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APPROXIMATE SOLUTION FOR AN INVERSE PROBLEM
OF MULTIDIMENSIONAL ELLIPTIC EQUATION WITH

MULTIPOINT NONLOCAL AND NEUMANN BOUNDARY
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Communicated by Mokhtar Kirane

Abstract. In this work, we consider an inverse elliptic problem with Bitsadze-

Samarskii type multipoint nonlocal and Neumann boundary conditions. We
construct the first and second order of accuracy difference schemes (ADSs)

for problem considered. We stablish stability and coercive stability estimates

for solutions of these difference schemes. Also, we give numerical results for
overdetermined elliptic problem with multipoint Bitsadze-Samarskii type non-

local and Neumann boundary conditions in two and three dimensional test

examples. Numerical results are carried out by MATLAB program and brief
explanation on the realization of algorithm is given.

1. Introduction

Theory and methods of solving inverse problems for differential and difference
equations have been comprehensively studied by several researchers (see [1, 2, 5, 6,
7, 11, 12, 13, 13, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 38] and
the references therein). In papers [6, 11, 12, 13, 14, 15, 16, 30, 32] well-posedness of
various overdetermined elliptic type differential and difference problems are stud-
ied. Dirichlet type overdetermined problems for elliptic partial differential equation
(PDE) were investigated in [6, 15, 16]. Neumann type overdetermined elliptic prob-
lems were studied in papers [11, 12, 14].

In recent years, different types of elliptic nonlocal boundary value problems and
generalizations of such type problems to various differential and difference equations
have been extensively investigated (see [3, 8, 9, 13, 32, 34] and the bibliography
therein).

In this article, we study approximation of Bitsadze-Samarskii type overdeter-
mined elliptic differential problem with Neumann boundary conditions.
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Given an integer q ≥ 2, we assume that the nonnegative numbers k1, . . . , kq,
λ0, λ1, . . . , λq satisfy the conditions

q∑
i=1

ki = 1, ki ≥ 0, i = 1, . . . , q, 0 < λ1 < . . . < λq < 1, 0 < λ0 < 1. (1.1)

Let Ω = (0, `)n ⊂ Rn be the open cube with boundary S, Ω = Ω ∪ S. In
[0, T ]×Ω, we consider the inverse problem of finding function u(t, x) and function
p(x) in Ω for the following multidimensional elliptic PDE with multipoint nonlocal
and Neumann boundary conditions

−vtt(t, x)−
n∑
r=1

(ar(x)vxr )xr + σv(t, x) = g(t, x) + p(x),

x = (x1, . . . , xn) ∈ Ω, 0 < t < T ;

v(T, x)−
q∑
i=1

kiv(λi, x) = η(x), v(0, x) = φ(x), v(λ0, x) = ζ(x), x ∈ Ω,

∂v(t, x)
∂−→n

= 0, x ∈ S, 0 ≤ t ≤ T.
(1.2)

Here, −→n is the normal vector to S; ar, ϕ,ψ, ξ, and g are given smooth functions,
ar(x) ≥ a > 0 for all x ∈ Ω.

Well-posedness of problem (1.2) was established in [13]. In this article, we apply
a finite difference method to approximate the solution of problem (1.2). Namely,
we construct the first and second order of ADSs with respect to t and second order
of ADS with respect to x for the approximate solution of problem. Stability and
coercive stability estimates for solutions of both difference schemes are established.
Later, we give two and three dimensional numerical examples with brief explanation
on the realization for inverse elliptic problem with multipoint Bitsadze-Samarskii
type nonlocal and Neumann boundary conditions.

The differential operator [10]

Axv(x) = −
n∑
r=1

(ar(x)vxr )xr + σv(x) (1.3)

is a self-adjoint positive definite (SAPD) operator A = Ax acting on Hilbert space
H = L2(Ω) with the domain D(Ax)={v(x) ∈W 2

2 (Ω), ∂v
∂−→n = 0 on S}.

Therefore, primal problem (1.2) corresponds to the following Bitsadze-Samarskii
type inverse elliptic problem of finding an element p ∈ H and a function v ∈
C([0, T ], D(A)) ∩ C2([0, T ], H):

−vtt(t) +Av(t) = g(t) + p, t ∈ (0, T ),

v(0) = φ, v(λ0) = ζ, v(T ) =
q∑
i=1

αiv(λi) + η.
(1.4)

Let [0, T ]τ = {tk = kτ, k = 0, N, Nτ = T} be the set of grid points. Introduce
the notation

C =
1
2

(τA+
√

4A+ τ2A2), R = (I + τC)−1,

P = (I −R2N )−1, D = (I + τC)(2I + τC)−1C−1,
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where I is the identity operator. It is known that A > δI (δ > 0), C is SAPD
operator and the bounded operator R is defined on the whole space H [10, 30].

Lemma 1.1 ([10]). The following estimates hold:

‖Rk‖H→H ≤M(δ)(1 + δ
1
2 τ)−k, ‖CRk‖H→H ≤

M(δ)
kτ

,

k ≥ 1, ‖P‖H→H ≤M(δ), δ > 0.

The remainder of this article is organized as follows: In Section 2, we present two
difference schemes for approximate solution of inverse elliptic problem (1.2) with
Bitsadze-Samarskii type multipoint nonlocal and Neumann boundary conditions.
In Section 3, we obtain the stability and coercive stability estimates for the solu-
tion of both presented difference schemes. Numerical results for two dimensional
and three dimensional elliptic equations are presented in Section 4. Finally, the
conclusion is given in Section 5.

2. Difference problems

The approximation of problem (1.2) is carried out in two steps. In the first step,
we define the grid spaces

Ω̃h =
{
x : x = xm = (h1m1, . . . , hnmn), m = (m1, . . . ,mn),

0 ≤ mr ≤Mr, hrMr = `, r = 1, . . . , n
}
,

Ωh = Ω̃h ∩ Ω, Sh = Ω̃h ∩ S, h = (h1, . . . , hn),

and assign the difference operator Axh to operator Ax (1.3) by the formula

Axhv
h(x) = −

n∑
r=1

(ar(x)vhxr )xr,mr + σvh(x),

acting in the space of grid functions vh(x), satisfying the condition Dhvh(x) = 0
for all x ∈ Sh. Here and in future Dh is the approximation of operator ∂

∂−→n . It is
known that Axh is a SAPD operator (see [36, 37]).

By using Axh, the overdetermined problem (1.2) is reduced to the boundary value
problem for the system of ordinary differential equations

−d
2vh(t, x)
dt2

+Axhv
h(t, x) = gh(t, x) + ph(x), t ∈ (0, T ), x ∈ Ωh,

vh(0, x) = φ(x), vh(λ0, x) = ζh(x),

vh(T, x)−
q∑
i=1

kiv
h(λi, x) = ηh(x), x ∈ Ω̃h.

(2.1)

Denote
li = [

λi
τ

], µi =
λi
τ
− li, i = 0, 1, . . . , q,

where [·] is standard notation for greatest integer function.
Let vhk (x) = vh(tk, x), ghk (x) = gh(tk, x), k = 0, N .
In the second step, we apply the following approximation formulas

vh(λi, x) = vhli(x) + o(τ),

vh(λi, x) = vhli(x) + µi(vhli+1(x)− vhli(x)) + o(τ2)
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for vh(λi, x), i = 0, 1, . . . , q. Then problem (2.1) is replaced by

−τ−2
[
vhk+1(x)− 2vhk (x) + vhk−1(x)

]
+Axhv

h
k (x) = ghk (x) + ph(x),

1 ≤ k ≤ N − 1, x ∈ Ωh,

vhN (x) =
q∑
i=1

kiv
h
li(x) + ηh(x),

vhl0(x) = ζh(x), vh0 (x) = φh(x), x ∈ Ω̃h,

(2.2)

and

−τ−2
[
vhk+1(x)− 2vhk (x) + vhk−1(x)

]
+Axhv

h
k (x) = ghk (x) + ph(x),

1 ≤ k ≤ N − 1, x ∈ Ωh,

vhN (x) =
q∑
i=1

ki(vhli(x) + µi(vhli+1(x)− vhli(x))) + ηh(x),

vhl0(x) + µ0(vhl0+1(x)− vhl0(x)) = ζh(x), vh0 (x) = φh(x), x ∈ Ω̃h,

(2.3)

respectively.
By substituting

vhk (x) = uhk(x) + (Axh)−1ph(x), x ∈ Ω̃h, 1 ≤ k ≤ N − 1, (2.4)

difference scheme (2.2) is reduced to the auxiliary difference scheme

−τ−2
[
uhk+1(x)− 2uhk(x) + uhk−1(x)

]
+Axhu

h
k(x) = ghk (x),

1 ≤ k ≤ N − 1, x ∈ Ωh,

uh0 (x)− uhl0(x) = φh(x)− ζh(x),

uhN (x) =
q∑
i=1

kiu
h
li(x) + ηh(x), x ∈ Ω̃h.

(2.5)

The solution of system (2.5) is defined by the formula

uhk(x) = P
[
(Rk −R2N−k)uh0 (x) + (RN−k −RN+k)

]
uhN (x)

− P (RN−k −RN+k)D
N−1∑
j=1

(RN−j −RN+j)ghj (x)τ

+D

N−1∑
j=1

(R|k−j| −Rk+j)ghj (x)τ, k = 1, N − 1,

(2.6)
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where

uh0 (x) = F−1
1

[(
I −R2N −

q∑
i=1

ki(RN−li −RN+li)
)
Gh1 (x)

+ (RN−s −RN+s)Gh2 (x)
]
, uhN (x)

= ∆−1
1

[
(I −R2N −Rs +R2N−s)Gh2 (x) +

q∑
i=1

ki(Rli −R2N−li)Gh1 (x)
]
,

F1 = (I −R2N )(I −Rl0)
(
I −

q∑
i=1

kiR
N−li

)(
I −

q∑
i=1

kiR
N−(l0−li)

)
,

Gh1 (x) = P−1(φh(x)− ζh(x)) + (RN−s −RN+s)

×D
N−1∑
j=1

(RN−j−1 −RN+j−1)ghj (x)τ

− P−1D

N−1∑
j=1

(R|s−j|−1 −Rs+j−1)ghj (x)τ,

Gh2 (x) = k
{

(RN−li −RN+li)D
N−1∑
j=1

(RN−j−1 −RN+j−1)ghj (x)τ

− P−1D

N−1∑
j=1

(R|li−j|−1 −Rli+j−1)ghj (x)τ
}

+ P−1ηh(x).

(2.7)
Using (2.4), difference scheme (2.3) can be reduced to the auxiliary difference

scheme

−τ−2
[
uhk+1(x)− 2uhk(x) + uhk−1(x)

]
+Axhu

h
k(x) = ghk (x),

1 ≤ k ≤ N − 1, x ∈ Ωh,

uh0 (x) + (µ0 − 1)uhl0(x)− µ0u
h
l0+1(x) = φh(x)− ζh(x),

uhN (x) +
q∑
i=1

ki
[
(µi − 1)uhli(x)− µiuhli+1(x)

]
= ηh(x), x ∈ Ω̃h.

(2.8)

The solution of system (2.8) is defined by formula (2.6), where

uh0 (x) = F−1
2

{[
I −R2N +

q∑
i=1

ki(µi − 1)(RN−li −RN+l
i )

−
q∑
i=1

kiµi(RN−li−1 −RN+li+1)
]
Gh3 (x)

− [(µ0 − 1)(RN−l0 −RN+l0)− µ0(RN−l0−1 −RN+l0+1)]Gh4 (x)
}
,

uhN (x) = F−1
2

{[
I −R2N + (µ0 − 1)(Rl0 −R2N−l0)

− µ0(Rl0+1 −R2N−l0−1)
]
Gh4 (x)−

[ q∑
i=1

ki(µi − 1)(Rli −R2N−li)
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−
q∑
i=1

kiµi(Rli+1 −R2N−li−1)
]
Gh3 (x)

}
,

F2 = [I −R2N + (µ0 − 1)(Rl0 −R2N−l0)− µ0(Rl0+1 −R2N−l0−1)]

×
[
I −R2N +

q∑
i=1

ki(µi − 1)(RN−li −RN+l
i )

−
q∑
i=1

kiµi(RN−li−1 −RN+li+1)
]

− [(µ0 − 1)(RN−l0 −RN+l0)− µ0(RN−l0−1 −RN+l0+1)]

×
[ q∑
i=1

ki(µi − 1)(Rli −R2N−li)−
q∑
i=1

kiµi(Rli+1 −R2N−li−1)
]
.

(2.9)

Gh3 (x) = P−1(φh(x)− ζh(x))

+
[
(µ0 − 1)(RN−l0 −RN+l0)− µ0(RN−l0−1 −RN+l0+1)

]
×D

N−1∑
j=1

(RN−j −RN+j)gjτ − P−1D

×
N−1∑
j=1

[
(µ0 − 1)(R|l0−j| −Rl0+j)− µ0(R|l0+1−j| −Rl0+j+1)

]
ghj (x)τ,

Gh4 (x) =
q∑
i=1

ki
[
(µi − 1)(RN−li −RN+li)− µi(RN−li−1 −RN+li+1)

]
×D

N−1∑
j=1

(RN−j −RN+j)ghj (x)τ + P−1ηh(x)− P−1D

×
N−1∑
j=1

q∑
i=1

ki

[
(µi − 1)(R|li−j| −Rli+j)

− µ0(R|li+1−j| −Rli+j+1)
]
ghj (x)τ.

So, to find an approximate solution of (1.2), we consider the algorithm which
contains three stages. We find {uhk(x)}N0 as solution of (2.5) or (2.8) in the first
stage. Putting k = l0 and k = l0 + 1, we get uhl0(x) and uhl0+1(x), respectively. In
the second stage, we obtain ph(x) by

ph(x) = Axhζ
h(x)−Axhuhl0(x), x ∈ Ω̃h, (2.10)

for (2.2), and

ph(x) = Axhζ
h(x)−Axh

[
(1− µ0)uhl0(x) + µ0u

h
l0+1(x)

]
, x ∈ Ω̃h, (2.11)

for (2.3).
In the third stage, we use formulas

vhk (x) = uhk(x) + ζh(x)− uhl0(x), x ∈ Ω̃h, 1 ≤ k ≤ N − 1, (2.12)
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and
vhk (x) = uhk(x) + ζh(x)−

[
(1− µ0)uhl0(x) + µ0u

h
l0+1(x)

]
, (2.13)

for x ∈ Ω̃h, 1 ≤ k ≤ N − 1, to obtain the solution {vhk (x)}N0 of corresponding
difference problems (2.2) and (2.3).

3. Stability and coercive stability estimates

Let L2h = L2(Ω̃h) and W 2
2h = W 2

2 (Ω̃h) be Banach spaces of the grid functions
fh(x) = {f(h1m1, . . . , hnmn)} defined on Ω̃h, equipped with the following norms

‖fh‖L2h =
( ∑
x∈eΩh

|fh(x)|2h1 . . . hn

)1/2

,

‖fh‖W 2
2h

= ‖fh‖L2h +
[ ∑
x∈eΩh

n∑
r=1

|(fh)xr |2h1 . . . hn

]1/2
+
[ ∑
x∈eΩh

n∑
r=1

|(fh(x))xrxr,mr |2h1 . . . hn)
]1/2

,

respectively. Denote by Cτ (H) and Cα,ατ (H), the corresponding Banach spaces of
H-valued mesh functions ϕhτ = {ϕhk}N1 on [0, T ]τ with the following norms

‖ϕhτ‖Cτ (H) = max
1≤t≤N−1

‖ϕhk‖H ,

‖ϕhτ‖Cα,ατ (H) = ‖ϕhτ‖Cτ (H) + sup
1≤k≤k+s≤N−1

((N − s)τ)α((k + s)τ)α

(sτ)α
‖ϕhk+s − ϕhk‖H .

Let τ and |h| =
√
h2

1 + · · ·+ h2
n be sufficiently small positive numbers.

Theorem 3.1. Under conditions (1.1), for the solution of difference problems (2.2)
and (2.3) the next stability inequalities hold:

‖{vhk}N−1
1 ‖Cτ (L2h) ≤M(δ, λ1, . . . , λq)

[
‖φh‖L2h + ‖ζh‖L2h

+ ‖ηh‖L2h + ‖{ghk}N−1
1 ‖Cτ (L2h)

]
,

‖ph‖L2h ≤M(δ, λ1, . . . , λq)
[
‖φh‖W 2

2h
+ ‖ζh‖W 2

2h

+ ‖ηh‖W 2
2h

+
1

α(1− α)
‖{ghk}N−1

1 ‖Cα,ατ (L2h)

]
,

where M(δ, λ1, . . . , λq) does not depend on τ, α, h, φh(x), ζh(x), ηh(x) and {ghk (x)}N−1
1 .

Theorem 3.2. Under conditions (1.1), for the solution of difference problems (2.2)
and (2.3) the coercive stability inequality holds:

‖{
vhk+1 − 2vhk + vhk−1

τ2
)}N−1

1 ‖Cα,ατ (L2h) + ‖{vhk}N−1
1 ‖Cα,ατ (W 2

2h)

≤M(δ, λ1, . . . , λq)[‖φh‖W 2
2h

+ ‖ζh‖W 2
2h

+ ‖ηh‖W 2
2h

+
1

α(1− α)
‖{ghk}N1 ‖Cα,ατ (L2h)],

where M(δ, λ1, . . . , λq) does not depend on τ, α, h, φh(x), ηh(x), ζh(x), or {ghk (x)}N−1
1 .
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The proofs of Theorems 3.1 and 3.2 are based on the symmetry property of
operator Axh in L2h, the formulas (2.6), (2.7), (2.9), (2.10), (2.11), (2.12),(2.13) for
solution of corresponding difference schemes and the following theorem on well-
posedness of the elliptic difference problem.

Theorem 3.3. [35] For the solution of the elliptic difference problem

Axhu
h(x) = ωh(x), x ∈ Ω̃h,

Dhuh(x) = 0, x ∈ Sh,

the following coercivity inequality holds:
n∑
q=1

‖(uh)xqxq,jq‖L2h ≤M ||ωh||L2h ,

here M does not depend on h and ωh.

4. Numerical Examples

Now, we give two and three dimensional numerical examples with brief expla-
nation on the realization for Bitsadze-Samarskii type inverse elliptic multipoint
NBVP. These numerical results are carried out by using MATLAB program.

4.1. Two dimensional example. Consider the following two dimensional Bitsadze-
Samarskii type overdetermined problem with three point nonlocal boundary con-
ditions,

−∂
2v(t, x)
∂t2

− ∂

∂x
((3 + sin(πx))

∂v(t, x)
∂x

) + v(t, x) = g(t, x) + p(x),

t, x ∈ (0, 1), v(0, x) = φ(x), v(0.1, x) = ζ(x),

v(1, x)− 1
10

v(0.3, x)− 1
5
v(0.7, x)− 7

10
v(0.8, x) = η(x),

x ∈ [0, 1], v(t, 0) = 0, v(t, 1) = 0, t ∈ [0, 1],

(4.1)

where

g(t, x) =
[
(1 + 4π2) cos(πt) + (3π2 + 1)t

]
sin(πx)− π2(cos(πt) + t) cos(2πx),

φ(x) = 2 sin(πx), ζ(x) = (cos(
π

10
) +

π

10
+ 1) sin(πx),

η(x) = −
( 1

10
cos(

3π
10

) +
1
5

cos(
7π
10

) +
7
10

cos(
4π
5

) +
73
100

)
sin(πx), x ∈ [0, 1].

It is easy to show that exact solution of problem (4.1) is the pair of functions
v(t, x) = (cos(πt) + t+ 1) sin(πx) and p(x) = (3π2 + 1) sin(πx)− π2 cos(2πx).

Denote by [0, 1]τ × [0, 1]h set of grid points

[0, 1]τ × [0, 1]h = {(tk, xn) : tk = kτ, k = 0, N ; xn = nh, n = 0,M},

where τ and h such that Nτ = 1, Mh = 1. Moreover,

λ0 =
1
10
, λ1 =

1
10
, λ2 =

1
5
, λ3 =

7
10
, li = [

λi
τ

], µi =
λi
τ
− li,

i = 0, 1, 2, 3; φn = φ(xn), ζn = ζ(xn), ηn = η(xn),

pn = p(xn), n = 0,M, gkn = g(tk, xn), k = 0, . . . , N, n = 0, . . .M.
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The algorithm for solving (4.1) contains three corresponding stages. In the first
stage, we find numerical solutions {ukn : n = 1,M − 1, k = 1, N − 1} of correspond-
ing the first and second order of ADSs for auxiliary problem

uk+1
n − 2ukn + uk−1

n

τ2
+ (3 + sin(πxn))

ukn+1 − 2ukn + ukn−1

h2

+
ukn+1 − ukn−1

2h
= −gkn, n = 1,M − 1, k = 1, N − 1;

uk0 = uk1 , ukM = ukM−1, k = 0, N ;

u0
n − ul0n = φn − ζn, uNn −

1
10
ul1n −

1
5
ul2n −

7
10
ul3n = ηn, n = 0,M

(4.2)

and
uk+1
n − 2ukn + uk−1

n

τ2
+ (3 + sin(πxn))

ukn+1 − 2ukn + ukn−1

h2

+
ukn+1 − ukn−1

2h
= −gkn, n = 1,M − 1, k = 1, N − 1;

3uk0 − 4uk1 + uk2 = 0, 3ukM − 4ukM−1 + ukM−2 = 0, k = 0, N ;

u0
n + (µ0 − 1)ul0n − µ0u

l0+1
n = φn − ζn,

uNn +
1
10
[
(µ1 − 1)ul1n − µ1u

l1+1
n

]
+

1
5
[
(µ2 − 1)ul2n − µ2u

l2+1
n

]
+

7
10
[
(µ3 − 1)ul3n − µ3u

l3+1
n

]
= ηn, n = 0,M.

(4.3)

Difference schemes (4.2) and (4.3) can be presented in the matrix form

A(n)un+1 +B(n)un + C(n)un−1 = Ign, n = 1, . . . ,M − 1,

u0 − u1 =
−→
0 , uM − uM−1 =

−→
0 ,

(4.4)

and
A(n)un+1 +B(n)un + C(n)un−1 = Ign, n = 1, . . . ,M − 1,

3u0 − 4u1 + u1 =
−→
0 , 3uM − 4uM−1 + uM−1 =

−→
0 ,

(4.5)

respectively. Here, A(n), B(n), C(n), and I are (N+1)×(N+1) matrices. Moreover,
I is identity matrix, gs = [g0

s . . . g
N
s ]t and us = [u0

s . . . u
N
s ]t , (s = n− 1, n, n+ 1)

are (N + 1)× 1 column matrices. Let

a(n) = (3 + sin(πxn))h−2 + h−1/2, c(n) = (3 + sin(πxn))h−2 − h−1/2,

z(n) = −2τ−2 − 2(3 + sin(πxn))h−2, r = τ−2.

Then, we have

A(n) = diag{0, a(n), a(n), . . . , a(n), 0},

C(n) = diag{0, c(n), c(n), . . . , c(n), 0},
g0
n = φn − ζn, gNn = ηn, n = 1,M − 1

for both schemes (4.2) and (4.3). The elements b(n)
i,j of matrix B(n) are defined by

b
(n)
i,i = z(n), b

(n)
i−1,i = b

(n)
i,i−1 = r, i = 2, N ; b(n)

1,1 = 1, b(n)
1,l0

= −1, b
(n)
N+1,N+1 = 1,



10 C. ASHYRALYYEV, G. AKYUZ, M. DEDETURK EJDE-2017/197

b
(n)
N+1,l1

= −1
5
, b

(n)
N+1,l2

= − 3
10
, b

(n)
N+1,l3

= −1
2
, b

(n)
N+1,l3+1 =

1
4
,

b
(n)
i,j = 0 in other cases

for problem (4.2), and

b
(n)
i,i = z(n), b

(n)
i−1,i = b

(n)
i,i−1 = r, i = 2, N ; b

(n)
1,1 = 1, b

(n)
1,l0

= µ0 − 1,

b
(n)
1,l0+1 = −µ0, b

(n)
N+1,N+1 = 1, b(n)

N+1,l1+1 = −µ1

5
, b

(n)
N+1,l1

=
µ1 − 1

5
,

b
(n)
N+1,l2+1 = −3µ2

10
, b

(n)
N+1,l2

=
3(µ2 − 1)

10
, b

(n)
N+1,l3+1 = −µ3

2
, b

(n)
N+1,l3

=
µ3 − 1

2
,

b
(n)
i,j = 0 in other cases

for problem (4.3).
In the second stage, we find {pn} by (2.10) and (2.11), respectively.
In the third stage, {vkn} are calculated by vkn = ukn + ζn − vl0n , and vkn = vkn +

ζn − (µ0u
l0+1
n − (µ0 − 1)ul0n ), for the first and second order of approximations,

respectively.
By using MATLAB program and modified Gauss method ([33]), numerical cal-

culations are carried out for N = M = 20, 40, 80, 160. In the Tables 1–3, we give
error of numerical solution for inverse problem (4.1) and auxiliary NBVP. Table 1
contains error between exact solution of NBVP and solutions derived by difference
schemes (4.2) and (4.3) . Table 2 and Table 3 contain error between exact and
approximately solution of overdetermined problem (4.1) for p and u, respectively.
Tables 1–3 show that the second order of ADS is more accurate comparing with
the first order of ADS.

Table 1. Error for NBVP

order of ADS N = M = 20 N = M = 40 N = M = 80 N = M = 160

first 0.65402 0.31258 0.1528 7.55×10−2

second 0.10305 1.37×10−2 1.98×10−3 3.50×10−4

Table 2. Error of p for problem (4.1)

order of ADS N = M = 20 N = M = 40 N = M = 80 N = M = 160

first 0.70016 0.35855 0.18181 9.15×10−2

second 0.13998 2.32×10−2 4.78×10−3 1.13×10−3

Table 3. Error of v for problem (4.1)

order of ADS N = M = 20 N = M = 40 N = M = 80 N = M = 160

first 5.31×10−2 2.40×10−2 1.16×10−2 5.69×10−3

second 5.45×10−3 6.45×10−4 8.51×10−5 1.49×10−5
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4.2. Three dimensional example. Consider the three dimensional overdeter-
mined elliptic two point NBVP

− ∂2v

∂t2
(t, x, y)− ∂2v

∂x2
(t, x, y)− ∂2v

∂y2
(t, x, y) + v(t, x, y)

= g(t, x, y) + p(x, y), 0 < x < 1, 0 < y < 1, 0 < t < 1,

v(0, x, y) = φ(x, y), v(0.26, x, y) = ζ(x, y),

v(1, x, y)− 1
2
v(0.38, x, y)− 1

2
v(0.88, x, y) = η(x, y)

0 ≤ x ≤ 1, 0 ≤ y ≤ 1,

vx(t, 0, y) = vx(t, 1, y) = 0, 0 ≤ y ≤ 1, 0 < t < 1,

vy(t, x, 0) = vy(t, x, 1) = 0, 0 ≤ x ≤ 1, 0 < t < 1,

(4.6)

where

g(t, x, y) = 2π2e−t cos(πx) cos(πy), φ(x, y) = 2 cos(πx) cos(πy),

ζ(x, y) = (e−0.26 + 1) cos(πx) cos(πy),

η(x, y) = (e−1 − 1
2
e−0.38 − 1

2
e−0.88) cos(πx) cos(πy).

The pair of functions

p(x, y) = (2π2 + 1) cos(πx) cos(πy), v(t, x, y) = (e−t + 1) cos(πx) cos(πy)

is an exact solution of (4.6).
We use the notation [0, 1]τ × [0, 1]2h for set of grid points depending on the small

parameters τ and h

[0, 1]τ × [0, 1]2h = {(tk, xn, ym) : tk = kτ, k = 0, . . . , N,

xn = nh, ym = mh, n,m = 0, . . . ,M, Nτ = 1,Mh = 1}.
Also suppose that

λ0 = 0.26, λ1 = 0.38, λ2 = 0.88, li = [
λi
τ

], µi = −li +
λi
τ
, i = 0, 1, 2;

ϕm,n = ϕ(xn, ym), ψm,n = ψ(xn, ym), ζm,n = ξ(xn, ym), n,m = 0,M ;

gkm,n = g(tk, xn, ym), k = 0, N, n,m = 0,M.

In the first stage, we can write the first and order of ADSs for approximately
solution of corresponding NBVP in the following forms:

−
uk+1
m,n − 2ukm,n + uk−1

m,n

τ2
−
ukm,n+1 − 2ukm,n + ukm,n−1

h2

−
ukm+1,n − 2ukm,n + ukm−1,n

h2
+ ukm,n

= gkm,n, k = 1, N − 1, m, n = 1,M − 1,

uk0,n − uk1,n = 0, ukM,n − ukM−1,n = 0, k = 1, N − 1, n = 1,M − 1,

ukm,0 − ukm,1 = 0, ukm,M − ukm,M−1 = 0, k = 1, N − 1, m = 1,M − 1,

u1
m,n − u0

m,n = τϕm,n, uNm,n − uN−1
m,n −

1
2

(ul1+1
m,n − ul1m,n)

−1
2

(ul2+1
m,n − ul2n ) = ψm,n, m, n = 1,M − 1,

(4.7)
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and

−
uk+1
m,n − 2ukm,n + uk−1

m,n

τ2
−
ukm,n+1 − 2ukm,n + ukm,n−1

h2

−
ukm+1,n − 2ukm,n + ukm−1,n

h2
+ ukm,n = gkm,n, k = 1, N − 1, m, n = 1,M − 1,

3uk0,n − 4uk1,n + uk2,n = 0, 3ukM,n − 4ukM−1,n + ukM−2,n = 0,

k = 1, N − 1, n = 1,M − 1,

3ukm,0 − 4ukm,1 + ukm,2 = 0, 3ukm,M − 4ukm,M−1 + ukm,M−2 = 0,

k = 1, N − 1, m = 1,M − 1,

−3u0
m,n + 4u1

m,n − u2
m,n = 2τϕm,n,

3uNm,n − 4uN−1
m,n + uN−2

m,n −
1
2

[
(3 + 2µ1)ul1+1

m,n − (4 + 4µ1)ul1m,n

+ (1 + 2µ1)ul1m,n
]
− 1

2
[
(3 + 2µ2)ul2+1

m,n − (4 + 4µ2)ul2m,n + (1 + 2µ2)ul2m,n
]

= 2τψm,n, m, n = 1,M − 1,
(4.8)

respectively.
In the second stage, pm,n is calculated by formulas by (2.10) and (2.11), respec-

tively.
In the last stage, calculation of {vkn} is carried out by

vkm,n = ukm,n + ζn − ul0m,n, vkm,n = ukm,n + ζm,n − (µ0u
l0+1
m,n − (µ0 − 1)ul0m,n)

in the cases corresponding to first and second order approximations.
Problems (4.7) and (4.8) can be presented in the matrix form

Aun+1 +Bun + Cun−1 = Ign, n = 1,M − 1,

u0 − u1 =
−→
0 , uM − uM−1 =

−→
0 ,

(4.9)

and
Aun+1 +Bun + Cun−1 = Ign, n = 1,M − 1,

3u0 − 4u1 + u1 =
−→
0 , 3uM − 4uM−1 + uM−1 =

−→
0 ,

(4.10)

respectively.
Note that A,B,C, I are square matrices with (N + 1)2(M + 1)2 elements, and I

is the identity matrix, gs and us (s = n− 1, n, n+ 1) are the column matrices with
(N + 1)(M + 1) elements such that

us =
[
u0

0,s . . . uN0,s u0
1,s . . . uN1,s . . . u0

M,s . . . vNM,s

]t
,

gs =
[
g0

0,s . . . gN0,s g0
1,s . . . gN1,s . . . g0

M,s . . . gNM,s

]t
.

Denote

a =
1
h2
, b = 1 +

2
τ2

+
4
h2
, r =

1
τ2
,

E = diag(0, a, a, . . . , a, 0), O = O(N+1)×(N+1).
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Then

A = C =


O O . . . O O
O E . . . O O

. . . . . .
. . . . . . . . .

O O . . . E
O O . . . O O

 ,

B =



Q W Z . . . O O O
O D O . . . O O O
O O D . . . O O O

. . . . . . . . .
. . . . . . . . . . . .

O O O . . . O O O
O O O . . . O D O
O O O . . . Z W Q


,

Q = I(N+1)×(N+1), W = −I(N+1)×(N+1), Z = O,

di,i = b, di−1,i = r, di,i−1 = r, i = 2, N ; d1,1 = −1, d1,2 = 1,

dN+1,N+1 = 1, dN+1,N = −1, dN+1,l1 = −1
2
, dN+1,l2 = −1

2
,

dN+1,l1+1 =
1
2
, dN+1,l2+1 =

1
2
,

di,j = 0, for other cases,

g0
m,n = τϕm,n, gNm,n = τψm,n, n,m = 1, . . . ,M − 1

for first order of ADS, and

Q = 3I(N+1)×(N+1),W = −4I(N+1)×(N+1), Z = I(N+1)×(N+1),

di,i = b, di−1,i = r, di,i−1 = r, i = 2, N ; d1,1 = −3,
d1,2 = 4, d1,3 = −1, dN+1,N+1 = 3, dN+1,N = −4, dN+1,N−1 = −1,

dN+1,l1+1 = −1
2

(3 + 2µ1), dN+1,l1 = 2 + 2µ1,

dN+1,l1−1 = −1
2

(1 + 2µ1), dN+1,l2+1 = −1
2

(3 + 2µ2),

dN+1,l2 = 2 + 2µ2, dN+1,l2−1 = −1
2

(1 + 2µ2),

di,j = 0, for other i and j;

g0
m,n = 2τϕm,n, gNm,n = 2τψm,n, n,m = 1,M − 1

for second order of ADS.
Numerical calculations are carried out by using MATLAB program and modified

Gauss method [33] for N = M = 10, 20, 40. In Tables 4–6, the numerical results for
both order of ADSs are given. Table 4 contains error between exact and approxi-
mately solutions of NBVP. Table 5 presents error for u. Tables 6 includes error for
p. These tables show that the second order of ADS is more accurate comparing to
the first order of ADS.

Conclusion. In this research work, inverse elliptic problem with Bitsadze-Samarskii
type multipoint nonlocal and Neumann boundary conditions are discussed. First
and second order of accuracy difference schemes for this problem are presented.
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Table 4. Error analysis for NBVP

Difference scheme N = M = 10 N = M = 20 N = M = 40

First order of ADS 0.0822 0.0392 0.0169

Second order of ADS 0.0226 2.02×10−3 1.33×10−4

Table 5. Error analysis for p in example (4.6)

Difference scheme N = M = 10 N = M = 20 N = M = 40

First order of ADS 0.8207 0.1693 0.1029

Second order of ADS 0.3266 0.0592 0.0106

Table 6. Error analysis for v in example (4.6)

Difference scheme N=10,M=10 N=20,M=20 N=40,M=40

First order of ADS 0.0291 0.0135 4.06×10−3

Second order of ADS 0.0053 4.68×10−4 3.03×10−5

Stability and coercive stability estimates for solutions of corresponding difference
schemes are established. Then, numerical results for inverse elliptic problem with
multipoint Bitsadze-Samarskii type nonlocal and Neumann boundary conditions in
two and three dimensional test examples are illustrated. Numerical results are car-
ried out by MATLAB program and short explanation on the realization of algorithm
is given.

Moreover, applying the results of papers [4, 12, 20] the high order of ADSs for the
numerical solution to the Bitsadze-Samarskii type overdetermined elliptic problem
with Neumann conditions can be presented.
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