x, y, t) =
d∑
j=1

ξj(y)
( ∂P
∂xj

(x, t)− X(S, P )gj
)
. (7.16)

Step 2. Identification of β1. Now we turn to the identification of the function β1.
From (7.10) and (7.13), we obtain∫

Yf

{
λ`(S) X(S, P )~g − λ`(S) ρ`~g +

[
∇β +∇yβ1

]}
· ∇yζ2(y) dy = 0.

From this equation we have∫
Yf

[
∇β+∇yβ1

]
·∇yζ2(y) dy = −

∫
Yf

{
λ`(S)

[
X(S, P )−ρ`

]
~g
}
·∇yζ2(y) dy. (7.17)

Now, from (7.17) we get the following equation for the function β1:∫
Yf

[
∇β − Z(S, P )~g +∇yβ1

]
· ∇yζ2(y) dy = 0, (7.18)

where

Z(S, P ) :=
λ`(S)λg(S)

λ(S)
[
ρ` − ρg

]
. (7.19)

Then the function β1 can be represented as

β1(x, y, t) =
d∑
j=1

ξj(y)
(∂ β(S)

∂xj
(x, t)− Z(S, P ) gj

)
. (7.20)

Step 3. Homogenized equation for the l phase. Now we are in position to obtain
the first homogenized equation. Choosing ζ2 = 0, from (7.4), we obtain

Φf |Yf |
∂Θ?

`

∂t
− divx

{
Kfλ`(S)ρ`

∫
Yf

[
∇P +∇yP1 − X(S, P )~g

]
dy

+Kf

∫
Yf

λ`(S)ρ`
[
X(S, P )− ρ`

]
~g dy

}
− divx

{
Kf

∫
Yf

ρ`
[
∇β +∇yβ1 − Z(S, P )~g

]
dy +Kf

∫
Yf

ρ`Z(S, P )~g dy
}

= −Φm
∫
Ym

∂L`,m
∂t

(x, y, t) dy.

(7.21)
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Then taking into account the definitions of the functions X(S, P ) and Z(S, P ), from
(7.21), we have

Φf |Yf |
∂Θ?

`

∂t
− divx

{
Kfλ`(S)ρ`

∫
Yf

[
∇P +∇yP1 − X(S, P )~g

]
dy
}

− divx
{
Kf

∫
Yf

ρ`
[
∇β +∇yβ1 − Z(S, P )~g

]
dy
}

= −Φm
∫
Ym

∂L`,m
∂t

(x, y, t) dy.

(7.22)

Now we use the representations for the corrector functions P1 and β1, to obtain

Φ?
∂Θ?

`

∂t
− divx

{
K? λ`(S)ρ`

[
∇P − X(S, P )~g

]
+ K? ρ`

[
∇β(S)− Z(S, P )~g

]}
= − Φm
|Ym|

∫
Ym

∂L`,m
∂t

(x, y, t) dy,

(7.23)

where the effective porosity Φ? and K?, the effective permeability tensor, are given
by

Φ? := Φf
|Yf |
|Ym|

and K?
ij :=

Kf

|Ym|

∫
Yf

[∇yξi + ~ei] · [∇yξj + ~ej ] dy (1 6 i, j 6 d).

Since λ`(S)X(S, P ) + Z(S, P ) = λ`(S)ρ`, from (7.23) we obtain

Φ?
∂Θ?

`

∂t
− divx

{
K? ρ`

[
λ`(S)∇P +∇β(S)− λ`(S)ρ`~g

]}
= − Φm
|Ym|

∫
Ym

∂L`,m
∂t

(x, y, t) dy.
(7.24)

Step 4. Homogenized equation for the g phase. In a similar way, choosing ζ2 = 0,
from the equation (7.7), we derive the second homogenized equation

Φ?
∂Θ?

g

∂t
− divx

{
K? ρg

[
λg(S)∇P −∇β(S)− λg(S) ρg~g

]}
= − Φm
|Ym|

∫
Ym

∂Lg,m
∂t

(x, y, t) dy.
(7.25)

Let us introduce now the functions that is naturally to call the homogenized
phase pressures. Namely, we define

P` := P +G`(S) and Pg := P +Gg(S). (7.26)

Then from (7.24)–(7.26) we get the equations

Φ?
∂Ξ?`
∂t
− divx

{
K?ρ`λ`(S)

[
∇P` − ρ`~g

]}
= − Φm
|Ym|

∫
Ym

∂L`,m
∂t

(x, y, t) dy; (7.27)

Φ?
∂Ξ?g
∂t
− divx

{
K?ρgλg(S)

[
∇Pg − ρg~g

]}
= − Φm
|Ym|

∫
Ym

∂Lg,m
∂t

(x, y, t) dy, (7.28)

where
Ξ?` := Sρ` (P`) and Ξ?g := (1− S)ρg (Pg).

At this stage, the homogenization process is finished by obtaining equations
(7.27), (7.28). However, if in addition we want to express the functions L`,m, Lg,m
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in an explicit form, we need additional assumptions. Here, we assume that the cell
problem (6.6) has a unique solution, then following the ideas of [23, 32], we obtain
as in [9] these limits explicitly. This completes the proof of Theorem 6.1. �

Remark 7.1. We conclude this section with a remark about the obtained homog-
enized model. The scaling is such that, in the final homogenized equations, the
less permeable part of the matrix contributes as a nonlinear memory term which
we can represent explicitly in the case where the cell problem has a unique solu-
tion. A uniqueness proof is not ready to the moment, it is out of the scope of
this paper, it remains an open problem even for the incompressible model, but its
aspects and their applications must be considered for further achievements for this
homogenization approach.
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nierie pétrolière. Springer-Verlag, Berlin, 1996.

[37] C. Galusinski, M. Saad; On a degenerate parabolic system for compressible, immiscible, two-
phase flows in porous media, Adv. Differential Equations 9 (2004), 1235–1278.

[38] C. Galusinski, M. Saad; Water-gas flow in porous media, Discrete Contin. Dyn. Syst., Ser.

B, 9 (2008), 281-308.

[39] C. Galusinski, M. Saad; Two compressible immiscible fluids in porous media, J. Differential
Equations 244 (2008) 1741–1783.



28 L. AIT MAHIOUT, B. AMAZIANE, A. MOKRANE, L. PANKRATOV EJDE-2016/52

[40] C. Galusinski, M. Saad; Weak solutions for immiscible compressible multifluid flows in porous

media, C. R. Acad. Sci. Paris, Sér. I 347 (2009), 249–254.

[41] O. Gipouloux, F. Smai; Scaling up of an underground waste disposal model with random
source terms, Internat. J. Multiscale Comput. Engin. 6 (2008), 309–325.

[42] A. Gloria, T. Goudon, S. Krell; Numerical homogenization of a nonlinearly coupled elliptic-

parabolic system, reduced basis method, and application to nuclear waste storage, Math.
Models Methods Appl. Sci. 23 (2013), 2523–2560.

[43] R. Helmig; Multiphase flow and transport processes in the subsurface. Springer, Berlin, 1997.

[44] P. Henning, M. Ohlberger, B. Schweizer; Homogenization of the degenerate two-phase flow
equations, Math. Models Methods Appl. Sci. 23 (2013), 2323–2352.

[45] U. Hornung; Homogenization and porous media. Springer-Verlag, New York, 1997.

[46] Z. Khalil, M. Saad; Solutions to a model for compressible immiscible two phase flow in porous
media, Electronic Journal of Differential Equations 122 (2010), 1–33.

[47] Z. Khalil, M. Saad; On a fully nonlinear degenerate parabolic system modeling immiscible
gas-water displacement in porous media, Nonlinear Analysis: Real World Applications 12

(2011) 1591–1615.

[48] D. Kroener, S. Luckhaus; Flow of oil and water in a porous medium, J. Differential Equations
55 (1984), 276–288.

[49] M. Panfilov; Macroscale models of flow through highly heterogeneous porous media. Kluwer

Academic Publishers, London, 2000.
[50] R. P. Shaw; Gas generation and migration in deep geological radioactive waste repositories.

Geological Society, 2015.

[51] T. D. Van Golf-Racht; Fundamentals of fractured reservoir engineering. Elsevier Scientific
Pulishing Company, Amsterdam, 1982.

[52] J. L. Vázquez; The porous medium equation. Mathematical theory. Oxford University Press,

Oxford, 2007.
[53] L. M. Yeh; Homogenization of two-phase flow in fractured media, Math. Methods Appl. Sci.

16 (2006), 1627–1651.

Latifa Ait Mahiout
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