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ON THE DYNAMICS OF SECOND-ORDER LAGRANGIAN
SYSTEMS
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Abstract. In this article we are concerned with improving the twist con-

dition for second-order Lagrangian systems. We characterize a local Twist
property and demonstrate how results on the existence of simple closed char-

acteristics can be extended in the case of the Swift-Hohenberg / extended
Fisher-Kolmogorov Lagrangian. Finally, we describe explicit evolution equa-

tions for broken geodesic curves that could be used to investigate more general

systems or closed characteristics.

1. Introduction

Second-order Lagrangian systems arise as fourth-order differential equations ob-
tained variationally as the Euler-Lagrange equations of an action functional which
depends on the second derivative of the state variable u as well as its lower deriva-
tives. One important class of such differential equations is u′′′′ − βu′′ + f(u) =
0, known as the Swift-Hohenberg equation for β ≤ 0 and the extended Fisher-
Kolmogorov (eFK) equation for β > 0. There have been numerous results concern-
ing these equations, see for instance [2, 7, 8, 10, 11, 12, 13, 14, 15, 18, 19].

As is the case here, for the Hamiltonian system that is induced from the second-
order Lagrangian there is a natural two-dimensional section for which bounded
trajectories of the Hamiltonian system must intersect in finitely or infinitely many
distinct points. We can characterize this section as ΣE = NE ×R, where NE is the
one dimensional set

NE =
{

(u, u′′) :
∂L

∂u′′
u′′ − L(u, 0, u′′) = E

}
,

and H is the Hamiltonian and E ∈ R. The Hamiltonian flow induces a return map
to ΣE where closed trajectories correspond to fixed points of the iterates of this
map. As in [17] the return map can often be viewed as an analogue of a monotone
area-preserving Twist map, Lagrangian systems that allow these Twist maps are
referred to as Twist systems.

In this article we are concerned with improving the condition for a second-order
Lagrangian to possess a local version of the Twist condition, cf. assumption (A1)
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below. Through a version of the weak comparison principle we establish that it is
only necessary that the Twist condition holds for a restricted class of laps which
lie in a cone. Exploiting the properties of this cone we can derive explicit formulas
for the vector field that describes the dynamics of the endpoints between laps. The
vector field can then be estimated analytically or numerically.

The paper is organized as follows. In Section 2 we review the basic properties of
second-order Lagrangian systems and define the Twist property. We then charac-
terize a local Twist property and demonstrate how results on the existence of simple
closed characteristics can be extended in the case of the SH/eFK Lagrangian. In
Section 3 we prove this extension and give another example from the fifth-order
KdV equation. In Section 4, we describe explicit evolution equations for broken
geodesic curves that could be used to investigate other systems or non-simple closed
characteristics, and in Section 5 we briefly describe a framework for an analytic or
numerical study.

2. Preliminaries

A second-order Lagrangian system is defined by extremizing an action functional
of the form

J [u] =
∫
I

L(u, u′, u′′) dt.

Computing the Euler-Lagrange equation yields

d2

dt2
∂L

∂u′′
− d

dt

∂L

∂u′
+
∂L

∂u
= 0. (2.1)

The Lagrangian action J is invariant under the R action t 7→ t + c, which by
Noether’s Theorem yields the conservation law( ∂L

∂u′
− d

dt

∂L

∂u′′

)
u′ +

∂L

∂u′′
u′′ − L(u, u′, u′′) = E. (2.2)

Under the natural hypothesis that L is convex in u′′, that is ∂2
wL(u, v, w) > 0 for

all (u, v, w), the Lagrangian system (L, dt) is equivalent to a Hamiltonian system
on R4 with the standard symplectic coordinates x = (u, v, pu, pv) endowed with the
symplectic form ω given by ω = du ∧ dpu + dv ∧ dpv. The Hamiltonian is

H = puv + wLw − L,

where w and pv are related by pv = Lw(u, v, w) and pu = Lv−p′v. Stationary points
of J satisfy Equation (2.2), which is equivalent to H(u, v, pu, pv) = E. Thus, for
the associated Hamiltonian system (H,ω) the three-dimensional energy manifold
ME = {(u, v, pu, pv) ∈ R4 : H(u, v, pu, pv) = E} is invariant. If ∇H 6= 0 on ME ,
then E is a regular value, and ME is a smooth non-compact manifold without
boundary. Equivalently, an energy level is regular if and only if Lw(u, 0, 0) 6= 0 for
all u ∈ R satisfying L(u, 0, 0) + E = 0.

A bounded characteristic of a Lagrangian system (L, dt) is a function u ∈
C2
b (R,R) for which δ

∫
I
L(u, u′, u′′) = 0 with respect to variations δu ∈ C2

c (I,R)
for any compact interval I ⊂ R. Since the Lagrangian is a C2-function of (u, v, w),
it follows from the Euler-Lagrange equations that u ∈ C3

b (R,R), Lw(·) ∈ C2
b (R,R),

and ( ddt
∂L
∂w−

∂L
∂v )(·) ∈ C2

b (R). Our main concern is to develop a new analytic method
to study the existence and structure of bounded, closed characteristics on ME , i.e.
bounded characteristics which are periodic functions. We conclude this preliminary
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section with some relationships between closed characteristics and the geometry of
ME .

Given an arbitrary (2n−1)-dimensional manifold M embedded in (R2n, ω), with
ω being the standard symplectic form, one can construct a Hamiltonian H for which
M = H−1(0). The choice of H is not instrinsic to finding periodic orbits, it turns
out that the geometry of M is enough to describe them. The geometry of M and
the symplectic 2-form ω define a characteristic line bundle,

EM = {(x, ξ) ∈ TxM \ {0} : wx(ξ, η) = 0 ∀η ∈ TxM} ⊂ TM .

The vector field of any Hamiltonian H with M = H−1(0) is a section of EM . The
trajectory of a periodic orbit can be viewed as a closed characteristic of the line
bundle, i.e. an embedding γ : S1 →M of the circle into M for which

Tγ = EM
∣∣
γ
.

This gives us a relationship between existence of periodic solutions to (2.1) and
topological and geometric properties of its energy surfaces. These closed charac-
teristics can be found as critical points of the action functional. Weinstein [21]
conjectured in the 1970’s, that any compact hypersurface M ∈ (R2n, ω), with the
additional assumption that

α(ξ) 6= 0 for 0 6= ξ ∈ EM ,

for some 1-form α with dα = ω, i.e. M is of contact type relative to ω, has at
least one closed characteristic. This was proved later by Viterbo [20]. However
this theory cannot be applied to energy manifolds determined by second-order La-
grangian systems, because these manifolds are always non-compact and they are
not necessarily of contact type in (R4, ω), as was proved in [2].

The existence of closed characteristics for second-order Lagrangian systems has
been studied in several contexts, and we will summarize prior results later in this
section. Following ideas first introduced in [17], one method that has been used to
study closed characteristics variationally is to divide u(t) into monotone segments.

Definition 2.1. For ` < r, an increasing lap u+ from ` to r is a solution to
the Euler-Lagrange equation (2.1) satisfying the boundary conditions u(0) = `,
u(A1) = r, u′(0) = u′(τ) = 0 and u′(t) > 0 for 0 < t < τ with a similar definition
of a decreasing lap u−. A simple closed characteristic of type (`, r) is a periodic
solution which is composed of a single increasing lap from ` to r followed by a single
decreasing lap from r to ` extended periodically.

The concatenation of an increasing lap u+ and a decreasing lap u− is analogous
to a broken geodesic and is not necessarily a solution to (2.1) at the concatenation
points, since the third derivatives need not agree there. Setting v = 0 in the
Hamiltonian (2.2), solutions satisfy wLw − L = E at critical points. Let N denote
this level set in the (u,w)-plane. Then every simple closed characteristic intersects
N exactly twice. Moreover N is a section of M given by M ∩ {v = 0}, and due to
the convexity of L in the w variable, N consists of two graphs in the (u,w)-plane.
That is, the projection π of N onto the u-axis can be described by πN = {u :
L(u, 0, 0) + E ≥ 0} and the sets N ∩ {(u,w) : u ≥ 0} and N ∩ {(u,w) : u ≤ 0} are
graphs over πN . A particular connected component of πN will be denoted by I,
and referred to as an interval component.
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Consider an interval component I, and define B = {(`, r) ∈ I2 : ` < r}. For
simple closed characteristics one needs to find points (`, r) ∈ B for which the
concatenation of an increasing and a decreasing lap is a solution. For an increasing
lap u+ from ` to r we let p+

` and p+
r be the pu-values at the concatenation points,

and also for a decreasing lap u− we let p−` and p−r be the corresponding pu values. If
u is the concatenation u = u+#u−, then necessary conditions for u to be a solution
of (2.1) are p+

` = p−` and p+
r = p−r see [17]. Since u+ and u− are solutions to (2.1),

their intersection with N determines the values of u′′ = pv uniquely from ` and r,
and we denote these values by pv(`) and pv(r). Thus the necessary compatibility
conditions on the pu-values are also sufficient.

umax
p+
r p−r

r

u+ u−

`

p+
` p−`umin

Figure 1. The pv values at the endpoints of each lap are deter-
mined by the minimum and maximum values ` and r, but the pu
values are not, which gives a necessary and sufficient condition
for the concatenation u−#u+ to be a simple closed characteristic,
p+
r = p−r and p+

` = p−` .

In [17] this broken geodesic method is used to prove the existence of simple
closed characteristics in systems where laps can be determined by minimization. In
particular fix an energy level E, and let

JE,τ [u] =
∫ τ

0

L(u, u′, u′′) + E dt.

Suppose that
(A1) for every pair ` 6= r there exists a unique minimizing lap u(t; `, r) of JE

defined on the interval [0, τ(`, r)], and both u and τ are C1 in ` and r.
This twist property allows a reduction of the variational problem to finite dimensions
by plugging the minimizer into the functional to obtain the function SE(`, r) =
JE [u(t; `, r)].

SE(`, r) = inf
u∈Xτ ,τ∈R+

∫ τ

0

L(u, u′, u′′) + E dt, (2.3)

where Xτ = Xτ (`, r) = {u ∈ C2([0, τ ]) : u(0) = `, u(τ) = r, u′(0) = u′(τ) =
0, u′

∣∣
(0,τ)

> 0 if ` < r, and u′
∣∣
(0,τ)

< 0 if ` > r}. One then shows the existence of a
critical point of SE(`, r) +SE(r, `) in order to obtain a simple closed characteristic.
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The above results are extended in [12] where a degree theoretic argument is
used to establish the existence of a simple closed characteristic in systems which
do not necessarily satisfy the twist condition via continuation to a twist system.
It is shown that for regular energy manifolds, the number of closed characteristics
can be bounded below by the second Betti number of ME , which in turn can be
computed from the superlevel sets of the potential function L(u, 0, 0)+E ≥ 0. This
result is extended to singular energy levels in [14].

Results concerning the existence of more general closed characteristics are ad-
dressed in [7, 8]. For twist systems, a type of Conley-Morse theory is used on the
space of braids to obtain forcing theorems for closed characteristics. It is shown that
the set of closed characteristics can have a rich structure. The degree arguments of
[12] do not extend these forcing results to systems which do not necessarily satisfy
the twist condition, because the degree for many of these closed characteristics is
trivial even though the Conley index is nontrivial.

Our methods begin by reconsidering [17, Lemma 9] which provides sufficient
conditions for the twist property to hold on an interval component for a Lagrangian
of the form L(u, u′, u′′) = 1

2 |u
′′|2 +K(u, u′).

Lemma 2.2 ([17, Lemma 9]). Let IE be a connected component of πuNE. Assume
that

(a) ∂K
∂v v −K(u, v)− E ≤ 0 for all u ∈ IE and v ∈ R; and

(b) ∂2K
∂v2 v

2 − 5
2{

∂K
∂v v −K(u, v)− E} ≥ 0 for all u ∈ IE and v ∈ R.

Then for any pair (`, r) ∈ IE × IE \ 4, Problem (2.3) has a unique minimizer
(u, τ) ∈ Xτ × R+ (in fact the only critical point), and the minimizer u(t; `, r)
depends C1-smoothly on (`, r) for (`, r) ∈ int(IE × IE \ 4).

Fix a regular energy level E. We assume that K(u, v) + E has the form

K(u, v) + E =
β

2
v2 + F (u), (2.4)

so that we consider Lagrangians of the eFK/Swift-Hohenberg type with

L(u, u′, u′′) + E =
1
2
|u′′|2 +

β

2
|u′|2 + F (u).

From now on we will suppress the dependence on E. The arguments we present
apply to more general form of the Lagrangian, as in Example 3.3 below, but we
consider this more restrictive case for convenience and clarity of presentation.

In the next section we utilize a comparison principle to weaken the sufficient
conditions of Lemma 2.2 and obtain the following stronger result.

Proposition 2.3. For a Lagrangian of eFK/Swift-Hohenberg type, let I be a regular
interval component and I1, I2 be subintervals of I. There is a constant C(`, r) > 0
such that if

β ≤ 2F ((r − `)x+ l)
(r − `)C4/3(`, r) sin(πx)

for all x ∈ (0, 1) (2.5)

for all (`, r) ∈ I1× I2 \4 with ` < r, then the minimization problem in (2.3) has a
local minimizer (u, τ) ∈ Xτ ×R+ for each (`, r) ∈ I1× I2 \4. Moreover, the family
u(t; `, r) depends C1- smoothly on I1 × I2 \ 4.
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Note that the we need only consider ` < r in Proposition 2.3 because time-
reversal of an increasing lap for (`, r) yields a decreasing lap for (r, `). The proof
of the proposition is given in Section 3.

Proposition 2.3 allows the techniques in [17] to be applied to a larger class
of Lagrangians. If Proposition 2.3 is applied over the whole interval component
I = [umin, umax], i.e. on I × I \ 4, then one can obtain a stronger result than can
be attained using Lemma 2.2. Indeed the hypotheses of Lemma 2.2 hold only for
β ≤ 0. However, for ` = umax and r = umin we have that

lim
x→0+

F ((umax − umin)x+ umin)
sin(πx)

and lim
x→1−

F ((umax − umin)x+ umin)
sin(πx)

are strictly positive when F has a simple zero at the endpoints of IE , which occurs
for generic potential functions F (u), such as the double-well potential and others,
see [17, Sections 2.2.1, 2.2.2, 2.2.3].

Therefore, in these cases

min
r,`∈IE , x∈Ω

F ((r − `)x+ `)
sin(πx)

> 0, (2.6)

so that the local version of the twist property that is characterized in Proposition 2.3
holds for a range of positive values for β that can be estimated using (2.5). As an
illustration we estimate the β bound for a specific potential function F (u).

Example 2.4. Consider the double-well potential

F (u) =
1
4

(u2 − 1)2 − 1
8
.

A compact interval component is I = [−
√

1− 1√
2
,
√

1− 1√
2
], and it suffices to

compute

inf
[umin,umax]

inf
Ω

( 1
2

(
((r − l)x+ l)2 − 1

)2 − 1
4

(r − `)C4/3
2 (`, r) sin(πx)

)
. (2.7)

In Section 3.1 the following formula for the constant C2 is given in equation (3.5)

C
4/3
2 (`, r) = sup

Ω

√
8F ((r − `)x+ `)
3π2 sin2(πx) + π2

= sup
Ω

√
2
(
((r − l)x+ l)2 − 1

)2 − 1
3π2 sin2(πx) + π2

.

Using (2.7), we numerically estimate the upper bound on β given in equation (2.5)
to be approximately 3.82.

The existence of a simple closed characteristic of L can then be proved using
[17, Theorem 12]. Note that simply the existence of a closed characteristic for all
β in the SH / eFK system follows from the results in [12]. However, for β > 0 this
existence is obtained via a degree argument, and for the above range of positive
β, we obtain existence variationally, which provides more information about the
closed characteristics.

Corollary 2.5. If condition (2.6) holds, then the hypotheses of Proposition 2.3
hold, and therefore there exists a simple closed characteristic of L on the interval
component I.
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In Section 3 we prove Proposition 2.3. Then we define in Section 4 a type of curve
evolution for which closed characteristics are stationary points of the dynamics.
Finally, we briefly indicate how techniques from dynamical systems might be applied
using these methods in Section 5.

3. Localizing the twist property

Fix a regular interval component I = [umin, umax] with F (u) > 0 on (umin, umax),
and assume umin, umax are simple zeros of F . Throughout this section ` and r are
arbitrary points with umin ≤ ` < r ≤ umax.

Next we introduce two changes of variables. Let

z = v3/2 and x =
u− `
r − `

.

The action functional J : H1
0 (Ω)× I2 → R written in the three variables z, `, r is

J [z, `, r] =
∫

Ω

2
9(r − `)

z2
x +

(r − `)F ((r − `)x+ `)
z2/3

+
(r − `)β

2
z2/3dx

where Ω = (0, 1). For fixed values of ` < r, the first change of variable ensures
that the gradient flow of J in H1

0 (Ω) will be semilinear, and the second change
of coordinates provides the uniform spatial domain [0, 1]. Stationary functions of
J [z, `, r] satisfy the Euler -Lagrange equation

u′′′′ − d

dt

∂K

∂u′
+
∂K

∂u
= 0.

Using the Hamiltonian relation, solutions of this equation satisfy

−u′u′′′ + 1
2

(u′′)2 +
∂K

∂u′
u′ −K(u, u′)− E = 0.

Since z is a function of u on a lap, this can be expressed as

zuu =
3
2

∂K
∂u′u

′ −K(u, u′)− E
z5/3

, (3.1)

and in terms of the variable x we have
4
9
zxx =

(r − `)2

3

(−2F ((r − `)x+ `)
z5/3

+
β

z1/3

)
. (3.2)

for K in (2.4).

3.1. Monotonicity of the nonlinearity. To take full advantage of the compar-
ison principle for elliptic operators, stated in Theorem 3.2 below, we need the
following proposition.

Proposition 3.1. If

β ≤ 10F ((`− r)x+ l)
z4/3

for all x ∈ Ω, (3.3)

then the nonlinearity

N [z] =
2
3
F ((`− r)x+ `)

z5/3
− β

3z1/3

is nonincreasing in z.
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Proof. The derivative with respect to z is
d

dz

(2
3
F ((`− r)x+ l)

z5/3
− β

3z1/3

)
=
−10

9
z−8/3F ((`− r)x+ l) +

β

9
z−4/3,

which is nonpositive when condition (3.3) is satisfied. �

3.2. Lower and upper solutions. To consider the behavior of the solutions of
(3.2) near ∂Ω, we need to analyze the singular operator

E[z] =
4
9
zxx +

(r − `)2

3

(2F ((r − `)x+ `)
z5/3

− β

z1/3

)
for fixed ` < r. The correct scaling between the zxx and z−5/3 terms is z ∼ x3/4,
and hence we define the conical shell

C =
{
z ∈ L∞(Ω) : C1d(x)3/4 ≤ z(x) ≤ C2(d(x)3/4 + d(x)) ∀x ∈ Ω

}
for some C1, C2 with 0 < C1 < C2, where d(x) = dist(x, ∂Ω).

We use the following version of the weak comparison principle from Cuesta and
Takáč [5] with p = 2, see also Fleckinger-Pelléand Takáč [6].

Theorem 3.2 (Weak comparison principle [5]). Assume f ≤ g in Lp/(p−1)(Ω), f̃ ≤
g̃ in W 1−(1/p),p(∂Ω), and u, v ∈ W 1,p(Ω) are any weak solutions of the Dirichlet
problems

−div(a(x,∇u))− b(x, u) = f(x) in Ω; u = f̃ on ∂Ω,

−div(a(x,∇v))− b(x, v) = g(x) in Ω; v = g̃ on ∂Ω.

Then u ≤ v hold almost everywhere in Ω provided b(x, ·) : R→ R is nonincreasing
for a.e. x ∈ Ω.

From Theorem 3.2 we can now construct lower and upper solutions to E[z] = 0
following the arguments in Badra, Bal, and Giacomoni [3]. That is, we can find
functions z, z̄ ∈ H1

0 (Ω) ∩ C such that z ≤ z̄ and E[z] ≥ 0 and E[z̄] ≤ 0 in Ω.
Let φ1 denote the normalized positive eigenfunction associated with the principal

eigenvalue λ1 of −∆ with homogeneous Dirichlet boundary conditions. In this case
φ1(x) = sin(πx) and λ1 = π2. Since φ1 ∈ C1(Ω), we have φ3/4

1 ∈ C. We define the
lower and upper solutions by

z = ηφ
3/4
1 and z = Mφ

3/4
1

for η > 0 sufficiently small and M > η sufficiently large. For z = Cφ
3/4
1 with C > 0

−E[z] =
Cπ2φ

3/4
1

3
+
C

12
φ
−5/4
1 (∂xφ1)2 − 2

3
(r − `)2F ((r − `)x+ `)

z5/3
+

(r − `)2β

3z1/3
.

Multiplying −E[z] = 0 through by 12C5/3φ
5/4
1 yields

C8/3
(
4π2φ2

1 + (∂xφ1)2
)

+ C4/34(r − `)2βφ1 − 8(r − `)2F ((r − `)x+ `) = 0.

Treating this as a quadratic in C4/3 the nonnegative root is(
− 2β(r − `)2 sin(πx)

+ 2(r − `)
√

(r − `)2β2 sin2(πx) + 2F ((r − `)x+ `) ·
(
3π2 sin2(πx) + π2

))
÷
(

3π2 sin2(πx) + π2
)
.

(3.4)
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Therefore if we take C4/3
1 (`, r, β) ·(r−`) and C4/3

2 (`, r, β) ·(r−`) as lower and upper
bounds for the expression (3.4) respectively, then for η = C1(`, r, β) · (r− `)3/4 and
M = C2(`, r, β) · (r − `)3/4 we have that z and z̄ are lower and upper solutions
respectively, which leads us to a second cone

C(`, r, β) = {z ∈ H1
0 (Ω) | z ≤ z ≤ z̄}.

We can bound the function z above independently of β for β > 0.(
− 2β(r − `)2 sin(πx)

+ 2(r − `)
√

(r − `)2β2 sin2(πx) + 2F ((r − `)x+ `) ·
(
3π2 sin2(πx) + π2

))
÷
(

3π2 sin2(πx) + π2
)

≤
(r − `)

√
8F ((r − `)x+ `) ·

(
3π2 sin2(πx) + π2

)
3π2 sin2(πx) + π2

= (r − `)

√
8F ((r − `)x+ `)
3π2 sin2(πx) + π2

(3.5)

We denote the maximum of
√

8F ((r−`)x+`)
3π2 sin2(πx)+π2 over Ω by C4/3

2 (`, r).
For β > 0, restricting to the cone C(`, r, β) where z ≤ z̄, the condition

β ≤ 10F ((r − `)x+ l)

(r − `)C4/3
2 (`, r) sin(πx)

for all x ∈ Ω (3.6)

guarantees that N [z] is nonincreasing for z ∈ C(`, r, β). Note that this inequality is
similar to (2.5) in Proposition 2.3. Inequality (3.6) is necessary, but not sufficient
for the existence of local minimizers, see the proof of Proposition 2.3 below.

With this in mind, we compare (3.6) with Lemma 2.2, which provides sufficient
conditions for the twist property to hold on an interval component I. Hypothesis (b)
of Lemma 2.2 is

∂2K

∂v2
v2 − 5

2
{∂K
∂v

v −K(u, v)− E
}
≥ 0 for all u ∈ IE and v ∈ R.

In our setting for eFK/Swift-Hohenberg type Lagrangians, this hypothesis reduces
to

v2β ≤ 10F (u) for all u ∈ I and v ∈ R,
which holds only when β ≤ 0. Note that when we consider functions z(x) with
z = v3/2 and u = (r − `)x + `, we obtain exactly condition (3.3), so that Hy-
pothesis (b) of Lemma 2.2 is sufficient, but not necessary, for the monotonicity of
the operator N [z]. Therefore while considering the cone C(`, r, β), it is natural to
replace condition Hypothesis (b) of Lemma 2.2 with (3.6), which leads to the more
general Proposition 2.3. In particular, as shown in Example 2.4, the inequality
(3.6) estimates the range of positive β values for which the twist property holds,
whereas Lemma 2.2 requires β ≤ 0. Note that the constant in (3.6) is 10 while
the constant in (2.5) in Proposition 2.3 is 2. This discrepancy is explained in the
following proof.

Proof of Proposition 2.3. For existence and uniqueness we can apply the results of
Crandall, Rabinowitz, and Tartar [4], where the factor of 2 in (2.5) is necessary
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to ensure that 2F ((r−`)x+`)
z5/3

− β
z1/3

→ +∞ as z → 0+ in Equation (3.2). The C1

dependence on ` and r follows from the same arguments as in the proof of [17,
Lemma 9]. �

Example 3.3. Fifth-order KdV equation. Here we briefly describe another exam-
ple of how the results from this section extend the known results concerning the
existence of simple closed characteristics. Consider the Lagrangian

L(u, v, w) =
1
2
w2 +

1
2

(α+ 2µu) v2 +
κ

3
u3 +

σ

2
u2 (3.7)

which describes traveling waves in a fifth-order Korteweg-de Vries equation (see
[15])

ut + γuxxxxx + βuxxx − α{2uuxx + (ux)2}x + 2κuux + 3ru2ux = 0.

The techniques from the proof of Proposition 2.3 can be adapted to include the
Lagrangian (3.7) and possibly more general Lagrangians of the form L(u, v, w) =
1
2w

2 +K(u, v) of which L is a special case, note that when µ = 0 L reduces to the
eFK/Swift-Hohenberg Lagrangian. Applying Lemma 2.2 to L gives the inequality

α+ 2µu ≤ 10
(κ

3
u+

σ

2

) u2

v2
for u ∈ IE , v ∈ R, (3.8)

which would require that α + 2µu ≤ 0 to obtain the existence of simple closed
characteristics, cf. [17, Section 2.2.3].

Assume κ, µ > 0 and consider an interval component in
(
− 3σ

2κ , 0
)
, if we utilize

Theorem 3.2 and construct upper and lower solutions for equation (3.1), then it
is sufficient that inequality (3.8) hold for v in a cone defined by upper and lower
solutions. Thus no longer requiring α+ 2µu ≤ 0, we would have an estimate of the
form

α+ 2µ ((r − `)x+ `) ≤ 10
(κ

3
((r − `)x+ `) +

σ

2

) ((r − `)x+ `)2

(z(x))4/3
for x ∈ Ω,

where I = [`, r], u = (r − `)x + `. Note that using the explicit form of the lower
solution z, the right hand side term can be bounded away from zero, which gives the
existence of simple closed characteristics for a range of positive values for α+ 2µu.

4. Evolution equations

The twist condition, as discussed in the previous section, concerns the existence
of laps for fixed endpoints `, r, which are found as solutions to the degenerate elliptic
equation

E[z] =
4
9
zxx +

(r − `)2

3

(2F ((r − `)x+ `)
z5/3

− β

z1/3

)
= 0.

In this section, we embed the problem of finding a closed characteristic into a
dynamical system where the endpoints `, r evolve, which would allow tools from
dynamical systems theory, such as the Conley index, to be applied. There are
several ways of constructing such a dynamical system. We begin by considering the
gradient dynamics generated by the action functional

J [z, `, r] =
∫

Ω

2
9(r − `)

z2
x +

(r − `)F ((r − `)x+ `)
z2/3

+
(r − `)β

2
z2/3 dx. (4.1)

The evolution equations arise by computing the total variation of J : H1
0 (Ω)×I2 →

R as a function of three variables z, `, r.
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To avoid the singularity at z = 0 we consider the perturbed functional

Jε[z, `, r] =
∫

Ω

2
9(r − `)

z2
x +

(r − `)F ((r − `)x+ `)
(z + ε)2/3

+
(r − `)β

2
(z + ε)2/3dx (4.2)

for ε > 0 so that

(r − `)δzJε[z, `, r] = −4
9
zxx −

(r − `)2

3

(2F ((r − `)x+ `)

(z + ε)5/3
+

β

(z + ε)1/3

)
· δz (4.3)

(r − `)2δ`J
ε[z, `, r] =

2
9

∫
Ω

z2
xdx+ (r − `)2

∫
Ω

(r − `)(1− x)F ′ − F
(z + ε)2/3

dx

− (r − `)2

∫
Ω

β

2
(z + ε)2/3dx · δ`,

(4.4)

(r − `)2δrJ
ε[z, `, r] = −2

9

∫
Ω

z2
xdx+ (r − `)2

∫
Ω

(r − `)xF ′ + F

(z + ε)2/3
dx

+ (r − `)2

∫
Ω

β

2
(z + ε)2/3dx · δr.

(4.5)

From this we obtain the system

zt =
4
9
zxx +

(r − `)2

3

(2F ((r − `)x+ `)

(z + ε)5/3
− β

(z + ε)1/3

)
,

`t = −2
9

∫
Ω

z2
xdx− (r − `)2

∫
Ω

(r − `)(1− x)F ′ − F
(z + ε)2/3

dx

+ (r − `)2

∫
Ω

β

2
(z + ε)2/3dx,

rt =
2
9

∫
Ω

z2
xdx− (r − `)2

∫
Ω

(r − `)xF ′ + F

(z + ε)2/3
dx

− (r − `)2

∫
Ω

β

2
(z + ε)2/3dx.

(4.6)

where the argument of F and F ′ is (r−`)x+`. Let QT = Ω×(0, T ) and ΣT = ∂Ω×
(0, T ). System (4.6) allows the possibility of studying laps and closed characteristics
as stationary points of a type of curve evolution in the plane. Indeed the evolution
can be cast as a curve shortening type flow under a Finsler form induced by the
Lagrangian [1]. However, when ε = 0, this system is degenerate when z = 0.

Theorem 4.1. Given (z0, `0, r0) ∈ H1
0 (Ω) × I × I with r0 6= `0 and z0 > 0 on Ω

there exists T (z0, `0, r0, ε) > 0 such that a unique solution (zε, `ε, rε) in the space
C1([0, T ];C∞(Ω))×C1([0, T ]; I)×C1([0, T ]; I) to (4.6) exists, and Jε[zε(t), `ε(t), rε(t)]
is decreasing on [0, T ].

Proof. Existence and uniqueness follow from standard semigroup theory, since the
perturbed nonlinearity is Lipschitz for z + ε > 0, see for instance [9]. Moreover, Jε

decreases along (zε, `ε, rε) by construction

d

dt
Jε[z, `, r] = −(r − `)(∇zJε)2 − (r − `)2(∇rJε)2 − (r − `)2(∇`Jε)2 < 0.

�

While it may be possible to analyze the dynamics of (4.6) directly, for example
by scaling the system so that the z-dynamics is fast compared to the dynamics of
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`, r and use geometric singular perturbation theory, we take a different approach.
We consider the finite-dimensional system obtained by removing the parabolic PDE
and substituting a family of stationary solutions zε,∞ to the PDE into the evolution
equations for `, r to obtain

`t = −2
9

∫
Ω

(∂xzε,∞)2dx− (r − `)2

∫
Ω

(r − `)(1− x)F ′ − F
(zε,∞ + ε)2/3

dx

+ (r − `)2

∫
Ω

β

2
(zε,∞ + ε)2/3dx,

rt =
2
9

∫
Ω

(∂xzε,∞)2dx− (r − `)2

∫
Ω

(r − `)xF ′ + F

(zε,∞ + ε)2/3
dx

− (r − `)2

∫
Ω

β

2
(zε,∞ + ε)2/3dx.

(4.7)

Stationary solutions to this two-dimensional system are necessarily stationary so-
lutions to system (4.6).

To see that a smooth family of solutions zε,∞ exists, define Eε[z] = E[z+ ε], and
recall the lower and upper solutions z, z̄ of E[z]. Then z − ε is a lower solution for
the regularized system since

Eε[z − ε] =
4
9

(z − ε)xx +
(r − `)2

3

(
2F ((r − `)x+ `)

(z − ε+ ε)5/3
− β

(z − ε+ ε)1/3

)
= E[z] ≥ 0.

For β satisfying (3.6),

Eε[z̄] =
4
9
z̄xx +N [z̄ + ε] ≤ 4

9
z̄xx +N [z̄] = E[z̄] ≤ 0,

and hence z̄ is an upper solution for all ε ≥ 0. With this in mind we can define a
cone for the ε-perturbed flow

C(`, r, β, ε) = {z ∈ H1
0 (Ω) : z − ε ≤ z ≤ z̄}.

Then the methods used in [3] and [4] imply that such a family exists within the
cones C(`, r, β, ε), see Theorem 0.8 in [3].

These methods also establish the existence of time-dependent solutions for the
family of parabolic PDE’s zt = Eε[z] for ε ≥ 0, however, not necessarily for the
coupled PDE-ODE system (4.6) when ε = 0, since for ε = 0 the PDE is singular.

Here we state the existence and regularity for the following singular parabolic
equation where r, ` are fixed.

zt =
4
9
zxx +

(r − `)2

3

(2F ((r − `)x+ `)
z5/3

− β

z1/3

)
. (4.8)

Definition 4.2. Let

V(QT ) = {z : z ∈ L∞(QT ), zt ∈ L2(QT ), z ∈ L∞(0, T ;H1
0 (Ω))}.

A weak solution to (4.8) is a function z ∈ V(QT ), satisfying
(1) ess infK z > 0 for every compact K ⊂ QT ;
(2) for every test function φ ∈ V(QT ),∫

QT

(
φ
∂z

∂t
+

4
9
zxφx −

(r − l)2

3

(2F ((r − l)x+ l)φ
z5/3

− βφ

z1/3

))
dx dt = 0;

(3) z(0, x) = z0(x) a.e. in Ω.
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Remark 4.3. If 1/z5/3 ∈ L∞(0, T ;H−1(Ω)) then the integral in (2) is well-defined.

Theorem 4.4. For z0 ∈ H1
0 (Ω)∩C and β satisfying (3.6) there exists a unique weak

solution z to the parabolic equation (4.8) which satisfies z(t) ∈ C((0,∞);H
5
4−

5
2η

0 (Ω))
for all 0 < η < 3/8.

To obtain this regularity result we utilize the methods from [3, Theorem 4.2],
which require the interpolation theory of Sobolev spaces (cf. Triebel [16]), and
the Hardy Inequality. Recall that the operator A = − 4

9
d2

dx2 has domain D(A) =
H1

0 (Ω)∩H2(Ω), hence for fractional powers of A, Aθ with domain D(Aθ) in L2(Ω)
we have the following fact.

Proposition 4.5.

(i) D(Aθ) = (D(−A), L2(Ω))1−θ,2;
(ii) D(Aθ) = H2θ

0 if 1/4 < θ < 1;
(iii) Aθ is an isomorphism from D(A) onto D(A1−θ) as well as from L2(Ω) onto

the dual space (D(Aθ))′.

See [3, Proposition 4.1], also one can look in [16].

Lemma 4.6. Let θ ∈ [0, 1) and q > 2
1−θ . For 0 ≤ t0 < T <∞ let LT be the linear

operator defined by LT (f) = u where u is the solution to

ut −
4
9
uxx = f in QT ,

u = 0 on ΣT ,

u(0) = 0 in Ω.

(4.9)

Then LT is a bounded operator from Lq(t0, T ; (D(Aθ))′) into Xq,θ,T as well as from
Lq(t0, T ; (D(Aθ))′) into C([t0, T ],D(A1−θ− 2

q )).

For a proof of the above lemma, see [3, Lemma 4.4]. In particular we have the
inequality

‖LT f‖
C([t0,T ],D(A

1−θ− 2
q ))
≤ C‖f‖Lq(t0,T ;(D(Aθ))′). (4.10)

We make use of the following Hardy type inequality, see [3, Lemma 4.5] or [16,
Lemma 3.2.6.1].

Lemma 4.7. Let s ∈ [0, 2] such that s 6= 1/2 and s 6= 3/2. Then the following
generalization of Hardy’s inequality holds:

‖d−sg‖L2(Ω) ≤ C‖g‖Hs(Ω) for all g ∈ Hs
0(Ω). (4.11)

Proof of Theorem 4.4. The existence and uniqueness of weak solutions to (4.8) fol-
lows from a straightforward modification of the techniques in [3] to accommodate
singular terms of the form F (x)z−5/3 with F (x) bounded and positive a.e., instead
of simply z−5/3, and the addition of a weaker singular term βz−1/3. In particular
see [3, Theorem 0.16].

To obtain regularity we proceed as follows. For t > 0 choose t0, T > 0 such that
t0 < t < T . Note that the solution z to Pt on (0, T ) satisfies

z(t) = e−Atz0 + LT

( (r − l))2

3

( 2F
z5/3

− β

z1/3

))
.
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Since 0 < η < 3
8 , we have θ = 5

4 −
5
2η >

1
4 as in Proposition 4.5, and since z ∈ C,

we know that 1
z5/3

= O
(

1
d(x)5/4

)
. Therefore by Lemma 4.7 we have

(r − l))2

3

( 2F
z5/3

− β

z1/3

)
∈ C((0, T ], (H

3
4 + η

2
0 (Ω))′).

Indeed setting s = 3
4 + η

2 in (4.11), for g ∈ H
3
4 + η

2
0 we obtain

‖ 1
z5/3

g‖2L2(Ω) ≤
∫

Ω

∣∣∣ g

C1d(x)5/4

∣∣2dx
=

1
C2

1

∫
Ω

∣∣∣d(x)3/4+η/2

d(x)5/4

g

d(x)3/4+η/2

∣∣∣2dx
≤ 1
C2

1

‖d−1/2+η/2‖L2(Ω)‖d(x)−(3/4+η/2)g‖L2(Ω)

≤ 1
C2

1

‖d−1/2+η/2‖L2(Ω)‖g‖H3/4+η/2
0

.

Furthermore, C((0, T ], (H
3
4 + η

2
0 (Ω))′) = C((0, T ], (D(A)

3
8 + η

4 )′) from Proposition 4.5.
Applying Lemma 4.6 with q = 2

η and θ = 3
8 + η

4 we see that

LT

( (r − l))2

3

( 2F
z5/3

− β

z1/3

))
∈ C([0, T ], D(A1−θ− 2

q )) = C([0, T ], D(A
5
8−

5
4η)).

Therefore,

LT

( (r − l))2

3

( 2F
z5/3

− β

z1/3

))
∈ C([0, T ], H

5
4−

5
2η

0 (Ω)),

and

t→ z(t) = e−Atz0 + LT

( (r − l)2

3

( 2F
z5/3

− β

z1/3

))
∈ C((0, T ], H

5
4−

5
2η

0 (Ω)).

Since t is arbitrary, z(t) ∈ C((0,∞), H
5
4−

5
2η

0 (Ω)). �

We now obtain the following existence and stabilization result.

Theorem 4.8. Fix umin < ` < r < umax. If β satisfies the bound in (3.6), then
there exists a unique zε,∞ ∈ H1

0 (Ω) ∩ C(`, r, β, ε) ∩ C0(Ω) satisfying

Eε[zε,∞] = 0.

Moreover, for each z0 ∈ C(`, r, β, ε) there exists a unique solution z(t) of

zt = Eε[z] for t ∈ (0,∞) with z(0) = z0, (4.12)

and z(t)→ zε,∞ as t→∞ in H1
0 (Ω). Furthermore, there exists M(`, r, β) > 0 such

that
‖zε,∞‖H9/8

0 (Ω)
≤M(`, r, β) for ε ≥ 0.

Proof. First, as described in the proof of Theorem 4.4, we note that the techniques
in [3] can be modified to apply to the type of nonlinearity we are considering here.
In particular Theorem 0.8 in [3] establishes the existence and uniqueness of the
function z∞ ∈ H1

0 ∩ C with E[z∞] = 0, and [3, Theorem 0.15] can then be applied
to obtain convergence of z(t)→ z∞ in L∞(Ω).
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Now setting η = 1/20 in Theorem 4.4 yields z(t) ∈ C((0,∞), H9/8
0 (Ω)). Fix

τ > 0 and for each t > 0 choose 0 < t0 < t < t0 + τ = T . Then

t→ z(t) = e−tAz0 + LT

( (r − `)2

3
( 2F
z5/3

− β

z1/3

))
.

Since z ≤ z(t) ≤ z̄, we can apply Lemma 4.6

‖LT
( (r − `)2

3
( 2F
z5/3

− β

z1/3

))
‖
C([t0,T ],H

9/8
0 (Ω))

≤ C‖ (r − `)2

3
( 2F
z5/3

− β

z1/3

)
‖
Lq(t0,T ;(H

31/40
0 (Ω))′)

≤ C‖ (r − `)2

3
2F
z5/3
‖
Lq(t0,T ;(H

31/40
0 (Ω))′)

+ C‖ (r − `)2

3
|β|
z1/3
‖
Lq(t0,T ;(H

31/40
0 (Ω))′)

≤ C(`, r)τ1/q‖ (r − `)2

3
2F
z5/3
‖
Lq(t0,T ;(H

31/40
0 (Ω))′)

+ C(`, r)τ1/q‖ (r − `)2

3
|β|
z1/3
‖

(H
13/32
0 (Ω))′

<∞

(4.13)

Using the Hardy inequality as in the proof of Theorem 4.4 we see that the
last terms are bounded independent of T , and hence sup[1,∞] ‖z(t)‖H9/8

0 (Ω)
< ∞.

From the compactness of the embedding of H9/8
0 into H1

0 it follows that for every
z0 ∈ H1

0 ∩ C we have z(t)→ z∞ as t→∞ in H1
0 (Ω).

For ε > 0 we can repeat the above arguments for the perturbed parabolic equa-
tion

zt =
4
9
zxx +

(r − `)2

3

(2F ((r − `)x+ `)
(z + ε)5/3

− β

(z + ε)1/3

)
(4.14)

as follows. Just as for the singular case ε = 0 addressed in Theorem 4.4, the
techniques of [3] can be suitably modified to establish the existence, uniqueness,
and regularity to the parabolic PDE (4.14) for ε > 0. Indeed, standard semigroup
theory [9] also applies in this case since the nonlinearity is not singular. Recall
that a lower solution for (4.14) is given by zε = z − ε, and the upper solution z̄ for
Pt is also an upper solution for (4.14). Therefore the arguments used in the proof
of Theorem 4.4 can be applied to establish that zε(t) ∈ C((0,∞), H9/8

0 (Ω)). Note
that since zε(t) > −ε, the solution exists for all t ≥ 0. Also recall the existence of
a unique solution zε,∞ ∈ H1

0 ∩ C to Eε[zε,∞] = 0 with zε(t) → zε,∞ in L∞(Ω) by
Theorem 0.15 in [3].

Moreover since zε ≤ zε(t), we have
1

(zε(t) + ε)p
≤ 1

(zε + ε)p
=

1
zp

for p = 5/3 or 1/3.

Hence the bound in equation (4.13) holds for the solutions to (4.14) as well so that
sup[1,∞] ‖zε(t)‖H9/8

0 (Ω)
< ∞, and for every z0 ∈ H1

0 ∩ C we have zε(t) → zε,∞ in

H1
0 (Ω).
Finally, taking z0 = zε,∞ so that zε(t) = zε,∞ for all t ≥ 0, and using the fact

that e−tAz0 → 0 in H
9/8
0 (Ω), for each ε > 0 there exists a time t1 > 0 such that

‖e−tAzε,∞‖H9/8
0
≤ 1. Since the bound (4.13) on the nonlinearity is independent of

ε, there exists M(`, r, β) > 0 such that ‖zε,∞‖H9/8
0
≤M(`, r, β) for all ε ≥ 0. �
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Corollary 4.9. zε,∞ → z∞ as ε → 0 in H1
0 (Ω). Hence the expressions for `t and

rt in equation (4.7) for ε > 0 converge as ε→ 0 to the corresponding expression for
ε = 0.

Proof. For notational convenience let us write zε = zε,∞. First we establish con-
vergence in L∞(Ω). From the weak comparison principle, we get that if 0 ≤ ε̃ ≤ ε
then zε ≤ zε̃ and zε̃+ ε̃ ≤ zε+ ε. To see this note that for ξε = zε+ ε and ξε̃ = zε̃+ ε̃
we have

4
9
∂2
xx(ξε̃ − ξε) + (r − l)2 2

3
F ((r − l)x+ l)

( 1

ξ
5/3
ε̃

− 1

ξ
5/3
ε

)
= 0

−β
3

( 1

ξ
1/3
ε̃

− 1

ξ
1/3
ε

)
in Ω,

zε̃ − zε ≤ 0 on ∂Ω.

From this it follows that (zε)ε>0 is a Cauchy sequence in L∞(Ω) and there exists
z ∈ L∞(Ω) satisfying zε → z as ε→ 0 in L∞(Ω) and z = limε→0+ zε ≤ z ≤ z̄. From
Theorem 4.8 we have that zε,∞ → z in H1

0 (Ω). For ϕ ∈ H1
0 (Ω)∫

Ω

(zε)xx ϕdx+
(r − `)2

3

∫
Ω

(2F ((r − `)x+ `)

z
5/3
ε

− β

z
1/3
ε

)
= −

∫
Ω

(zε)x ϕxdx+
(r − `)2

3

∫
Ω

(2F ((r − `)x+ `)

z
5/3
ε

− β

z
1/3
ε

)
= 0.

Letting ε→ 0 yields

−
∫

Ω

zxϕxdx+
(r − `)2

3

∫
Ω

(2F ((r − `)x+ `)
z5/3

− β

z1/3

)
= 0.

Therefore z is a weak solution to the stationary equation for (4.8), and since z∞ is
the unique such solution, we have zε,∞ → z∞ as ε → 0. Since the right hand side
of (4.7) converges pointwise a.e. in Ω, letting ε → 0 and applying the Dominated
Convergence Theorem yields the convergence of `t and rt. �

Next we establish that the maximal time interval of existence for (4.6) relies only
on the dynamics of `ε(t) and rε(t).

Theorem 4.10. The solution (zε(t), lε(t), rε(t)) to (4.6) stays in C(`, r, β, ε) × I2

for all t ≥ 0 in its maximal interval of existence. Moreover, either the solution
can be extended globally to [0,∞), or at the maximal time of existence T , either
`ε(T ) = umin and ` is decreasing at time T or rε(T ) = umax and r is increasing at
time T , i.e. either the maximal interval of existence is infinite, or either `ε or rε
leaves I in finite time.

Proof. Suppose that `ε(t), rε(t) remain in I over the time interval [0, T ]. From The-
orem 4.8 the set {(zε(t), `ε(t), rε(t))} is compact in C

(
[T/2, T ], H1

0 (Ω)
)
×I2. We can

then choose a sequence {(zε(tn), `ε(tn), rε(tn))}n≥1 such that (zε(tn), `ε(tn), rε(tn))→
(z∗ε , `

∗
ε , r
∗
ε ) for tn → T . Treating (z∗ε , `

∗
ε , r
∗
ε ) as new initial conditions, if ` is nonde-

creasing and r is nonincreasing at time T , the solution can be extended beyond time
T . Therefore, if the maximal interval of existence is [0, T ] with T < ∞, we must
have either `(T ) = umin with ` decreasing at T or r(T ) = umax with r increasing
at T . �
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The following proposition shows that in the regularized system with ε > 0, the
integral expressions for `t, rt in equation (4.7) have a simpler pointwise formulation.

Proposition 4.11. Let zε,∞ be the family of solutions of Eε[z] = 0 for ε > 0.
Recalling that u = (r − `)x+ `, then

∂`J
ε[z, `, r] =

2
9

(∂uzε,∞(`))2 − F (`)
ε2/3

− β

2
ε2/3, (4.15)

∂rJ
ε[z, `, r] = −2

9
(∂uzε,∞(r))2 +

F (r)
ε2/3

+
β

2
ε2/3. (4.16)

Proof. We start by reducing the expression∫
Ω

2
9(r − `)2

z2
x +

(r − `)(1− x)F ′ − F
(z + ε)2/3

− β

2
(z + ε)2/3dx

=
∫ r

`

2
9(r − `)

z2
u +

F`
(z + ε)2/3

− F

(r − `)(z + ε)2/3
− β(z + ε)2/3

2(r − `)
du.

The term
∫ r
`

F`
(z+ε)2/3

du can be further simplified∫ r

`

F`
(z + ε)2/3

du

=
∫ r

`

1
(z + ε)2/3

du

d`

dF

du
du =

1
(r − `)

∫ r

`

r − u
(z + ε)2/3

dF

du
du

=
(r − u)
(r − `)

F

(z + ε)2/3

∣∣∣r
`
− 1

(r − `)

∫ r

`

d

du

[ r − u
(z + ε)2/3

]
Fdu

= −F (`)
ε2/3

+
1

(r − `)

∫ r

`

F

(z + ε)2/3
du+

2
3(r − `)

∫ r

`

(r − u)F
(z + ε)5/3

zudu.

Next note that

2
3(r − `)

∫ r

`

F
(r − u)

(z + ε)5/3
zudu

= − 4
9(r − `)

∫ r

`

(r − u)zuuzudu+
β

3(r − `)

∫ r

`

(r − u)(z + ε)−1/3zudu

= − 2
9(r − `)

∫ r

`

(r − u)
d

du
(z2
u)du+

β(r − u)
2(r − `)

(z + ε)2/3
∣∣∣r
`

+
β

2(r − `)

∫ r

`

(z + ε)2/3du

=
2
9
z2
u(`)− 2

9(r − `)

∫ r

`

z2
udu−

β

2
ε2/3 +

β

2(r − `)

∫ r

`

(z + ε)2/3du.

Therefore ∫
Ω

2
9(r − `)2

z2
x +

(r − `)(1− x)F ′ − F
(z + ε)2/3

− β

2
(z + ε)2/3dx

=
2
9
z2
u(`)− F (`)

(z + ε)2/3
− β

2
(z + ε)2/3

=
2
9
z2
u(`)− F (`)

ε2/3
− β

2
ε2/3,

the last equality follows from the boundary conditions z(`) = z(r) = 0. The
proposition now follows from Equation (4.3). �
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Note that Corollary 4.9 and Proposition 4.11 can be used together to establish
the signs of `t and rt in equation (4.7) at ε = 0. In Corollary 2.5 we established
the existence of simple closed characteristics in the more general setting of Proposi-
tion 2.3. We now use the results of this section to describe a framework to consider
non-simple closed characteristics.

5. Final remarks: a framework for non-simple closed characteristics

In the previous sections we built a framework in which to study a gradient-like
dynamics using the second-order Lagrangian action functional

J [u] =
∫ τ

0

1
2

(u′′)2 +
β

2
(u′)2 + F (u) dt (5.1)

where we first considered an individual monotone lap u with u(0) = `, u(τ) = r
and u′ > 0 in (0, τ). Now we consider a periodic function u as a concatenation of
finitely many laps, which yields a closed curve in the (u, u′)-plane. Recall that for
each increasing lap with u(0) = `, u(τ) = r, and ` < r, we define z = |u′|3/2, and z
is a function of u by monotonicity. Changing variables, z is taken to be a function
of the variable x defined by u = (r−`)x+`. The action functional J [z; `, r] in these
variables is given in equation (4.1). In the case of a decreasing lap with u(0) = r,
u(τ) = `, and ` < r, we still define z = |u′|3/2 so that z is a function of u from `
to r, and hence the variable x is again defined by u = (r − `)x + `, and J [z; r, `]
in these variables is given again by equation (4.1). Indeed, since the Lagrangian
L has the symmetry L(u,−v, w) = L(u, v, w), we have that if u(t) is an increasing
lap from ` to r, then u(τ − t) is a decreasing lap from r to ` so that z is the same
function in both cases, and hence J [z; `, r] = J [z; r, `].

The gradient dynamics of J for functions with n laps can then be expressed as
a coupled system of n parabolic equations and n ODE’s by extending the system
(4.6) defined in Section 4. The resulting dynamics can be viewed as a type of
curve evolution in the (u, u′)-plane. However, as forecast in the previous section,
we reduce this dynamics by fixing the laps to be in the family of unique stationary
laps determined by fixed endpoints in Theorem 4.8. This results an n-dimensional
system of ODE’s for the endpoints only, and stationary solutions of the reduced
system must be stationary for the full system.

We now derive the system we consider in some detail. As described in Section 2,
the method of broken geodesics has been applied to second-order Lagrangian sys-
tems in [17] in the case where unique laps exist as minimizers as follows. Let
u1, u2, . . . , un and un+1 = u1 be the local extreme values of u and define

S(uk, uk+1) = minJ [z;uk, uk+1] = J [(z∞)k, uk, uk+1].

Then define W (u1, . . . , un) =
∑n
i=1 S(uk, uk+1) which is the sum of the actions of

the minimizing laps, i.e. the action of the broken geodesic. The k-th component
of the gradient of W is simply ∂2S(uk−1, uk) + ∂1S(uk, uk+1). Properties of these
derivatives can be exploited to prove the existence of critical points for W , which
yield closed characteristics, see [17].

Here we let zk be the variable of the k-th lap and consider the action of the
broken geodesic which is given by

Ŵ [z1, . . . , zn;u1, . . . , un] =
n∑
k=1

J [zk, uk, uk+1].
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Assume that u1 < u2 so that for k odd uk is a minimum and for k even uk is a
maximum of the broken geodesic. Then from equation (4.3) we have

(−1)k+1∂ukŴ

=
2

9(uk−1 − uk)2

∫
Ω

(∂xzk−1)2 dx+
2

9(uk+1 − uk)2

∫
Ω

(∂xzk)2 dx

+
∫

Ω

(uk−1 − uk)σk(x)F ′((uk−1 − uk)x+ uk)− F ((uk−1 − uk)x+ uk)

z
2/3
k−1

dx

+
∫

Ω

(uk+1 − uk)σk(x)F ′((uk+1 − uk)x+ uk)− F ((uk+1 − uk)x+ uk)

z
2/3
k

dx

− β

2

∫
Ω

z
2/3
k−1 dx−

β

2

∫
Ω

z
2/3
k dx

(5.2)

where σk(x) = 1− x for k odd and σk(x) = −x for k even.
Substituting (z∞)k into the gradient-like system derived from equation (5.2)

yields a dynamics for the evolution of the endpoints of the closed curve, as in
Section 4. One can simplify the terms involving

∫
Ω

(∂xzk)2 dx in (5.2). Using the
fact that (z∞)k is a solution to the stationary PDE (3.2) we have

2
9(uk+1 − uk)2

∫
Ω

(∂x(z∞)k)2 dx =
1
3

∫
Ω

F ((uk+1 − uk)x+ uk)

(z∞)2/3
k

dx−β
6

∫
Ω

(z∞)2/3
k dx.

Moreover, to obtain a pointwise estimate of the right-hand side of (5.2) one can
consider the corresponding perturbed system and apply Proposition 4.11. This
would lead to pointwise estimates for the unperturbed system after sending ε→ 0
and applying Corollary 4.9 along with standard convergence theorems. Furthermore
using the explicit upper and lower solutions from Section 3.2 the integral terms in
(5.2) could be numerically investigated. This type of analysis could be helpful in
constructing an index pair or isolating neighborhood for the classes of non-simple
closed characteristics with certain profiles.
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