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CAUCHY PROBLEM FOR THE SIXTH-ORDER DAMPED
MULTIDIMENSIONAL BOUSSINESQ EQUATION

YING WANG

Abstract. In this article, we consider the Cauchy problem for sixth-order

damped Boussinesq equation in Rn. The well-posedness of global solutions and
blow-up of solutions are obtained. The asymptotic behavior of the solution is

established by the multiplier method.

1. Introduction

It is well-known that the generalized Boussinesq equation, in R,

utt + uxxxx − uxx = (f(u))xx, (1.1)

is a very important and famous nonlinear evolution equation suggested for describ-
ing the motion of water with small amplitude and long wave. There have been many
results on the local and global well-posedness of problem (1.1) in [9, 10, 11, 13]. In
[1], the authors studied a damped Boussinesq equation

utt − kutxx − uxx − uxxtt = (f(u))xx. (1.2)

Wang and Chen [22] considered the Cauchy problem for the generalized double
dispersion equation

utt − kutxx + uxxxx − uxx − uxxtt = (f(u))xx, (1.3)

whose well-posedness of the local and global solutions and the blow-up of the solu-
tions were established in R. Polat [16, 17] generalized the results obtained in [22]
and proved the existence of local and global, blow-up, and asymptotic behavior of
solutions for the Cauchy problem of (1.3) in Rn.

Schneider and Eugene [18] considered another class of Boussinesq equation which
characterizes the water wave problem with surface tension as follows

utt = uxx + uxxtt + µuxxxx − uxxxxtt + (u2)xx, (1.4)

which can also be formally derived from the 2D water wave problem. For a degen-
erate case, they proved that the long wave limit can be described approximately
by two decoupled Kawahara-equations. Wang and Mu [24, 25] studied the well-
posedness of the local and global solutions, the blow-up of solutions and nonlinear
scattering for small amplitude solutions to the Cauchy problem of (1.4). Piskin
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and Polat [15] considered the Cauchy problem of the multidimensional Boussinesq
equation

utt = ∆u+ ∆utt + µ∆2u−∆2utt + ∆f(u) + k∆ut. (1.5)

The existence, both locally and globally in time, the global nonexistence, and the
asymptotic behavior of solutions for the Cauchy problem of equation (1.5) are
established in n-dimensional space.

Wang and Esfahani [20, 21] considered the Cauchy problem associated with the
sixth-order Boussinesq equation with cubic nonlinearity

utt = uxx + βuxxxx + uxxxxxx + (u2)xx, (1.6)

where β = ±1, Equation (1.6) arises as mathematical models for describing the
bi-directional propagation of small amplitude and long capillary-gravity waves on
the surface of shallow water for bond number (surface tension parameter) less than
but very close to 1

3 [2]. Equation (1.6) has been also used as the model of nonlinear
lattice dynamics in elastic crystals [14]. In this article, we investigate the Cauchy
problem of the sixth-order damped multidimensional Boussinesq equation

utt −∆utt −∆u+ ∆2u−∆3u− r∆ut = ∆f(u), (x, t) ∈ Rn × (0,+∞), (1.7)

u(x, 0) = φ(x), ut(x, 0) = ψ(x), x ∈ Rn, (1.8)

where u(x, t) denotes the unknown function, f(s) is the given nonlinear function, r
is a constant, the subscript t indicates the partial derivation with respect to t, and
∆ denotes the Laplace operator in Rn.

Recently, the authors [27] proved the existence and asymptotic behavior of global
solutions of (1.7) for all space dimensions n ≥ 1 provided that the initial value is
suitably small. In [26], the authors obtained the global existence and asymptotic
decay of solutions to the problem (1.7). For the initial boundary value problem
of (1.7) with f(u) = u2, Zhang [28] and Lai [5, 6] established the well-posedness
of strong solution and constructed the solution in the form of series in the small
parameter present in the initial conditions. The long-time asymptotics was also
obtained in the explicit form.

The main purpose of this paper is to study the well-posedness of the global
solution and the asymptotic behavior of the global solution for the Cauchy problem
(1.7)-(1.8) in Rn. Due to the sixth-order term ∆3, it seems difficult to construct the
operator ∂2

t −∆ which is similar to that in [22, 16] to solve the problem (1.7)-(1.8).
To overcome this difficulty, we transformed (1.7) in another way and established
the corresponding estimate.

Throughout this article, we use Lp to denote the space of Lp-function on Rn
with the norm ‖f‖p = ‖f‖Lp . Hs denotes the Sobolev space on Rn with norm
‖f‖Hs = ‖(I −∆)s/2f‖2, where 1 ≤ p ≤ ∞, s ∈ R.

To prove the global well-posedness, we use the contraction mapping principle to
the local-posedness of the problem (1.7)-(1.8).

Theorem 1.1. Assume that s > n
2 , φ ∈ H

s, ψ ∈ Hs−2 and f(s) ∈ C [s]+1(R), then
problem (1.7)-(1.8) admits a unique local solution u(x, t) defined on a maximal time
interval [0, T0) with u(x, t) ∈ C([0, T0), Hs) ∩ C1([0, T0), Hs−2). Moreover, if

sup
t∈[0,T0)

(‖u(t)‖Hs + ‖ut(t)‖Hs−2) <∞, (1.9)

then T0 =∞.
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Now we arrive at the existence and uniqueness of global solutions for (1.7)-(1.8).

Theorem 1.2. Assume that 1 ≤ n ≤ 4, s ≥ n+1
2 , f(u) ∈ C [s]+1(R), F (u) =∫ u

0
f(s)ds or f ′(u) is bounded below, i.e. there is a constant A0 such that f ′(u) ≥ A0

for any u ∈ R, |f ′(u)| ≤ A|u|ρ+B, 0 < ρ ≤ ∞ for 2 ≤ n ≤ 4, (−∆)−1/2ψ ∈ L2, φ ∈
Hs+1 and ψ ∈ Hs−1, F (φ) ∈ L1. Then problem (1.7)-(1.8) admits a global solution
u(x, t) ∈ C([0,∞), Hs) ∩ C1([0,∞), Hs−2) and (−∆)−1/2ut ∈ L2.

In Lemma 3.1 below we have the energy equality E(t) = ‖(−∆)−1/2ψ‖22 +‖ψ‖22 +
‖φ‖22 + ‖∇φ‖22 + ‖∆φ‖22 + 2

∫
Rn F (u)dx. Then we can obtain the blow-up results by

the concavity method.

Theorem 1.3. Assume that r ≥ 0, f(u) ∈ C(R), φ ∈ H2, ψ ∈ L2, (−∆)−1/2φ,
(−∆)−1/2ψ ∈ L2, F (u) =

∫ u
0
f(s)ds, F (φ) ∈ L1, and there exists a constant α > 0

such that
f(u)u ≤ (α+ r + 2)F (u) +

α

2
u2, ∀u ∈ R. (1.10)

Then the solution u(x, t) of (1.7)-(1.8) will blow up in finite time if one of the
following conditions hold:

(i) E(0) = ‖(−∆)−1/2ψ‖22 +‖ψ‖22 +‖φ‖22 +‖∇φ‖22 +‖∆φ‖22 +2
∫

Rn F (φ)dx < 0,
(ii) E(0) = 0 and

(
(−∆)−1/2φ, (−∆)−1/2ψ

)
+ (φ, ψ) > 0,

(iii) E(0) > 0 and(
(−∆)−1/2φ, (−∆)−1/2ψ

)
+ (φ, ψ) >

√
2

4 + 2r + 2α
α+ 2

E(0)(‖(−∆)−1/2φ‖22 + ‖φ‖22).

Theorem 1.4. Let r > 0 and assume that

0 ≤ F (u) ≤ f(u)u, ∀u ∈ R, F (u) =
∫ u

0

f(s)ds.

Then for the global solution of problem (1.7)-(1.8), there exist positive constants C
and θ such that

E(t) ≤ CE(0)e−θt, 0 ≤ t ≤ ∞, (1.11)

where

E(t) =
1
2

(‖(−∆)−1/2ut‖22 + ‖ut‖22 + ‖u‖22 + ‖∇u‖22 + ‖∆u‖22) +
∫

Rn

F (u)dx.

The article is organized as follows. In the next section, we prove Theorem 1.1
which is related to the local well-posedness for a general nonlinearity. In Section 3,
we prove Theorem 1.2. The proof of the nonexistence of a global solution is given
in Section 4. In the last section, the asymptotic behavior of the global solution is
discussed.

2. Existence and uniqueness of the local solution

In this section, we prove the existence and the uniqueness of the local solution for
(1.7)-(1.8) by contraction mapping principle. To do so, we construct the solution
of the problem as a fixed point of the solution operator associated with related
family of Cauchy problem for linear equation. For this purpose, we rewrite (1.7) as
follows:

utt + ∆2u = Γ[f(u) + rut + u]. (2.1)
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where Γ = (I −∆)−1∆. Using the Fourier transform, it is easy to obtain

Γf = ∆(G ∗ f) = G ∗ f − f,

where G(x) = 1
2e
−|x|, and u ∗ v denotes the convolution of u and v.

We start with the linear equation.

utt + ∆2u = q(x, t), x ∈ Rn, t > 0, (2.2)

with the initial value condition (1.8). To prove Theorem 1.1, we need the following
lemmas.

Lemma 2.1 ([19]). If s > k + n/2, where k is a nonnegative integer, then

Hs(Rn) ⊂ Ck(Rn) ∩ L∞(Rn),

where the inclusion is continuous. In fact,∑
|α|≤k

‖∂αu‖L∞ ≤ Cs‖u‖Hs ,

where Cs is independent of u.

Lemma 2.2 ([3]). Let q ∈ [1, n] and 1
p = 1

q −
1
n , then for any u ∈ Hq

1 (Rn),

‖u‖p ≤ C(n, q)‖∇u‖q,

where C(n, q) is a constant dependent on n and q.

Lemma 2.3 ([23]). Assume that f(u) ∈ Ck(R), f(0) = 0, u ∈ Hs ∩ L∞ and
k = [s] + 1, where s ≥ 0. Then

‖f(u)‖Hs ≤ K1(W )‖u‖Hs ,

if ‖u‖∞ ≤W , where K1(W ) is a constant dependent on W .

Lemma 2.4 ([23]). Assume that f(u) ∈ Ck(R), u, v ∈ Hs ∩ L∞ and k = [s] + 1,
where s ≥ 0. Then

‖f(u)− f(v)‖Hs ≤ K2(W )‖u− v‖Hs ,

if ‖u‖∞ ≤W, ‖v‖∞ ≤W , where K2(W ) is a constant dependent on W .

Lemma 2.5 ([4]). If 1 ≤ p ≤ ∞, u(x, t) ∈ Lp(Rn) for a.e. t and the function
t 7→ ‖u(·, t)‖p is in L1(I), where I ⊂ [0,∞) is an interval, then

‖
∫
I

u(·, t)‖p ≤
∫
I

‖u(·, t)‖pdt.

Lemma 2.6. Let s ∈ R, φ ∈ Hs, ψ ∈ Hs−2 and q ∈ L1([0, T ];Hs−2). Then for
every T > 0, there is a unique solution u ∈ C([0, T ], Hs) ∩ C1([0, T ], Hs−2) of
Cauchy problem (2.2) and (1.8). Moreover, u satisfies

‖u(t)‖Hs + ‖ut(t)‖Hs−2 ≤ C(1 + T )(‖φ‖Hs + ‖ψ‖Hs−2 +
∫ t

0

‖q(τ)‖Hs−2dτ), (2.3)

for 0 ≤ t ≤ T , where C dependeds only on s.
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Proof. The argument about the existence and uniqueness of the solution of the
Cauchy problem for the linear problem (2.2) and (1.8) is similar to that in [19], we
omit it. The solution of the linear equation is given in Fourier space by

û(ξ, t) = cos(t|ξ|2)φ̂(ξ) +
sin(t|ξ|2)
|ξ|2

ˆ|ψ|2 +
∫ t

0

sin((t− τ)|ξ|2)
|ξ|2

q̂(ξ, τ)dτ,

whereˆdenotes Fourier transform with respect to x. Since

‖(1 + |ξ|2)s/2 cos(t|ξ|2)φ̂(ξ)‖ ≤ ‖(1 + |ξ|2)s/2φ̂(ξ)‖ = ‖φ‖Hs

and

‖(1 + |ξ|2)s/2
sin(t|ξ|2)
|ξ|2

ψ̂(ξ)‖2

=
∫
|ξ|<1

(1 + |ξ|2)s
sin2(t|ξ|2)
|ξ|4

|ψ̂(ξ)|2dξ +
∫
|ξ|≥1

(1 + |ξ|2)s
sin2(t|ξ|2)
|ξ|4

|ψ̂(ξ)|2dξ

≤ t2
∫
|ξ|<1

(1 + |ξ|2)s|ψ̂(ξ)|2dξ +
∫
|ξ|≥1

(1 + |ξ|2)s
1
|ξ|4
|ψ̂(ξ)|2dξ

≤ 4t2
∫
|ξ|<1

(1 + |ξ|2)s−2|ψ̂(ξ)|2dξ + 4
∫
|ξ|≥1

(1 + |ξ|2)s
1
|ξ|4
|ψ̂(ξ)|2dξ

≤ 4(1 + t2)
∫

Rn

(1 + |ξ|2)s−2|ψ̂(ξ)|2dξ

= 4(1 + t2)‖ψ‖2Hs−2 ,

we obtain

‖u(t)‖Hs ≤ ‖φ‖Hs + 2(1 + t)‖ψ‖Hs−2 + 2(1 + t)
∫ t

0

‖q(τ)‖Hs−2dτ,

‖ut(t)‖Hs−2 ≤ ‖φ‖Hs + ‖ψ‖Hs−2 +
∫ t

0

‖q(τ)‖Hs−2dτ.

Therefore (2.3) holds. This completes the proof. �

Lemma 2.7. The operator L is bounded on Hs for all s ≥ 0 and

‖Γu‖Hs ≤ C‖u‖Hs ,∀u ∈ Hs.

Proof. For u ∈ Hs, s ≥ 0, we have

‖Γu‖2Hs =
∫

Rn

(1 + |ξ|2)s
|ξ|4

(1 + |ξ|2)2
| ˆu(|ξ|)|2dξ ≤ C‖u‖2Hs .

�

Proof of Theorem 1.1. We will prove the theorem in four steps.
Step 1. Define the function space

X(T ) = C([0, T ], Hs) ∩ C1([0, T ], Hs−2),

which is equipped with the norm

‖u‖X(T ) = max
0≤t≤T

(‖u‖Hs + ‖ut‖Hs−2), ∀u ∈ X(T ).

It is easy to see that X(T ) is a Banach space. For s > n/2 and any initial values
φ ∈ Hs, ψ ∈ Hs−2, let M = ‖φ‖Hs + ‖ψ‖Hs−2 . Take the set

Y (M,T ) = {u ∈ X(T ) : ‖u‖X(T ) ≤ 2CM}.
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Note that Y (M,T ) is a nonempty bounded closed convex subset of X(T ) for any
fixed M > 0 and T > 0.

From Lemma 2.1, u ∈ C([0, T ], L∞) and ‖u‖L∞ ≤ Cs‖u‖Hs , if u ∈ X(T ). For
v ∈ Y (M,T ), we consider the linear equation

utt + ∆2u = Γ[f(v) + rvt + v] (2.4)

and we let S denote the map which carried v into the unique solution of (2.4)
and (1.8). Our goal is to show that S has a unique fixed point in Y (M,T ) for
appropriately chosen T . To this end, we shall employ the contraction mapping
principle and Lemma 2.6.
Step 2. We shall prove that S maps Y (M,T ) into itself for T small enough. Let
v ∈ Y (M,T ) be given. Define q(x, t) by

q(x, t) = Γ[f(v) + rvt + v].

Using lemmas 2.3 and 2.7, it follows easily that

‖q(t)‖Hs−2 ≤ C‖f(v)‖Hs−2 + |r|‖vt‖Hs−2 + ‖v‖Hs−2 ≤ CM‖v‖Hs + |r|‖vt‖Hs−2 ,

where CM is a constant dependent on M and s. From the above inequality we
conclude that q(x, t) ∈ C1([0, T ], Hs−2). From Lemma 2.6, the solution u = Sv of
problem (2.2) and (1.8) belongs to C([0, T ], Hs) ∩ C1([0, T ], Hs−2) and

‖u(t)‖Hs + ‖ut(t)‖Hs−2 ≤ C(1 + T )(‖φ‖Hs + ‖ψ‖Hs−2 +
∫ t

0

‖q(τ)‖Hs−2dτ)

≤ CM + C[1 + 2C((CM ) + |r|)(1 + T )]MT.

By choosing T small enough, we have

[1 + 2C((CM ) + |r|)(1 + T )]T ≤ 1, (2.5)

then we obtain
‖Sv‖X(T ) ≤ 2CM. (2.6)

Thus, if condition (2.6) holds, then S maps Y (M,T ) into Y (M,T ).
Step 3. We shall also claim that for T small enough, S is a strictly contractive map.
Let T > 0 and v, v̄ ∈ Y (M,T ) be given. Set u = Sv, ū = Sv̄, U = u− ū, V = v − v̄
and note that U satisfies

Utt + ∆2U = Q(x, t), (x, t) ∈ Rn × (0,+∞), (2.7)

U(x, 0) = Ut(x, 0) = 0, (2.8)

where Q(x, t) is defined by

Q(x, t) = Γ[f(v)− f(v̄)] + rΓ[Vt] + Γ[V ]. (2.9)

Observed that S has the smoothness required to apply Lemma 2.6 to problem (2.7)
and (2.8). By Lemmas 2.4, 2.6 and 2.7, from (2.9) we obtain

‖U(t)‖Hs + ‖Ut(t)‖Hs−2

≤ C(1 + T )
∫ t

0

[‖f(v(τ))− f(v̄(τ))‖Hs−2 + |r|‖Vt‖Hs−2 + ‖V ‖Hs−2 ]dτ

≤ C(1 + T )[CM max
0≤t≤T

‖V (t)‖Hs + |r| max
0≤t≤T

‖Vt(t)‖Hs−2 ]T.

Hence, we obtain

‖U(t)‖X(T ) ≤ C(1 + T )[CM + |r|+ C]T‖V (t)‖X(T ).
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By choosing T so small that (2.5) holds and

(1 + T )[CM + |r|+ C] < 1/C, (2.10)

then
‖Sv − Sv̄‖X(T ) < ‖v − v̄‖X(T ).

This shows that S : Y (M,T )→ Y (M,T ) is strictly contractive.
Step 4. From the contraction mapping principle, it follows that for appropriately
chosen T > 0, S has a unique fixed point u(x, t) ∈ Y (M,T ), which is a strong
solution of problem (1.7)-(1.8). Similarly to [25], we can prove uniqueness and local
Lipschitz dependence with respect to the initial data in the space Y (M,T ). Using
uniqueness we can extend the result in the space C([0, T ], Hs) ∩ C1([0, T ], Hs−2)
by a standard technique. �

3. Existence and uniqueness of a global solution

In this section, we prove the existence and the uniqueness of the global solution
for problem (1.7)-(1.8). For this purpose, we are going to make a priori estimates
of the local solutions for problem (1.7)-(1.8).

Lemma 3.1. Suppose that f(u) ∈ C(R), F (u) =
∫ u
0
f(s)ds, φ ∈ H2, (−∆)

1
2ψ ∈

L2, ψ ∈ L2, and F (φ) ∈ L1. Then for the solution u(x, t) of the problem (1.7)-
(1.8), it follows that

E(t) = ‖(−∆)−1/2ut‖22 + ‖ut‖22 + ‖u‖22 + ‖∇u‖22 + ‖∆u‖22

+ 2r
∫ t

0

‖uτ‖22dτ + 2
∫

Rn

F (u)dx = E(0).
(3.1)

Here and in the sequel (−∆)−αu(x) = F−1[|x|−2αFu(x)], F and F−1 denote
Fourier transformation and inverse Fourier transformation in Rn respectively.

Proof. Multiplying both sides of (1.7) by (−∆)−1ut, integrating the product over
Rn and integrating by parts, we obtain

(utt −∆u−∆utt + ∆2u−∆3u− r∆ut −∆f(u), (−∆)−1ut)

= ((−∆)−1utt + u+ utt −∆u+ ∆2u+ rut + f(u), ut)

= ((−∆)−1/2utt, (−∆)−1/2ut) + (u, ut) + (utt, ut) + (∆2u, ut) + (∆u, ut)

+ r(ut, ut) + (f(u), ut) = 0.

So,

d

dt
[‖(−∆)−1/2ut‖22 + ‖ut‖22 + ‖u‖22 + ‖∆u‖22 + ‖∇u‖22

+ 2r
∫ t

0

‖uτ‖22dτ + 2
∫

Rn

F (u)dx] = 0.

The lemma is proved. �

Lemma 3.2. Suppose that the assumptions of Lemma 3.1 hold and F (u) ≥ 0 or
f ′(u) is bounded below, i.e there is a constant A0 such that f ′(u) ≥ A0 for any
u ∈ R, then the solution u(x, t) of problem (1.7)-(1.8) has the estimate

E1(t) = ‖(−∆)−1/2ut‖22 + ‖ut‖22 + ‖u‖22 + ‖∇u‖22 + ‖∆u‖22 ≤M1(T ), (3.2)
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for all t ∈ [0, T ]. Here and in the sequel Mi(T )(i = 1, 2, . . . ) are constants dependent
on T .

Proof. If F (u) ≥ 0, then from energy identity (3.1), we obtain

E1(t) ≤ E(0) + 2|r|
∫ t

0

‖uτ‖22dτ.

It follows from Gronwall’s inequality and the above inequality that

E1(t) ≤ E(0)e2|r|T . (3.3)

If f ′(u) is bounded below. Let f0(u) = f(u) − r0u, where k0 = min{A0, 0}(≤ 0),
then f0(0) = 0, f ′0(u) = f ′(u) − r0 ≥ 0 and f0(u) is a monotonically increasing
function. Then F0(u) =

∫ u
0
f0(s)ds ≥ 0 and F (u) =

∫ u
0
f(s)ds =

∫ u
0

(f0(s) +
r0s)ds = F0(u) + r0

2 u
2. From (3.1), we have

E1(t) + 2
∫

Rn

F0(u)dx

= E(0)− 2r
∫ t

0

‖uτ‖22dτ − r0‖u‖22

= E(0)− 2r
∫ t

0

‖uτ‖22dτ − r0‖u0‖22 +
∫ t

0

(r20‖u‖22 + ‖uτ‖22)dτ

≤ E(0)− r0‖u0‖22 + (2|r|+ 1 + r20)
∫ t

0

(‖u‖22 + ‖uτ‖22)dτ.

It follows from Gronwall’s inequality and the above inequality that

E1(t) ≤ (E(0)− r0‖u0‖22) exp[(2|r|+ 1 + r20)T ]. (3.4)

We get (3.2) from inequalities (3.3) and (3.4). The lemma is proved. �

Lemma 3.3. Under the conditions of Lemma 3.2, assume that 1 ≤ n ≤ 4, f(u) ∈
C2(R) and |f ′(u)| ≤ A|u|ρ + B, 0 < ρ < ∞ for 2 ≤ n ≤ 4, φ ∈ H3 and ψ ∈ H1,
then the solution u(x, t) of problem (1.7)-(1.8) has the estimation

E2(t) = ‖ut‖22 + ‖∇u‖22 + ‖∇ut‖22 + ‖∆u‖22 + ‖∇3u‖22 ≤M2(T ), ∀t ∈ [0, T ]. (3.5)

Proof. Multiplying (1.7) by ut and integrating the product over Rn, we obtain

d

dt
E2(t) + 2r‖∇ut‖22 + 2(∇f(u),∇ut) = 0. (3.6)

When n = 1, we conclude from Lemma 2.1 and 3.2 that u ∈ L∞. Therefore, from
(3.6), Hölder inequality, Cauchy inequality, Lemma 2.3 and (3.2), we obtain

d

dt
E2(t) ≤ 2|r|‖∇ut‖22 + 2|(∇f(u),∇ut)|

≤ 2|r|‖∇ut‖22 + 2‖∇f(u)‖2‖∇ut‖2
≤ 2|r|‖∇ut‖22 + 2K1(W )(‖u‖∞)(‖u‖2 + ‖∇u‖2)‖∇ut‖2
≤ C1(M1(t))(‖∇u‖22 + ‖∇ut‖22),

(3.7)

where and in the sequel Ci(Mj(t))(i = 1, 2, . . . , j = 1, 2, . . . ) are constants de-
pending on Mj(t). Integrating (3.7) with respect to t and using the Gronwall’s
inequality, we obtain (3.5).
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In the case 2 ≤ n ≤ 4, from Hölder inequality, Lemma 2.2, Cauchy inequality
and (3.2), we have∫

Rn

∇f(u)∇utdx ≤ A‖uρ‖∞‖∇u‖22‖∇ut‖2 +B‖∇u‖2‖∇ut‖2

≤ A

2
(C2‖∆u‖22‖∇u‖22 + ‖∇ut‖22) +

B

2
(‖∇u‖22 + ‖∇ut‖22)

≤ A

2
(C2(M1(t))‖∆u‖22 + ‖∇ut‖22) +

B

2
(M1(t) + ‖∇ut‖22).

Substitute the above inequality in (3.6) to obtain

d

dt
E2(t) ≤ 2|r|‖∇ut‖22 + 2|(∇f(u),∇ut)|

≤ BM1(t) + C3M1(t)(‖∆u‖22 + ‖∇ut‖22).
(3.8)

Integrating (3.8) with respect to t and using the Gronwall’s inequality, we obtain
(3.5). The lemma is proved. �

Lemma 3.4. Under the conditions of Lemma 3.3, assume that s ≥ 2, f(u) ∈
C [s](R), φ ∈ Hs+1, ψ ∈ Hs−1, then the solution u(x, t) of problem (1.7)-(1.8) has
the estimate

E3(t) = ‖∇s−2ut‖22 + ‖∇s−1u‖22 + ‖∇s−1ut‖22 + ‖∇su‖22 + ‖∇s+1u‖22
≤M3(T ), ∀t ∈ [0, T ].

(3.9)

Proof. Multiplying (1.7) by ∆s−2ut and integrating the product over Rn, we obtain

d

dt
E3(t) + 2r‖∇s−1ut‖22 + 2(∇s−1f(u),∇s−1ut) = 0. (3.10)

From Lemmas 2.2 and 3.3, we know that u ∈ L∞. From Hö lder inequality, Cauchy
inequality, Lemma 2.3 and (3.2) we obtain

d

dt
E3(t) ≤ 2|r|‖∇s−1ut‖22 + 2|(∇s−1f(u),∇s−1ut)|

≤ 2|r|‖∇s−1ut‖22 + 2K1(W )(‖u‖∞)(‖u‖2 + ‖∇s−1u‖2)‖∇s−1ut‖2
≤ C4(M1(t))(‖∇s−1u‖22 + ‖∇s−1ut‖22).

Integrating the above inequality with respect to t and using the Gronwall’s inequal-
ity, we obtain (3.9). The lemma is proved. �

Proof of Theorem 1.2. From Theorem 1.1, we need only to show that

sup
t∈[0,T0]

(‖u(t)‖Hs + ‖ut(t)‖Hs−2) <∞.

From Lemmas 3.2–3.4, we obtain

‖u(t)‖Hs + ‖ut(t)‖Hs−2 < M4(T ),∀t ∈ [0, T ),

where M4(T ) is a constant dependent on T . Therefore, from the above inequal-
ity, problem (1.7)-(1.8) has a unique global solution u(x, t) ∈ C([0,∞), Hs) ∩
C1([0,∞), Hs−2) and (−∆)−1/2ut ∈ L2. The theorem is proved. �
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4. Blow-up of solutions

In this section, we give the proof of the blow-up of the solution for problem
(1.7)-(1.8). For this purpose, we give the following lemma which is a generalization
of Levine’s result [7, 8].

Lemma 4.1. Suppose that for t ≥ 0, a positive, twice differential function I(t)
satisfies the inequality

I ′′(t)I(t)− (1 + ε)(I ′(t))2 ≥ −2L1I(t)I ′(t)− L2(I(t))2,

where ε > 0 and L1, L2 are constants. If I(0) > 0, I ′(0) > γ2ν
−1I(0) and L1+L2 >

0, then I(t) tends to infinity as

t→ t1 ≤ t2 =
1

2
√
L2

1 + νL2

ln
γ1I(0) + νI ′(0)
γ1I(0) + νI ′(0)

,

where γ1,2 = −L1 ∓
√
L2

1 + νL2. If I(0) > 0, I ′(0) > 0 and L1 = L2 = 0, then
I(t)→∞ as t→ t1 ≤ t2 = I(0)/νI ′(0).

Proof of Theorem 1.3. Suppose T = +∞, let

I(t) = ‖(−∆)−1/2u‖22 + ‖u‖22 + β(t+ τ)2, (4.1)

where β, τ ≥ 0 to be defined later. Then

I ′(t) = 2((−∆)−1/2ut, (−∆)−1/2u) + 2β(t+ τ) + 2(u, ut). (4.2)

So,

(I ′(t))2 ≤ 4[‖(−∆)−1/2u‖22 + ‖u‖22 + β(t+ τ)2][‖(−∆)−1/2ut‖22 + ‖ut‖22 + β]

= 4I(t)[‖(−∆)−1/2ut‖22 + ‖ut‖22 + β].
(4.3)

By (1.7), we obtain

I ′′(t) = 2‖(−∆)−1/2ut‖22 + 2((−∆)−1/2u, (−∆)−1/2utt) + 2‖ut‖22 + 2(u, utt)
+ 2β

= 2‖(−∆)−1/2ut‖22 + 2‖ut‖22 + 2β + 2(u, (−∆)−1utt + utt)

= 2‖(−∆)−1/2ut‖22 + 2‖ut‖22 + 2β − 2(u, u−∆u+ ∆2u+ rut + f(u))

= 2‖(−∆)−1/2ut‖22 + 2‖ut‖22 + 2β − 2‖u‖22 − 2‖∇u‖22 − 2‖∆u‖22

− 2r(u, ut)− 2
∫

Rn

uf(u)dx.

(4.4)

With the aid of the Cauchy inequality we obtain

2r(u, ut) ≤ r(‖u‖22 + ‖ut‖22)

= r[E(0)− ‖(−∆)−1/2ut‖22 − ‖∇u‖22 − ‖∆u‖22

− 2r
∫ t

0

‖uτ‖22dτ − 2
∫

Rn

F (u)dx].

(4.5)
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It follows from (4.1)-(4.5) that

I(t)I ′′(t)− (1 +
α

4
)(I ′(t))2

≥ I(t)I ′′(t)− (4 + α)I(t)[‖(−∆)−1/2ut‖22 + ‖∆u‖22 + ‖ut‖22 + β]

≥ I(t){2‖(−∆)−1/2ut‖22 + 2‖ut‖22 + 2β − 2‖∆u‖22 − 2‖u‖22 − 2‖∇u‖22

− 2r(u, ut)− 2
∫

Rn

uf(u)dx− (4 + α)[‖(−∆)−1/2ut‖22 + ‖ut‖22 + β]}

≥ I(t){(r − α− 2)‖(−∆)−1/2ut‖22 + (−2− α)‖ut‖22 + (−4− α)β

+ (r − 2)(‖∇u‖22 + ‖∆u‖22) +
∫

Rn

[2rF (u)− 2uf(u)− 2u2]dx

+ 2r2
∫ t

0

‖uτ‖22dτ − rE(0)}.

(4.6)

From (3.1), we obtain

(r − α− 2)‖(−∆)−1/2ut‖22 + (−2− α)‖ut‖22 + (r − 2)(‖∇u‖22 + ‖∆u‖22)

≥ (−α− 2)(‖(−∆)−1/2ut‖22 + ‖∇u‖22 + ‖∆u‖22 + ‖ut‖22)

= (α+ 2)(‖u‖22 + 2r
∫ t

0

‖uτ‖22dτ + 2
∫

Rn

F (u)dx− E(0)).

Thus, from the above inequality, (1.10) and (4.6), we have

I(t)I ′′(t)− (1 +
α

4
)(I ′(t))2

≥ I(t)
{
− (4 + α)β − (2 + α+ r)E(0) +

∫
Rn

[2(2 + α+ r)F (u)

+ αu2 − 2uf(u)
]
dx+ (2r(2 + α) + 2r2)

∫ t

0

‖uτ‖22dτ
}

≥−
[
(4 + α)β + (2 + α+ r)E(0)]I(t).

(4.7)

If E(0) < 0, taking β = − 2+α+r
4+α E(0) > 0, then

I(t)I ′′(t)− (1 +
α

4
)(I ′(t))2 ≥ 0.

We may choose τ so large that I ′(t) > 0. From Lemma 4.1 we know that I(t)
becomes infinite at a time T1 at most equal to

T1 =
4I(0)
αI ′(t)

<∞.

If E(0) = 0, taking β = 0, from (4.7), we obtain

I(t)I ′′(t)− (1 +
α

4
)(I ′(t))2 ≥ 0.

Also I ′(t) > 0 by assumption (ii), Thus, we obtain from Lemma 4.1 that I(t)
becomes infinite at a time T2 at most equal to

T2 =
4I(0)
αI ′(t)

<∞.
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If E(0) > 0, then taking β = 0, inequality (4.7) becomes

I(t)I ′′(t)− (1 +
α

4
)(I ′(t))2 ≥ −(2 + α+ r)E(0)I(t). (4.8)

Define J(t) = (I(t))−λ, where λ = α/4. Then

J ′(t) = −λ(I(t))−λ−1I ′(t),

J ′′(t) = −λ(I(t))−λ−2[I(t)I ′′(t)− (1 + λ)(I ′(t))2]

≤ λ(2 + r + 4λ)E(0)(I(t))−λ−1,
(4.9)

where inequality (4.8) is used. Assumption (iii) implies J ′(0) < 0. Let

t∗ = sup{t|J ′(τ) < 0, τ ∈ (0, t)}. (4.10)

By the continuity of J ′(t), t∗ is positive. Multiplying (4.9) by 2J ′(t) yields

[(J ′(t))2]′ ≥ −2λ2(2 + r + 4λ)E(0)(I(t))−2λ−2I ′(t)

= 2λ2 2 + r + 4λ
2λ+ 1

E(0)[I(t)−2λ−1]′.
(4.11)

Integrate with respect to t over [0, t) to obtain

(J ′(t))2 ≥ 2λ2 2 + r + 4λ
2λ+ 1

E(0)(I(t))−2λ−1

+ (J ′(0))2 − 2λ2 2 + r + 4λ
2λ+ 1

E(0)(I(0))−2λ−1

≥ (J ′(0))2 − 2λ2 2 + r + 4λ
2λ+ 1

E(0)(I(0))−2λ−1.

From assumption (iii), we obtain

(J ′(0))2 − 2λ2 r + 2 + 4λ
2λ+ 1

E(0)(I(0))−2λ−1 > 0.

Hence by continuity of J ′(t), we have

J ′(t) ≤ −[(J ′(0))2 − 2λ2 2 + r + 4λ
2λ+ 1

E(0)(I(0))−2λ−1]1/2 (4.12)

for 0 ≤ t < t∗. By the definition of t∗, it follows that (4.12) holds for all t ≥ 0.
Therefore,

J(t) ≤ J(0)− [(J ′(0))2 − 2λ2 2 + r + 4λ
2λ+ 1

E(0)(I(0))−2λ−1]1/2t, ∀t > 0.

So J(T1) = 0 for some T1 and

0 < T1 ≤ T2 = J(0)/[(J ′(0))2 − [λ2(2 + λ+ r)/(4λ+ 8)]E(0)(I(0))−(λ+2)/2]1/2.

Thus, I(t) becomes infinite at a time T1.
Therefore, I(t) becomes infinite at a time T1 under either assumptions. We have

a contradiction with the fact that the maximal time of existence is infinite. Hence
the maximal time of existence is finite. This completes the proof. �
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5. Asymptotic behavior of solution

Proof of Theorem 1.4. Let u(x, t) be a global solution of (1.7)-(1.8). Multiplying
(1.7) by (−∆)−1ut and integrating on Rn it follows that

d

dt
E(t) + r‖ut‖22 = 0. (5.1)

Multiplying (5.1) by ekt we have

d

dt
(ektE(t)) + rekt‖ut‖2 = kektE(t). (5.2)

Integrating (5.2) over (0, t), we obtain

ektE(t) + r

∫ t

0

erτ‖uτ‖22dτ

= E(0) + k

∫ t

0

ekτE(τ)dτ

= E(0) +
k

2

∫ t

0

ekτ (‖(−∆)−1/2uτ‖22 + ‖uτ‖22 + ‖∆u‖22 + ‖∇u‖22 + ‖u‖22)dτ

+ k

∫ t

0

ekτ
(∫

Rn

F (u)dx
)
dτ.

(5.3)

From 0 ≤ F (u) ≤ f(u)u and (1.7), we obtain

∫
Rn

F (u)dx

≤
∫

Rn

f(u)udx

= −((−∆)−1utt + utt + ∆2u+ u−∆u+ rut, u)

= −((−∆)−1utt, u)− (utt, u)− (∆2u, u)− ‖u‖22 − ‖∇u‖22 −
r

2
d

dt
‖u‖22

= −‖∇u‖22 − ‖∆u‖22 − ‖u‖22 − ((−∆)−1utt, u)− (utt, u)− r

2
d

dt
‖u‖22.

(5.4)

Hence we have

k

∫ t

0

ekτ
∫

Rn

F (u) dx dτ

≤ k
∫ t

0

ekτ [−‖∇u‖22 − ‖∆u‖22 − ‖u‖22 − ((−∆)−1uττ , u)− (uττ , u)

− r

2
d

dτ
‖u‖22]dτ.

(5.5)
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We will estimate the terms on the right-hand side of (5.5) separately. Integrating
by parts and using Young’s inequality, we obtain

−
∫ t

0

ekτ ((−∆)−1uττ , u)dτ

= −
∫ t

0

ekτ (
d

dτ
((−∆)−1uτ , u)− ‖(−∆)−1/2uτ‖)dτ

= −ekt((−∆)−1/2ut, (−∆)−1/2u) + ((−∆)−1/2ψ, (−∆)−1/2φ)

+ k

∫ t

0

ekτ ((−∆)−1/2uτ , (−∆)−1/2u)dτ +
∫ t

0

ekτ‖(−∆)−1/2uτ‖22dτ

≤ 1
2
ekτ (‖(−∆)−1/2ut‖22 + ‖(−∆)−1/2u‖22)

+ (‖(−∆)−1/2ψ‖22 + ‖(−∆)−1/2φ‖22)

+
k

2

∫ t

0

ekτ (‖(−∆)−1/2uτ‖22 + ‖(−∆)−1/2u‖22)dτ

+
∫ t

0

ekτ‖(−∆)−1/2uτ‖22dτ.

(5.6)

Similarly using integration by parts and Young’s inequality, we obtain

−
∫ t

0

ekτ (uττ , u)dτ

= −
∫ t

0

ekτ (
d

dτ
(uτ , u)− ‖uτ‖22)dτ

= −ekτ (uτ , u) + (ψ, φ) + k

∫ t

0

ekτ (uτ , u)dτ +
∫ t

0

ekτ‖uτ‖22dτ

≤ 1
2
ekτ (‖uτ‖22 + ‖u‖22) +

1
2

(‖ψ‖22 + ‖φ‖22)

+
k

2

∫ t

0

ekτ (‖uτ‖22 + ‖u‖22)dτ +
∫ t

0

ekτ‖uτ‖22dτ.

(5.7)

For the last term, by using integration by parts, we have

− r

2

∫ t

0

ekτ
d

dτ
‖u‖22dτ = −r

2
ekτ‖u‖22 +

r

2
‖φ‖22 +

r

2
k

∫ t

0

ekτ‖u‖22dτ. (5.8)

Substituting (5.6)-(5.8) into (5.4) and (5.5), it follows that there exist positive
constants C0, C1,C2 and C3 such that

ekτE(t) + r

∫ t

0

ert‖uτ‖22dτ

≤ C0E(0) + C1ke
ktE(t) + C2k

2

∫ t

0

ekτE(τ)dτ + C3k

∫ t

0

ekτE(τ)dτ.
(5.9)

Taking k satisfying 0 < k < 1
2C1

, then from (5.9) and r > 0, we obtain

ektE(t) ≤ 2C0E(0) + (2C2k
2 + 2C3k)

∫ t

0

ekτE(τ)dτ,
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which together with the Gronwall inequality gives

ektE(t) ≤ 2C0E(0)e2C2k
2t+2C3kt, 0 ≤ t <∞,

E(t) ≤ 2C0E(0)e−(k−2C2k
2−2C3k)t, 0 ≤ t ≤ ∞.

Again taking k satisfying 0 < k < min{ 1
2C1

, 1−2C3
2C2
}, we can obtain (1.11), where

θ = k − 2C2k
2 − 2C3k > 0. The proof is complete. �
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