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VANISHING VISCOSITY LIMIT FOR THE 3D
NONHOMOGENEOUS INCOMPRESSIBLE NAVIER-STOKES
EQUATION WITH SPECIAL SLIP BOUNDARY CONDITION

PENGFEI CHEN, YUELONG XIAO, HUI ZHANG

Abstract. In this article we consider the three-dimensional nonhomogeneous

incompressible Navier-Stokes equation with special slip boundary conditions

in a bounded domain. We discuss the problem of the vanishing viscosity limit
and provide a rate of convergence estimates for the strong solution.

1. Introduction

Let Ω ⊂ R3 be a bounded smooth domain, the initial boundary value problem
of the nonhomogeneous incompressible Navier-Stokes equation is given by

ρ∂tu− ν∆u+ ρu · ∇u+∇p = 0, in Ω, (1.1)

∂tρ+ u · ∇ρ = 0, in Ω, (1.2)

∇ · u = 0, in Ω, (1.3)

u(0, x) = u0, ρ(0, x) = ρ0, in Ω, (1.4)

equipped with the vorticity boundary conditions

u · n = 0, ω · n = 0, n× (∆u) = 0 on ∂Ω. (1.5)

Here the constant ν > 0, n, ρ, u, p represent the viscosity coefficient, the outward
unit normal vector, the mass density, the velocity field and the pressure of the
fluids, respectively. The initial density ρ0(x) is assumed to satisfy the condition
m ≤ ρ0(x) ≤M with m and M are given positive constants.

The vanishing viscosity limit for the nonhomogeneous incompressible Navier-
Stokes equation with the cauchy problem and the periodic boundary conditions has
been investigated by Itoh [14], Itoh and Tani [15] and Danchin [10], respectlvely. In
the presence of a physical boundary, the vanishing viscosity limit problems become
more challenging and significance because of the emergence of the boundary layer.
Formally, when the viscous term is vanishing, system (1.1)-(1.4) degenerates into
the nonhomogeneous incompressible Euler equation

ρ0∂tu
0 + ρ0u0 · ∇u0 +∇p0 = 0, in Ω, (1.6)

∂tρ
0 + u0 · ∇ρ0 = 0, in Ω, (1.7)
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∇ · u0 = 0, in Ω, (1.8)

u0(0, x) = u0, ρ
0(0, x) = ρ0, in Ω, (1.9)

with the slip boundary conditions

u0 · n = 0, on ∂Ω. (1.10)

The initial boundary value problem of the equation (1.6)-(1.10) has a smooth so-
lution at least local in time, it has been addressed by several authors, see, e.g.
[3, 15, 22]. Concerning the nonhomogeneous incompressible Navier-Stokes equa-
tion, one of the most common physical boundary conditions is the classical no-slip
boundary conditions

u = 0, on ∂Ω, (1.11)
which means that fluid particles are adherent to the boundary because of the pos-
itive viscosity, it was proposed by Stokes in [20]. This Dirichlet type problem has
been addressed in [9, 21] and references therein. However, the asymptotic conver-
gence of the solution is one of the major open problem except some special cases,
the main challenging is a discrepancy between the no-slip boundary conditions
for the nonhomogeneous incompressible Navier-Stokes equation and the tangential
boundary conditions for the nonhomogeneous incompressible Euler equation.

Another class of familiar boundary conditions is the Navier-slip boundary con-
ditions, which can be shown as follows

u · n = 0, 2(S(u)n)τ = −γuτ , on ∂Ω, (1.12)

it was first introduced in [19], where 2S(u)n = (∇u+ (∇u)>) is the viscous stress
tensor, γ is a given smooth function on the boundary. We can also write the
equivalently form as the following vorticity-slip condition

u · n = 0, n× ω = βu, on ∂Ω. (1.13)

The result of weak convergence have been considered by Ferreira and Planas [11].
As β = 0, the special vorticity-slip conditions have initially been applied to three-
dimensional incompressible Navier-Stokes equation in [24]. Based on the above
works, the author and coauthor found an additional condition for the density to
obtain the strong convergence rate for the nonhomogeneous Navier-Stokes equation
on the flat domain in [7]. However, to our best knowledge, it is still unknown if the
similar strong convergence results can be established in a general bounde domain.
There are many references on inviscid limit for Navier-Stokes equation with Navier-
slip boundary conditions, the readers can be referred in [4, 5, 6, 8, 12, 13, 16, 17, 26].

Our main goal in this paper is to show the vanishing viscosity limit problem
with the vorticity boundary condition (1.5). This type of boundary condition,
which was initially established in [25] for the homogeneous incompressible Navier-
Stokes equation, where the author established the mathematical result on rate
of convergence for strong solution. Our approach here is motivated by the ideas
[25] to study the problem for the nonhomogeneous incompressible Navier-Stokes
equation and is based on the following observations: First, we need to add the
some additional boundary conditions for the density, which is described by

∇ρ = 0, on ∂Ω. (1.14)

The boundary condition (1.14) can balance well the momentum equation (3.2) with
boundary conditions (3.4), we can obtain the strong solutions local in time. Second,
we need to construct a new system (3.1)-(3.7), which can be regarded as a relaxed
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vorticity system of nonhomogeneous incompressible Navier-Stokes equation. The
fact shows that the pressure vanishes in the new system, yet the new system is
indeed the vorticity system of the equations (1.1)-(1.5). Our first main result is
concerned with the local well-posedness of the initial boundary value problem for
the equations (1.1)-(1.5).

Theorem 1.1. Let Ω be the bounded smooth domain, denote H by the space {u ∈
L2(Ω);∇ · u = 0, in Ω, u · n = 0 on ∂Ω}, u0 ∈ H1(Ω) ∩ H, ρ0 ∈ H2(Ω), ω0 ∈
H1(Ω) ∩ H. Then there exists T ν = T ν(ω0) > 0, such that the initial boundary
value problem (1.1)-(1.2) has a unique solution (ρ, u, p) satisfying

u ∈ L2(0, T ;H3(Ω)) ∩ C([0, T ν);H2(Ω)),

ρ ∈ C([0, T ν);H2(Ω)), u′ ∈ L2(0, T ;V ),

for any T ∈ (0, T ν), and

−∆p = ρ∂iuj∂jui,

∂np = (∆u− ρu · ∇u) · n,∫
Ω

p = 0,

for t ∈ [0, T ν).

Remark 1.2. To obtain the results above, we need to construct a new initial
boundary value problem (3.1)-(3.7). Since there is one more condition in (1.5) than
that normally Navier-slip boundary conditions, thus it is non-trivial to show the
consistency of the boundary conditions to get the well-posedness.

As the viscosity coefficient ν tends to be zero, we show the following convergence
of rate.

Theorem 1.3. Let ρ0 ∈ H4(Ω), u0 ∈ H ∩H4(Ω) satisfy ∇ρ0 · n = 0,∇× u0 ∈ H,
ρ0(t), u0(t) be the solution to the Euler equations for nonhomogeneous fluids on
[0, T ] with initial data ρ0, u0, ρ(t), u(t) be the solution in Theorem 1.1. Then, we
have the following

‖ρ− ρ0‖22 + ‖u− u0‖22 + ν

∫ t

0

‖u− u0‖23dt ≤ cν1−s (1.15)

on the interval [0, T ] with T = T (σ, s) > 0 independent of ν ∈ (0, σ) for s > 0 and
ν ∈ (0, σ).

Remark 1.4. Under the vorticity boundary conditions, we can get a result math-
ematically of strong convergence estimate to the solutions. The rate of convergence
(1.15) is better than those for the Navier-slip boundary conditions cases in [11].
Compared with the case of co-normal uniform estimate as in [18, 23], our problem
here does not so tedious and complicated, it can be proved only by standard energy
estimates.

The rest of this article is organized as follows: Section 2, we recall some notations,
definitions, and preliminary facts. Section 3, we give the local well-posedness to the
initial boundary value problem for the nonhomogeneous Navier-Stokes equations
(1.1)-(1.5). Section 4, we establish the rate of convergence to the solutions.
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2. Preliminaries

Let us start by recalling the standard notation of some function spaces and op-
erators which are familiar in the mathematical theory of fluids modelled by Navier-
Stokes system, see [24, 25]. For convenience, note the inner product by (·, ·) and
the norm of the standard Hilbert space L2(Ω), Hs(Ω) by ‖ · ‖, ‖ · ‖s, respectively.
We also denote [A,B] = AB −BA, the commutator between two operators A and
B. Set

H = {u ∈ L2(Ω);∇ · u = 0, in Ω, u · n = 0 on Ω},
V = H1(Ω) ∩H,

W = {u ∈ H2(Ω);n× (∇× u) = 0 on Ω}.

Let ψ, φ be two vector function, the following formula is shown by direct calcula-
tions:

∇× (ψ × φ) = φ · ∇ψ − ψ · ∇φ+ ψ∇ · φ− φ∇ · ψ, (2.1)

∇× (ψ · ∇φ) = ψ · ∇(∇× φ) +∇ψ⊥ · ∇φ, (2.2)

where ∇ψ⊥ is expressed in components by

(∇ψ⊥ · ∇φ)j = (−1)j+1∂j+1ψ · ∇φj+1 + (−1)j+2∂j+2ψ · ∇φj+2

with the index modulated by 3. We denote by A = −∆ the Stokes operator with
D(A) = W ⊂ V is the self-adjoint extension of the positive closed with its inverse
being compact, and there is a countable eigenvalues {λj} such that

0 < λ1 ≤ λ2 · · · → ∞,

the corresponding eigenvector {ej} ⊂ W ∩ C∞(Ω) makes an orthogonal complete
basis of H. We first show the following estimate.

Lemma 2.1 ([24]). Let s ≥ 0 be an integer. Let u ∈ Hs be a vector-valued function,
then

‖u‖s ≤ C(‖∇ × u‖s−1 + ‖∇ · u‖s−1 + |n · u|s− 1
2
),

‖u‖s ≤ C(‖∇ × u‖s−1 + ‖∇ · u‖s−1 + |n× u|s− 1
2

+ ‖u‖s−1).

Assuming that φ(t), ψ(t), f(t) are smooth non-negative functions defined for all
t ≥ 0, we show the following differential inequality.

Lemma 2.2 ([21]). Suppose φ(0) = φ0 and dφ(t)
dt +ψ(t) ≤ g(φ(t)) + f(t) for t ≥ 0,

where g is a non-negative Lipschitz continuous function defined for φ ≥ 0. Then
φ(t) ≤ F (t;φ0) for t ∈ [0, T (φ0)) where F (·;φ0) is the solution of the initial value
problem dF (t)

dt = g(F (t)) + f(t); F (0) = φ0 and [0, T (φ0)) is the largest interval to
which it can be continued. Also, if g is nondecreasing, then∫ t

0

ψ(τ)dτ ≤ F̃ (t;φ0)

with

F̃ (t;φ0) = φ0 +
∫ t

0

[g(F (τ ;φ0)) + f(τ)]dτ.
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3. Local well-posedness results

Our main purpose in this section is to solve the initial boundary value problem
(1.1)-(1.5). Firstly, we give the following additional boundary condition for density:

Lemma 3.1. Let the initial density satisfy the condition ∇ρ0 = 0 on the boundary,
then the density have the persistence property that ∇ρ(t, ·) = 0 on the boundary.

Proof. Applying the gradient operator ∇ to the transport equation (1.2), it follows
that

D

dt
(∇ρ) +∇u · ∇ρ = 0,

the ordinary differential equations is linear and the initial data satisfies ∇ρ0 = 0,
we can prove the lemma. �

On the other hand, to obtain the strong solution, we need to construct the
following system, which is called a relaxed vorticity equation of (1.1)-(1.5):

ρt + u · ∇ρ = 0, in Ω, (3.1)

ρ(∂tω + u · ∇ω − ω · ∇u) +∇ρ× (∂tu+ u · ∇u)− ν∆ω +∇q = 0, in Ω, (3.2)

∇ · ω = 0, in Ω, (3.3)

ω · n = 0, n× (∇× ω) = 0, on ∂Ω, (3.4)

with u = Tω given by

∇× u = ω, in Ω, (3.5)

∇ · u = 0, in Ω, (3.6)

u · n = 0, on ∂Ω, (3.7)

Where the linear operator satisfy T : H → V with u = Tω, which is the unique
solution of equations (3.5)-(3.7), is continuous. We claim that the initial boundary
value problem (3.1)-(3.7) possesses exactly one strong solution in a maximal time
interval. Let Pk the orthogonal project of H onto the space Hk spanned by the
k first eigenfunctions e1, · · · ek of A. Then the solutions of system (3.1)-(3.7) can
be obtained by using a Semi-Galerkin approximations method determined by the
spaces Hk and the operators Pk. For each fixed k, we consider the following finite
dimensional problem: Find Tk ∈ (0, T ] such that

Pm(ρ(m)∂tω
(m) + ρ(m)Tω(m) · ∇ω(m) − ρ(m)ω(m) · ∇Tω(m))

+ Pm(∇ρ(m) × (∂tTω(m) + Tω(m) · ∇Tω(m)))− ν∆Pmω(m) = 0,

ρ
(m)
t + Tω(m) · ∇ρ(m) = 0,

ω(m)(0, x) = Pmω0(x), ρ(m)(0, x) = ρ0(x),

em · n = 0, n× (∇× em) = 0.

We have an initial boundary value problem for a system of ordinary differential
equations coupled to a transport equation. By using the characteristics method, it
can prove the system possesses exactly one solution (ρ(m), ω(m)) defined in a time
interval [0, Tk). The kth approximated problem can also be written in the form

(ρ(m)∂tω
(m) + ρ(m)Tω(m) · ∇ω(m) − ρ(m)ω(m) · ∇Tω(m), v)

+ (∇ρ(m) × (∂tTω(m) + Tω(m) · ∇Tω(m)), v)− ν(∆ω(m), v) = 0,
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ρ
(m)
t + Tω(m) · ∇ρ(m) = 0,

ω(m)(0, x) = Pmω0(x), ρ(m)(0, x) = ρ0(x),

em · n = 0, n× (∇× em) = 0.

Through the Semi-Galerkin approximation method, the rest of the process to es-
timate the solutions of (3.1)-(3.7) is rather standard. We do not give the detailed
proof, the reader can be referred to Chapter 3 in [2]. The main theorem in this
section is the following.

Theorem 3.2. Let ρ0 ∈ H2(Ω) and ω0 ∈ V , then there exists T ν = T ν(ρ0, ω0) > 0,
such that problem (3.1)-(3.7) has a unique solution (ρ, ω, q) on the interval [0, T ν)
satisfying

ρ ∈ C([0, T ν);W ),

ω ∈ L2(0, T ν ;W ) ∩ C([0, T ν);V ), ω′ ∈ L2(0, T ν ;H),

and the energy equation

‖ρ(t)‖22 + ‖∇ × ω(t)‖2 + ν

∫ t

0

‖∂tω‖2dx+ ν

∫ t

0

‖ω(s)‖22ds ≤ c (3.8)

hold on [0, t] for any t ∈ (0, T ν), and q is given uniquely by

∆q = 0, (3.9)

∂nq = −ρ(u · ∇ω − ω · ∇u) · n, (3.10)∫
∂Ω

q = 0, (3.11)

for a.e. t ∈ (0, T ν).

Lemma 3.3. Let ω ∈ V , ∇ρ = 0 on boundary. Then

ρ(Tω · ∇ω − ω · ∇(Tω)) ∈ H.

Proof. Since ω ∈ V , it follows that Tω ∈ H2(Ω) ∩ V . Then ω × Tω ∈ H1(Ω). The
boundary condition Tω · n = 0 and ω · n = 0 implies

n× (ω × Tω) = 0, on ∂Ω.

This completes the proof. �

From Lemma 3.3 we have the following corollary.

Corollary 3.4. The solution q in theorem 3.2 satisfies q = 0, for a.e. t ∈ (0, T ν).

From the analysis above, it follows that (3.2) is the curl of the equation (1.1).
Thus Theorem 1.1 is proved.

Remark 3.5. It should be noted that constructing system (3.1)-(3.6) is necessary.
If the boundary condition is replaced by the non slip boundary ω = 0, then (∆ω) ·n
may not be zero, from equations (3.9)-(3.11), hence ∇q may not be zero. Then the
momentum equation should be of the form

ρ∂tu− ν∆u+ ρu · ∇u+ F (q) +∇p = 0, in Ω,

for some vector function F of q.
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4. Convergence of solutions

In this section we prove Theorem 1.3. Let us show the following lemma before
giving the convergence estimate.

Lemma 4.1. Let ρ, u be a smooth solution to the nonhomogeneous incompressible
Euler equations on the interval [0, T ] with initial ρ0 ∈ H3(Ω), u0 ∈ H3(Ω)∩H and
∇ρ0 = 0, ∇× u0 ∈ H. Then (∇× u0) · n = 0, on ∂Ω for all t ∈ [0, T ].

Proof. Note that the particle path forms a diffeomorphism on the boundary. The
vorticity equations of the nonhomogeneous incompressible Navier-Stokes equation
is

ρ0
t + u0 · ∇ρ0 = 0, in Ω, (4.1)

ρ0(∂tω0 + u0 · ∇ω0 − ω0 · ∇u0) +∇ρ0 × (∂tu0 + u0 · ∇u0) = 0, in Ω, (4.2)

From Lemma 3.1, it follows that ∇ρ0× (∂tu0 +u0 ·∇u0) vanishes on the boundary.
Multiplying (4.2) by the unit outward norm vector yields

D(ω0 · n)
dt

= (ω0 · ∇)u0 · n+ ω0 · (u0 · ∇)n.

From [25, Lemma 3.1], there exist α, β such that

D(ω0 · n)
dt

= (α+ β)(ω0 · n).

Since ω0 ·n = 0 on ∂Ω, one has ω0(x, t)·n = 0 on ∂Ω. This complete the proof. �

Remark 4.2. To obtain the asymptotic convergence of the solutions, we need some
additional conditions for nonhomogeneous Euler equation to overcome the bound-
ary layer. If the nonhomogeneous Euler equation match the boundary conditions
ω0 · n = 0 in mathematical structure, it can coincide with that of nonhomogeneous
Navier-Stokes equation in the tangential directions. Hence, we restrict the initial
data condition of the density satisfy ∇ρ0 = 0.

Proof of Theorem 1.3. First, we denote a = ρ− ρ0, v = u− u0, w = ω − ω0. From
the transport equations, it follows that

d

dt
a+ u0 · ∇a = −v · ∇ρ. (4.3)

Applying the operate D2 and taking the inner product of (4.3) with D2a, we have

d

dt
‖a(t)‖22 + (u0 · ∇D2a,D2a) + ([D2, u0 · ∇]a,D2a) = −(D2(v · ∇ρ), D2a).

Hence, by Young’s inequality, it is easy to obtain

d

dt
‖a(t)‖22 ≤ cδν‖∆w‖2 + ν−1‖a‖42 + ‖a‖22 + ‖v‖22 + cν. (4.4)

Secondly, we estimate the difference system between the vorticity equation of (1.1)
and the vorticity equation of (1.6):

awt + (ρv + au0) · ∇w + ρ0wt + ρ0u0 · ∇w + Φ− ν∆w = ν∆ω0, (4.5)

with the boundary conditions

u · n = 0, w · n = 0 on ∂Ω, (4.6)
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where Φ = A+B,

A = aw0
t + av · ∇ω0 + ρ0v · ∇ω0 + au0 · ∇ω0 + aw · ∇v

+ aw · ∇u0 + aω0 · ∇v + aω0 · ∇u0 + ρ0w · ∇v + ρ0w · ∇u0 + ρ0ω0 · ∇v
+∇a× (∂tv + ∂tu

0 + v · ∇v + v · ∇u0 + u0 · ∇v + u0 · ∇u0)

+∇ρ0 × (∂tv + v · ∇v + v · ∇u0 + u0 · ∇v),

and

B = ∇a× (∂tv + ∂tu
0 + v · ∇v + v · ∇u0 + u0 · ∇v + u0 · ∇u0)

+∇ρ0 × (∂tv + v · ∇v + v · ∇u0 + u0 · ∇v).

Taking the inner product of (4.5) with −∆w, it follows that
1
2
d

dt
(‖
√
a∇× w‖2 + ‖

√
ρ0∇× w‖2)ds+ ν‖∆w‖2 − (Φ,∆w)

=
∫
∂Ω

((aw)t + (ρ0w)t) · (n× (∇× w))ds+ ν(∆ω0,∆w).
(4.7)

Integrating by part yields
1
2
d

dt
(‖
√
a∇× w + ‖

√
ρ0∇× w‖2

+ 2
∫
∂Ω

(aw + ρ0w) · (n× (∇× ω0)))ds+ ν‖∆w‖2

= (Φ,∆w) +
∫
∂Ω

(aw + ρ0w) · (n× ∂t(∇× ω0))ds+ ν(∆ω0,∆w).

(4.8)

Here we use the property that n× (∇×ω) = 0, v ·n = 0, w ·n = 0 on ∂Ω, it follows
that

(Φ,−∆w) =
∫
∂Ω

Φ · n× (∇× ω0)− (∇× Φ,∇× w)

= (Φ,−∆ω0)− (∇× Φ,∇× ω0)− (∇× Φ,∇× w).
(4.9)

Next, we list some basic facts to be used later. The unit out normal vector n
has been extended as follows:

n(x) =
∇ϕ(r(x))
|∇ϕ(r(x))|

, x ∈ Ω

and
r(x) = min

y∈∂Ω
d(x, y) = d(x, y0), y0 ∈ ∂Ω,

which is unique when r(x) ≤ σ for some σ > 0, and the function is smooth and
compact supported in [0, σ) such that

ϕ(0) = 1, ϕ′(0) = 1.

First we estimate on (∇× Φ,∇× w) from (4.9), recall that

(∇× Φ,∇× w) = (∇× (A+B),∇× w).

It follows from the definition of A that

|(∇× (aw0
t ),∇× w)| = |(∇a× w0

t + a∇× w0
t ),∇× w)|

≤ c‖a‖2‖∇ × w0
t ‖‖∇ × w‖

≤ c(‖∇ × w‖2 + ‖a‖22),
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and

|(∇× (aw · ∇v + ρ0w · ∇v),∇× w)|

= |(∇(aw)⊥ · ∇v + aw · ∇w +∇(ρ0w)⊥ · ∇v + ρ0w · ∇w,∇× w)|

≤ c(‖a‖2‖∇ × w‖1/21 ‖∇ × w‖
5
2 + ‖∇ × w‖1/21 ‖∇ × w‖

5
2 )

≤ cδν‖∆w‖2 + c(ν−1/3‖∇ × w‖ 10
3 + ‖a‖22 + ν−1‖∇ × w‖10) + cν.

similarly, it obtains that

|(∇× (av · ∇ω0 + ρ0v · ∇ω0 + au0 · ∇ω0 + aw · ∇u0

+ aω0 · ∇v + aω0 · ∇u0 + ρ0w · ∇u0 + ρ0ω0 · ∇v,∇× w)|
≤ c(‖a‖22 + ‖∇ × w‖2 + ‖∇ × w‖4).

Next, we calculate the term B, note that

|(∇×B,∇× w)| = |(∇× (∇a× (∂tv + ∂tu
0 + v · ∇v + v · ∇u0

+ u0 · ∇v + u0 · ∇u0) +∇ρ0 × (∂tv + v · ∇v + v · ∇u0 + u0 · ∇v)),∇× w)|.
it follows that

|(∇× (∇a× (∂tv + v · ∇v)),∇× w)| = |(∇a · ∇(∂tv + v · ∇v)

− (∂tv + v · ∇v) · ∇(∇a) +∇a∇ · (v · ∇v)− (∂tv + v · ∇v)∆a,∇× w)|

≤ c(‖a‖2‖∇ × w‖1/21 ‖∇ × w‖
5
2 + ‖a‖2‖∂tw‖‖∇ × w‖1/21 ‖∇ × w‖1/2)

≤ cδ(ν‖∆w‖2 + ε‖∂tw‖2 + ‖a‖22 + ν−3/2‖a‖82 + ν−1‖∇ × w‖10

+ ν−1/2‖∇ × w‖4 + ν).

Similarly, we can get

|(∇× (∇a× (∂tu0 + v · ∇u0 + u0 · ∇v + u0 · ∇u0)

+∇ρ0 × (∂tv + v · ∇v + v · ∇u0 + u0 · ∇v)),∇× w)|
≤ c(‖a‖2‖∇ × w‖+ ‖∇ × w‖22 + cν),

and

|(∇ρ0 × (∂tv + v · ∇v + v · ∇u0 + u0 · ∇v)),∇× w)|
≤ c(‖∂tv‖2 + ‖∇ × w‖2 + ‖∇ × w‖4).

Hence, it follows that

(∇× Φ,∇× w) ≤ c(δν‖∆w‖2 + ε‖∂tw‖2 + ν−1‖a‖82
+ ν−1/3‖∇ × w‖ 10

3 + ν−1‖∇ × w‖10 + ν−1‖∇ × w‖4

+ ‖a‖22 + ‖∇ × w‖2 + ‖∇ × w‖4) + ε‖∂tw‖2 + cν.

(4.10)

Second, we estimate on the term (∇× Φ,∇× ω0):

(∇× Φ,∇× ω0) = (∇× (A+B),∇× ω0).

Recall that

(∇× (ρ0v · ∇ω0 + au0 · ∇ω0 + aω0 · ∇u0 + ρ0w · ∇u0 + ρ0ω0 · ∇v),∇× ω0)

=
∫
∂Ω

n×
(
ρ0v · ∇ω0 + au0 · ∇ω0 + aω0 · ∇u0 + ρ0w · ∇u0
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+ ρ0ω0 · ∇v
)
∇× ω0ds−

(
ρ0v · ∇ω0 + au0 · ∇ω0 + aω0 · ∇u0 + ρ0w · ∇u0

+ ρ0ω0 · ∇v,∇× ω0,−∆ω0
)
,

then, it follows from the trace theorem that

ν

∫
∂Ω

n× (aw0
t + ρ0v · ∇ω0 + au0 · ∇ω0 + aω0 · ∇u0

+ ρ0w · ∇u0 + ρ0ω0 · ∇v),∇× ω0)∇× ω0ds

≤ cν(‖∇v‖s + ‖w‖s + ‖a‖s)‖∇ × ω0‖1
≤ cν(‖ω‖1−s‖∇ × ω‖s + ‖a‖1−s‖∇a‖s)
≤ cν(‖∇ × ω‖2 + ‖∇a‖21 + ν2−s).

At the same time, the remaining term of A is estimated as

(∇× (av · ∇ω0 + aw · ∇v + aw · ∇u0 + aω0 · ∇v + ρ0w · ∇v,∇× ω0)

≤ c(‖a‖22 + ‖∇ × ω‖2 + ‖∇ × ω‖4),

By the definition of B, it follows that

(∇×B,∇× ω0) =
∫

Ω

n×B∇× ω0ds− (B,∆ω0)

≤ c(‖∇ × ω‖2 + ‖a‖22 + ε‖∂tw‖2 + ν1−s).

Therefore, we can deduce that

|(∇× Φ,∇× ω0)| ≤ c(‖∇ × ω‖2 + ‖a‖22 + ε‖∂tw‖2 + ν1−s). (4.11)

Finally, we estimate on (Φ,−∆ω0):

|(aw0
t + ρ0v · ∇ω0 + au0 · ∇ω0 + aω0 · ∇u0 + ρ0ω0 · ∇v + ρ0w · ∇u0,−∆ω0)|

≤ c(‖∇ × ω‖2 + ‖a‖22 + ν1−s),

|(av · ∇ω0 + aw · ∇v + aw · ∇u0 + aω0 · ∇v + ρ0w · ∇v,−∆ω0)|
≤ c(‖a‖22 + ‖∇ × ω‖4 + ν),

and
|(B,−∆ω0)| ≤ c(‖∇ × ω‖2 + ‖a‖22 + ε‖∂tw‖2 + ν1−s).

So

|(Φ,−∆ω0)| ≤ c(‖∇ × ω‖2 + ‖∇ × ω‖4 + ‖a‖22 + ε‖∂tw‖2 + ν1−s). (4.12)

The remaining terms in(4.8) can be estimated as follows:

|
∫
∂Ω

(aw + ρ0w) · (n× ∂t(∇× ω0))ds| ≤ ‖∇ × ω‖2 + ‖a‖22 + cν1−s, (4.13)

ν|(∆ω0,∆w)| ≤ cδν‖∆w‖2 + cν1−s, (4.14)

|
∫
∂Ω

(aw + ρ0w) · (n× (∇× ω0)))ds| ≤ 1
4
‖∇ × ω‖2 + ‖a‖22 + cν1−s. (4.15)
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In order to estimate ‖∂tw‖2, taking the inner product (4.5) with ∂tw, it follows
that ∫

Ω

a|wt|2 + ρ0|wt|2 + ν
d

dt
‖∇ × w‖2

=
∫

Ω

((ρv + au0) · ∇w + ρ0u0 · ∇w + Φ + ν∆ω0)∂tw

+
∫
∂Ω

n× (∇× w)wt.

(4.16)

From the boundary condition n× (∇× ω) = 0, we have∫
∂Ω

n× (∇×w)wtds = − d

dt

∫
∂Ω

n× (∇×ω0)wds+
∫
∂Ω

n× (∇×ω0
t )wds. (4.17)

It follows from the formula (4.16) and (4.17) that∫
Ω

ρ|wt|2dx+ ν
d

dt
(‖∇ × w‖2 +

∫
∂Ω

n× (∇× ω0)wds)

=
∫

Ω

((ρv + au0) · ∇w + ρ0u0 · ∇w)∂tw +
∫

Ω

Φ∂tw +
∫
∂Ω

n× (∇× ω0
t )w

= I + II + III.

Hence,
I ≤ c(‖a‖22 + ‖∇ × w‖2 + ‖∇ × w‖4 + ‖a‖42) +

m

4
‖∂tw‖2,

and

II ≤ c‖Φ‖2 +
m

4
‖∂tw‖2 ≤ c(‖a‖22 + ‖∇ × w‖2 + ‖∂tv‖2)3 +

m

4
‖∂tw‖2

It follows from the trace theorem that

III ≤ c‖ω‖1−s‖∇ × ω‖s ≤ 1
4
‖∇ × ω‖2 + cν1−s.

It follows that

m‖wt‖2 + ν
d

dt
(‖∇ × w‖2 +

∫
∂Ω

n× (∇× ω0)wds)

≤ c(‖a‖22 + ‖∇ × w‖2 + ‖∂tv‖2)3 +
m

2
‖∂tw‖2 + cν1−s.

(4.18)

Through the estimates (4.4), (4.10)-(4.15), (4.18) we obtain

d

dt
(‖
√
a∇× w‖2 + ‖∇ × w‖2 + ν‖∇ × w‖2 + ‖a‖22) + ν‖∆w‖2 +m‖wt‖2

= c((‖a‖22 + ‖∇ × w‖2 + ‖∂tv‖2)3 + ν−1‖a‖42 + ν−3/2‖a‖82
+ ν−1/3‖∇ × w‖ 10

3 + ν−1‖∇ × w‖10 + cν−1/2‖∇ × w‖4 + ν + ν1−s).

(4.19)

If s ∈ (0, 1/2) and

‖a‖22 ≤ cν1−s, ‖∇ × ω‖2 ≤ cν1−s.

So we deduce that

ν−3/2‖a‖42 + ν−1/3‖∇ × w‖ 10
3 + ν−1‖∇ × w‖10 + cν−1/2‖∇ × w‖4 = o(ν1−s),

and there exists some constant c such that

ν−1‖a‖42 ≤ cν1−s.
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Using the initial data a(0) = 0, w(0) = 0, by the lemma 2.2, we obtain

‖a‖22 + ‖
√
a∇× w(t)‖2 + ‖∇ × w(t)‖2 +

∫
Ω

‖wt‖2dx+ ν

∫
Ω

‖∆w(s)‖2dx ≤ cν1−s.

on the interval [0, T1] for s ∈ (0, 1
2 ) and ν ∈ (0, ν1) ⊂ (0, ν0), where T1 = T1(ν1, s) >

0 is independent of ν ∈ (0, ν0). If s ≥ 1
2 , we can chose a s′ ∈ (0, 1/3) such that

νs
′ ≤ cνs. The proof is complete. �
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