
Electronic Journal of Differential Equations, Vol. 2017 (2017), No. 302, pp. 1–14.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ANALYSIS OF STAGNATION POINT FLOW OF AN
UPPER-CONVECTED MAXWELL FLUID

JOSEPH E. PAULLET

Abstract. Several recent papers have investigated the two-dimensional stag-

nation point flow of an upper-convected Maxwell fluid by employing a simi-

larity change of variable to reduce the governing PDEs to a nonlinear third
order ODE boundary value problem (BVP). In these previous works, the BVP

was studied numerically and several conjectures regarding the existence and

behavior of the solutions were made. The purpose of this article is to mathe-
matically verify these conjectures. We prove the existence of a solution to the

BVP for all relevant values of the elasticity parameter. We also prove that

this solution has monotonically increasing first derivative, thus verifying the
conjecture that no “overshoot” of the boundary condition occurs. Uniqueness

results are presented for a large range of parameter space and bounds on the
skin friction coefficient are calculated.

1. Introduction

This article analyzes the boundary value problem (BVP) governing two-dimen-
sional stagnation-point flow of a fluid obeying the upper-convected Maxwell model
[7], [8], [11]. Models such as this have been developed to describe the viscoelas-
tic properties that certain fluids exhibit, and which not captured using standard
Newtonian theory. Several previous studies concerning stagnation-point flow of vis-
coelastic fluids investigated a second-grade fluid model [3, 10]. However, Sadeghy et
al. [11] note that the second-grade model is valid only for slow flows involving small
levels of elasticity. Also, overshoot of the free stream velocity inside the bound-
ary layer has been observed for the second-grade model [1, 3]. A later study [6]
suggested that the second-grade model of [3] needed to be augmented and in this
augmented model no overshoot was observed [2, 12].

Given these limitations and uncertainties surrounding the behavior of stagnation-
point flow of a second-grade fluid, Sadeghy et al. [11] conducted an investigation of
the same physical configuration using an upper-convected Maxwell (UCM) model.
They note that the upper-convected Maxwell model is valid for much larger values
of elasticity than is the second-grade model. They endeavored to determine whether
the behavior observed in the second-grade model regarding the velocity profiles and
the skin friction coefficient are present in the UCM model.
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Specifically, the problem derived in [11] (see also [7, 8]) is

[1 + kf(η)2]f ′′′(η) + [1− 2kf ′(η)]f(η)f ′′(η) + 1− f ′(η)2 = 0, 0 < η <∞, (1.1)

subject to
f(0) = 0, f ′(0) = 0, f ′(∞) = 1. (1.2)

where k > 0 is the elasticity parameter
Sadeghy et al. [11] investigate this BVP numerically and report a unique solution

for each value of k. They also detect no overshoot in the velocity profiles for
any value of k. (Overshoot would involve a solution to the BVP with velocities
that exceed the free-stream velocity far from the plate and would be exhibited by
f ′(η) > 1 on some interval(s) of η.) Sadeghy et al. also find that the skin friction
coefficient, which is proportional to f ′′(0), decreases as the elasticity parameter k
increases.

The objective of this paper is to determine whether these numerical observations
can be verified mathematically from direct analysis of the BVP. We note that since
the BVP (1.1)-(1.2) is nonlinear, there is no guarantee that a solution even exists,
or that it is unique. Thus our first goal (Section 2) is to prove that for any k > 0,
a solution to the BVP does indeed exist. This solution will be shown to satisfy
0 < f ′(η) < 1 and f ′′(η) > 0 for all η > 0. Thus a solution without overshoot does
exist for this model. In fact, since it can be seen from the ODE (1.1) that f ′ cannot
have a maximum above f ′ = 1, solutions with overshoot are not possible in this
model. Next, for k ≥ k0 ≈ 3.5584 (defined in Section 3) we prove that there cannot
be two solutions which both satisfy 0 < f ′ < 1 and f ′′ > 0 for all η > 0. We show
that any second (or further) solutions must have very specific behavior, including
a minimum of f ′ below −1. Thus, any further solutions would have to exhibit
the physically dubious behavior of flow reversal (f ′ < 0). While such solutions
are not unknown in some flow configurations [13], we conjecture, based on our
numerical investigations, that they do not occur in the current model. In Section 4,
we discuss the behavior of the skin friction coefficient as a function of the elasticity
parameter as well as other qualitative properties of the solution. Finally, in Section
5, we discuss open problems for the current model and how the analysis presented
here might be applied to other models involving the upper-convected Maxwell fluid
model. We note that techniques employed to other stagnation point problems, such
as those used in [4], might fruitfully be applied to the current problem.

To investigate the BVP (1.1)-(1.2) we study a family of initial value problems
(IVPs) given by the ODE (1.1) along with the conditions at η = 0, (1.2)a,b. To
this we add a third condition at η = 0, namely,

f ′′(0) = α. (1.3)

Equations (1.1),(1.2)a,b and (1.3) constitute a well-posed IVP. By standard exis-
tence and uniqueness theory, for each value of α, this IVP will have a unique local
solution on some open interval containing η = 0. Denote this solution by f(η;α).
Occasionally the dependence of f on η or α or both will be dropped for convenience
and ease of reading. In the next section we show that a value α∗ exists such that
f(η;α∗) exists for all η > 0 and also satisfies the boundary condition at infinity,
(1.2)c, giving a solution to the BVP.
Nomenclature:

• f : dimensionless stream function
• η : similarity variable
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• k : elasticity parameter
• α : topological shooting parameter
• v : derivative of f with respect to α
• η0, η1, η2, η3, η4, η5, η, η: various values of η used in the proofs
• k0, k1, k2, k̂: various values of k used in the proofs
• α1, α2, α, α

∗: various values of α used in the proofs

2. Existence and qualitative properties

Theorem 2.1. For every k > 0 there exists a solution to the BVP (1.1)-(1.2).
Further, this solution satisfies 0 < f ′(η) < 1 and f ′′(η) > 0 for all η > 0.

Proof. The proof of existence will involve the following subsets of (0,∞):

A =
{
α > 0 : f ′′(η;α) = 0 before f ′(η;α) = 1

}
,

B =
{
α > 0 : f ′(η;α) = 1 before f ′′(η;α) = 0

}
.

We will show that each of these sets is non-empty and open. For A this is just
a matter of continuity of the solutions of the IVP (1.1), (1.2)a,b and (1.3) in its
initial conditions. We claim that for all α > 0 sufficiently small, α ∈ A. To see
this, first note that

f ′′′(0;α) = −1 < 0. (2.1)

If we take α = 0, then for small η > 0 we have f ′(η; 0) < 1 and f ′′(η; 0) < 0;
say on (0, ε] for some ε > 0. By continuity of the solutions of the initial value
problem in its initial conditions, for α > 0 sufficiently small, f ′(η;α) will stay close
to f ′(η; 0), i.e. we can arrange that f ′(η;α) < 1 on (0, ε] with f ′′(ε;α) < 0. But
as f ′′(0;α) > 0, there must exist a first η0 ∈ (0, ε) such that f ′′(η0;α) = 0 with
f ′(η;α) < 1 on [0, η0]. Thus for α > 0 sufficiently small we have α ∈ A. To show
that A is open, consider α ∈ A. We will show that all α sufficiently close to α are
also in A. At η0(α) we have 0 < f ′(η0;α) < 1 and f ′′(η0;α) = 0. Evaluating (1.1)
at η0(α) implies that

f ′′′(η0;α) =
f ′(η0;α)2 − 1
1 + kf(η0;α)2

6= 0. (2.2)

Thus, by continuity of the solutions of the IVP in its initial conditions, for α suffi-
ciently close to α, f ′′(η;α) will also have a root, η0(α), near η0(α) with f ′(η0;α) < 1.
Thus α ∈ A and A is open.

The study of the set B will require bounds on f and f ′. First note that integrating
(1.1), (by parts where necessary), from 0 to η gives

f ′′(η)[1 + kf(η)2] = α− η + (2kf ′ − 1)ff ′ + 2
∫ η

0

f ′(t)2[1− kf ′(t)] dt (2.3)

We claim that for large positive α, f ′ = 1 in the interval (0, 1] strictly before f ′′ = 0.
(In fact in this case, if f ′ = 1 before f ′′ = 0, then f ′′ = 0 cannot occur at all.)
Suppose that the assertion is false. Then one of the following must occur: (i) f ′′ = 0
at some first point in (0, 1] with f ′ < 1, (ii) f ′′ > 0 and f ′ < 1 for all η ∈ (0, 1],
or (iii) f ′′ = 0 and f ′ = 1 simultaneously. We eliminate each of these in turn. To
begin with (i), suppose that there exists a first η1 ∈ (0, 1] with

f ′′(η1) = 0 (2.4)
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with 0 ≤ f ′ < 1 for η ∈ [0, η1]. Integrating 0 ≤ f ′ < 1 from 0 to η gives 0 ≤ f <
η ≤ 1 on [0, η1] ⊂ [0, 1]. Using these bounds on f and f ′ and ignoring the positive
terms other than α on the right hand side of (2.3) we obtain:

f ′′(η) ≥ α− 2(k + 1)
k + 1

η ∈ [0, η1]. (2.5)

Thus if we choose α > 2(k + 1) then f ′′(η1) > 0 contradicting (2.4). A similar
argument shows that if α > 3(k + 1) then we cannot have (ii) f ′′ > 0 and f ′ < 1
on all of (0, 1]. (i.e. f ′(1) will be greater than 1.) This leaves only case (iii) f ′ = 1
and f ′′ = 0 simultaneously; however, substituting this information into (1.1) gives
f ′′′ = 0 implying that f ′(η) ≡ 1, contradicting the basic existence and uniqueness
theorem for initial value problems, as f ′(0) = 0 6= 1. Thus if α > 3(k + 1) then we
must have f ′ = 1 strictly before f ′′ = 0 and therefore α ∈ B. An argument similar
to that for the set A shows that B is also open.

Thus, the sets A and B are non-empty and open. They are also obviously
disjoint. But the interval (0,∞) is connected and thus A ∪ B 6= (0,∞). Therefore,
there exists some α∗ such that α∗ /∈ A and α∗ /∈ B. For such a value of α∗ the only
possibility is for the solution f(η;α∗) to exist for all η > 0 with 0 < f ′(η;α∗) < 1
and f ′′(η;α∗) > 0.

It remains to show that f ′(∞;α∗) = 1, satisfying the boundary condition at
infinity (1.2)c. Since f ′(η;α∗) is positive, increasing, and bounded above by 1 we
conclude that f ′(∞;α∗) = L ≤ 1 exists. Suppose for contradiction that 0 < L < 1.

To begin, we claim that f ′′′ ≤ 0 for all η > 0. Since f ′′′(0) = −1, f ′′′ starts
off negative. Suppose that f ′′′ were to assume a positive value at some point, say
f ′′′(η2) > 0 for some η2 > 0. We could not have f ′′′ > 0 for all η > η2 since two
integrations from η2 to η > η2 of the inequality f ′′′ > 0 would imply that f ′ → +∞
as η →∞ contradicting the boundedness of f ′. Thus f ′′′ would at some point have
to decrease back through zero. Recalling the other properties of f from above, this
would require a point at which f > 0, 0 < f ′ < 1, f ′′ > 0, f ′′′ = 0 and f (4) ≤ 0.
Differentiating (1.1) and evaluating at such a point implies that

(1 + kf2)f (4) − f ′f ′′ − 2k(f ′)2f ′′ − 2kf(f ′′)2 = 0. (2.6)

However, each term on the left side of (2.6) is non-positive with the last three
necessarily negative and we have a contradiction. Thus f ′′′ cannot become positive
and we have f ′′′ ≤ 0 for all η > 0. This along with f ′′ > 0 for all η > 0, implies
that f ′′(∞) exists and since f ′(∞) also exists we must have f ′′(∞) = 0.

Next note that from the properties above on f through f ′′′ we can conclude from
the equation for the fourth derivative,

(1 + kf2)f (4) + ff ′′′ − (1 + 2kf ′)f ′f ′′ − 2kf(f ′′)2 = 0, (2.7)

that f (4) > 0 for all η > 0. This along with f ′′′ ≤ 0 implies that f ′′′(∞) exists, and
must be zero since f ′′(∞) also exists.

Next, rewrite the ODE (1.1) as

(1− 2kf ′)ff ′′ + kf2f ′′′ = (f ′)2 − 1− f ′′′. (2.8)

On the right side of (2.8) we have that (f ′)2 − 1 − f ′′′ → L2 − 1 = −m < 0 as
η →∞. Thus there exists an η3 > 0 such that

(1− 2kf ′)ff ′′ + kf2f ′′′ < −m
2
∀η > η3. (2.9)
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Dividing by f > 0 we have

f ′′ − 2kf ′f ′′ + kff ′′′ < −m
2

1
f
∀η > η3. (2.10)

Since 0 < f ′ < L for all η > 0 (not just η > η3) we have on integration from 0
to η > 0 that

f < Lη, ∀η > 0, (2.11)
or, after some rearrangement,

− 1
f
< − 1

Lη
, ∀η > 0. (2.12)

Using (2.12) in (2.10) we obtain

f ′′ − 2kf ′f ′′ + kff ′′′ < − m

2Lη
, ∀η > η3. (2.13)

Integrating (by parts where necessary) from η3 to η > η3, collecting some terms
and aggregating all constants on the left into a quantity called C we obtain

f ′ − 3k
2

(f ′)2 + kff ′′ + C < − m
2L

(ln η − ln η3) , ∀η > η3. (2.14)

Since f ′ is bounded, letting η →∞ we conclude that ff ′′ → −∞, giving a contra-
diction since f > 0 and f ′′ > 0. Thus the assumption that f ′ → L < 1 leads to a
contradiction and we must have f ′(∞;α∗) = 1 giving a solution to the BVP. �

3. Uniqueness results

Theorem 3.1. If k ≥ k0 ≈ 3.5584, then there cannot be two solutions f(η) of the
BVP (1.1)-(1.2) both of which satisfy 0 < f ′(η) < 1 and f ′′(η) > 0 for all η > 0.
The value k0 will be defined precisely in the proof.

Proof. By contradiction, assume the the existence of two solutions, f(η;α1) and
f(η;α2), of the BVP (1.1)-(1.2) both of which satisfy 0 < f ′(η;αi) < 1 and
f ′′(η;αi) > 0 for all η > 0, i = 1, 2. Without loss of generality assume that
α2 > α1.

To arrive at a contradiction we will use the quantity v = ∂f/∂α. Differentiating
the ODE (1.1) along with the initial conditions for f(η;α) with respect to α we see
that v(η;α) satisfies the following IVP:

(1+kf2)v′′′+(1−2kf ′)fv′′−2(kff ′′+f ′)v′+[(1−2kf ′)f ′′+2kff ′′′]v = 0, (3.1)

subject to
v(0) = 0, v′(0) = 0, v′′(0) = 1. (3.2)

Evaluating this at η = 0 gives v′′′(0) = 0. Differentiating (3.1) with respect to η
gives

(1 + kf2)v(4) + fv′′′ − [(1 + 2kf ′)f ′ + 4kff ′′]v′′ − (4kf ′ + 1)f ′′v′

+ [2kff iv + f ′′′ − 2kf ′′2]v = 0.
(3.3)

Evaluating at η = 0 we have v(4)(0) = 0. Finally, differentiating (3.3) with respect
to η and evaluating at η = 0 gives v(5)(0) = 2α > 0. Our main interest is in the
behavior of v(η;α) and its derivatives for α1 ≤ α ≤ α2 and η > 0. Note that for
small η > 0 we have v > 0, v′ > 0, v′′ > 0, v′′′ > 0 and v(4) > 0. Ultimately,
we wish to show that v′ cannot have a maximum and thus v′ > 0 will be bounded
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away from zero as η →∞. Also note, that before v′ can have a maximum, v′′ must
first have a maximum.

So for the purpose of contradiction suppose that v′′ has a first maximum at η
and v′ has a first maximum at η > η. At η we have v(η;α) > 0, v′(η;α) > 0,
v′′(η;α) > 0, v′′′(η;α) = 0, and v(4)(η;α) ≤ 0. Note also that, up until this point,
v(η;α) and all its derivative through v′′′(η;α) are positive. Thus f(η;α) and all its
derivatives through f ′′′(η;α) are increasing functions of α. Thus we conclude that

0 < f(η;α1) ≤ f(η;α) ≤ f(η;α2), (3.4)

0 < f ′(η;α1) ≤ f ′(η;α) ≤ f ′(η;α2) < 1, (3.5)

0 < f ′′(η;α1) ≤ f ′′(η;α) ≤ f ′′(η;α2), (3.6)

f ′′′(η;α1) ≤ f ′′′(η;α) ≤ f ′′′(η;α2) < 0, (3.7)

for all 0 < η ≤ η. With these inequalities in place, we see from (2.7) that

f (4)(η;α) > 0 (3.8)

for all 0 < η ≤ η and α1 ≤ α ≤ α2.
Evaluating (3.1) at η gives

(1− 2kf ′)fv′′ − 2(kff ′′ + f ′)v′ + [(1− 2kf ′)f ′′ + 2kff ′′′]v = 0 at η. (3.9)

Given the conditions listed in the last paragraph, a necessary condition for (3.9) to
hold is that 1− 2kf ′(η) > 0. Thus f ′(η) < 1/2k. But since f ′ is strictly increasing
we have

f ′(η) <
1
2k

on [0, η]. (3.10)

Next, evaluating the ODE for v(4) (3.3) at η we have

(1 + kf2)v(4) − [(1 + 2kf ′)f ′ + 4kff ′′]v′′ − (4kf ′ + 1)f ′′v′

+ [2kff (4) + f ′′′ − 2kf ′′2]v = 0 at η.
(3.11)

The terns involving v′ and v′′ are strictly negative and the term involving v(4) is
less than or equal to zero. Since v > 0, the only way for (3.11) to hold is if

2kff (4) + f ′′′ − 2kf ′′2 > 0 at η. (3.12)

Using (2.7), the inequality (2.14) can be rewritten as

kf ′′2(4kf2 − 1)
1 + kf2

+
f ′′′(1− kf2)

1 + kf2
+
kf ′′(2ff ′ + 4kff ′2 − f ′′)

1 + kf2

− 2k2f2f ′′2

1 + kf2
> 0 at η.

(3.13)

The last term of (3.13) is negative. Next, several technical lemmas will de-
rive bounds on α, η and η as well as show that the first two terms of (3.13) are
nonpositive. We begin with several bounds on f and its derivatives.

Using (3.4) through (3.8) along with (3.10) we conclude

−1 < f ′′′ < 0 on (0, η], (3.14)

α− η < f ′′ < α on (0, η], (3.15)

αη − η2

2
< f ′ < min

{
αη,

1
2k
}

on (0, η], (3.16)
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αη2

2
− η3

6
< f < min

{αη2

2
,
η

2k
}

on (0, η]. (3.17)

�

Lemma 3.2. The quantity

kf ′′2(4kf2 − 1)
1 + kf2

at η (3.18)

is nonpositive.

Proof. For contradiction suppose that

kf ′′2(4kf2 − 1)
1 + kf2

> 0 at η (3.19)

For (3.19) to hold we must have 4kf(η)2 − 1 > 0, or

f(η) >
1

2
√
k
. (3.20)

From (3.17) we have
f(η) <

η

2k
on [0, η]. (3.21)

Combining (3.20) and (3.21) we have
1

2
√
k
< f(η) <

η

2k
, (3.22)

which implies that
η >
√
k. (3.23)

We next show that α ≥
√
k. For contradiction suppose that α <

√
k < η. The

last part of this inequality using (3.23). Then from (3.16) we have

α2

2
< f ′(α) < f ′(η) <

1
2k
, (3.24)

from which we conclude that
α <

1√
k
. (3.25)

Recall that

f ′′(η)[1 + kf(η)2] = α− η + (2kf ′ − 1)ff ′ + 2
∫ η

0

f ′(t)2[1− kf ′(t)] dt. (3.26)

Using (3.10) and (3.25) we obtain

f ′′(η)[1 + kf(η)2] <
1√
k

+
(1− 2k2

2k2

)
η on [0, η], (3.27)

which is less than or equal to zero if η ≥ 2k2/(
√
k(2k2− 1)). Since f ′′ > 0 we must

therefore have

η <
2k2

√
k(2k2 − 1)

. (3.28)

Combining (3.28) with (3.23) we have
√
k < η <

2k2

√
k(2k2 − 1)

, (3.29)

which implies
h(k) = 2k3 − 2k2 − k < 0. (3.30)
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The positive root of h(k) is k̂ = (1 +
√

3)/2 ≈ 1.366 with h(k) < 0 if k < k̂. Since
k ≥ k0 > k̂ we arrive at a contradiction.

Thus if k > k0, we must have
α ≥
√
k (3.31)

Using (3.31) in (3.16) we obtain

f ′ > αη − η2

2
>
√
kη − η2

2
. (3.32)

Since f ′ is increasing and η >
√
k we have

f ′(η) > f ′(
√
k) >

k

2
on [
√
k, η]. (3.33)

Combining (3.33) with (3.10) we have

k

2
< f ′(η) <

1
2k
, (3.34)

which implies that k < 1 giving a contradiction since k ≥ k0 > 1, thus the proof is
complete. �

Thus if k ≥ k0, we have

kf ′′2(4kf2 − 1)
1 + kf2

≤ 0 at η. (3.35)

Note that this implies that f(η) ≤ 1/2
√
k, and since f is increasing we have

f(η) ≤ 1
2
√
k

on [0, η]. (3.36)

Lemma 3.3. The quantity

f ′′′(1− kf2)
1 + kf2

at η (3.37)

is nonpositive.

Proof. Note that f ′′′(η) < 0. Also, from (3.36) we have f(η) < 1/2
√
k. Thus

1− kf(η)2 > 1− k(1/2
√
k)2 = 3/4 > 0. Thus

f ′′′(1− kf2)
1 + kf2

< 0 at η (3.38)

which completes the proof. �

Lemma 3.4.

f ′′(η) <
1

k3/2
and η > α− 1

k3/2
(3.39)

Proof. By Lemmas 3.2 and 3.3, in order for (3.13) to hold we must have

kf ′′(2ff ′(1 + 2kf ′)− f ′′)
1 + kf2

> 0 at η. (3.40)

Since f ′′(η) > 0, (3.40) implies that

2ff ′(1 + 2kf ′)− f ′′ > 0 at η. (3.41)
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Using (3.10) and (3.36) in the quantity on the left-hand side of (3.41) we have

2f(η)f ′(η)(1 + 2kf ′(η))− f ′′(η)

< 2
(

1
2
√
k

)(
1
2k

)(
1 + 2k

(
1
2k

))
− f ′′(η) =

1
k3/2

− f ′′(η).
(3.42)

We obtain a contradiction of (3.40) if the right most term of (3.42) is less than
or equal to zero. Thus we must have f ′′(η) < 1/k3/2. Since f ′′ is decreasing and
η > η we obtain

f ′′(η) <
1

k3/2
. (3.43)

For the lower bound on η, we first consider η. Suppose that η ≤ α. Then, since
α− η < f ′′(η) on [0, η] we have

2f(η)f ′(η)(1 + 2kf ′(η))− f ′′(η) <
1

k3/2
− f ′′(η) <

1
k3/2

+ η − α. (3.44)

Again, we have a contradiction if the right most term of (3.44) is less than or equal
to zero. Thus

η > η > α− 1
k3/2

. (3.45)

�

Lemma 3.5. For α1 ≤ α ≤ α2,

α >

√
54k2 − 2
9k3/2

. (3.46)

Proof. Multiplying (1.1) by f ′′ and integrating (by parts where necessary) from 0
to η we have

1
2

(1 + kf2)f ′′2 − 1
2
α2 +

∫ η

0

(1− 3kf ′)ff ′′2 dt+ f ′ − 1
3
f ′3 = 0. (3.47)

Let η4 be the point where f(η;α1) increases through 1/3k. (Note that k ≥ k0 > 1/3
so that 1/3k < 1). Then

1
2
α2

1 =
27k2 − 1

81k3
+

1
2

(1 + kf(η4)2)f ′′(η4)2 +
∫ η4

0

(1− 3kf ′)ff ′′2 dt. (3.48)

Since all three terms on the right side of (3.48) are positive we have

1
2
α2

1 >
27k2 − 1

81k3
, (3.49)

or, for α1 ≤ α ≤ α2,

α ≥ α1 >

√
54k2 − 2
9k3/2

. (3.50)

Recall that at a first maximum of v′ at η, we have v > 0, v′ > 0, v′′ = 0 and
v′′′ ≤ 0. Evaluating (3.1) at η we have

(1 + kf2)v′′′ − 2(kff ′′ + f ′)v′ + [(1− 2kf ′)f ′′ + 2kff ′′′]v = 0 at η. (3.51)

The first term of (3.51) is nonpositive and the second is strictly negative. Since
v > 0, we must therefore have

(1− 2kf ′)f ′′ + 2kff ′′′ > 0 at η (3.52)
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in order for (3.51) to hold. Recall that f > 0, f ′′ > 0 and f ′′′ < 0. Thus a necessary
condition for (3.51) to hold is that f ′(η) < 1/2k. Since f ′ is increasing, we thus
have

f ′(η) <
1
2k

on [0, η]. (3.53)

Next we use (1.1) to rewrite (3.52) as

(1− 2kf ′)f ′′ + 2kf
f ′2 − 1 + (2kf ′ − 1)ff ′′

1 + kf2
> 0 at η, (3.54)

or
1

1 + kf2

[
(1− 2kf ′)(1− kf2)f ′′ + 2kf(f ′2 − 1)

]
> 0 at η. (3.55)

We will show that (3.55) cannot hold, giving us our final contradiction to the
assumption that v′ can have a positive maximum. To this end, first note that since
f(η) > 0, f ′(η) < 1/2k < 1 and f ′′(η) > 0, a necessary condition for (3.55) to hold
is that

f(η) < 1/
√
k. (3.56)

The argument will take two paths depending on whether η > α or η ≤ α.
If η > α, then since f is increasing we have from (3.17)

α3

3
< f(α) < f(η). (3.57)

Using the facts that α3/3 < f(η) < 1/
√
k, f ′(η) < 1/2k < 1 and f ′′(η) < 1/k3/2

in the quantity in brackets in (3.55) we have

(1− 2kf ′(η))(1− kf(η)2)f ′′(η) + 2kf(η)(f ′(η)2 − 1)

<
1

k3/2
+ 2k

α3

3

( 1
4k2
− 1
)
.

(3.58)

Next, using (3.46) we have

(1− 2kf ′(η))(1− kf(η)2)f ′′(η) + 2kf(η)(f ′(η)2 − 1)

<
1

k3/2
+

(54k2 − 2)3/2(1− 4k2)
6 · 93 · k11/2

.
(3.59)

We obtain a contradiction of (3.55) if the right side of (3.59) is less than or equal
to zero. This occurs if k ≥ k1 >≈ 2.8618 where k1 is the root of

1
k3/2

+
(54k2 − 2)3/2(1− 4k2)

6 · 93 · k11/2
= 0. (3.60)

Finally, if η ≤ α, then from Lemma 3.4 we have η > α − 1/k3/2. Using this in
(3.17) and the fact that f is increasing we have

α

3

(
α− 1

k3/2

)2

< f(η). (3.61)

Using the facts that α(α − 1/k3/2)2/3 < f(η) < 1/
√
k, f ′(η) < 1/2k < 1 and

f ′′(η) < 1/k3/2 in the quantity in brackets in (3.55) we have

(1− 2kf ′(η))(1− kf(η)2)f ′′(η) + 2kf(η)(f ′(η)2 − 1)

<
1

k3/2
+ 2k

α

3

(
α− 1

k3/2

)2( 1
4k2
− 1
)
.

(3.62)
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Using the result of Lemma 3.5 in (3.62), at η we have

(1− 2kf ′)(1− kf2)f ′′ + 2kf(f ′2 − 1)

<
1

k3/2
+

2k
3

√
54k2 − 2
9k3/2

(√54k2 − 2
9k3/2

− 1
k3/2

)2( 1
4k2
− 1
)
.

(3.63)

We obtain a contradiction of (3.55) if the right side of (3.63) is less than or equal
to zero. This occurs if k ≥ k2 >≈ 4.9377 where k2 is the root of

1
k3/2

+
2k
3

√
54k2 − 2
9k3/2

(√54k2 − 2
9k3/2

− 1
k3/2

)2( 1
4k2
− 1
)

= 0. (3.64)

The analysis of the last paragraph used the rather crude bounds 1− kf(η)2 < 1
and 1 − 2kf ′(η) < 1. An improved value for k can be obtained by employing the
lower bounds in (3.17) and (3.16). We thus obtain a contradiction of (3.55) if k is
larger than the root of(

1−
√

54k2 − 2(
√

54k2 − 2− 9)
81k2

)(
1−
√

54k2 − 2(
√

54k2 − 2− 9)2

3 · 93 · k7/2

)( 1
k3/2

)
+

2k
3

√
54k2 − 2
9k3/2

(√54k2 − 2
9k3/2

− 1
k3/2

)2( 1
4k2
− 1
)

= 0.

The root of this equation defines the value k0 ≈ 3.5584 mentioned in the statement
of the theorem.

This final contradiction proves that v′ cannot have a maximum. Thus v′′ > 0
for all η > 0, and since v′(0) = 0 we conclude that v′ > 0 is bounded away from
zero for η large.

Next, if two solutions with the properties given in the statement of Theorem 3.1
were to exist, then by the Mean Value Theorem we would have

f ′(η;α2)− f ′(η;α1) =
(∂f ′(η;α)

∂α

)
α=α̂

(α2 − α1) = v′(η; α̂)(α2 − α1), (3.65)

for η > 0 where α̂ ∈ (α1, α2). Since v′(η; α̂) is bounded away from zero for η large,
there exists a constant M > 0 such that

0 = f ′(∞;α2)− f ′(∞;α1) = lim
η→∞

v′(η; α̂)(α2 − α1) > M(α2 − α1) > 0. (3.66)

This contradiction proves Theorem 3.1. �

Our numerical investigations indicate solutions that violate the inequalities 0 <
f ′ < 1 and f ′′ > 0 do not exist, however we have not been able to prove this. We
end this section by discussing the properties that any second (or further) solutions
must have. First note that from the ODE (1.1), f ′ can only have a maximum in the
range −1 < f ′ < 1 and can only have a minimum if either f ′ > 1 or f ′ < −1. Thus,
as mentioned in the introduction, there can be no solutions exhibiting overshoot
(values of f ′ above 1). Further, any second solution would have to have at least
one minimum below −1, and thus would exhibit flow reversal (f ′ < 0), which is
unlikely in this physical configuration.

4. Bounds on the skin friction coefficient

A quantity of much physical interest is the skin friction coefficient which is
proportional to f ′′(0) = α. The following result gives bounds on α. (In this section,
α corresponds to the value α(k) that gives the solution to the BVP (1.1)-(1.2) with
the properties 0 < f ′(η, α) < 1 and f ′′(η, α) > 0 for all η > 0.)
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Theorem 4.1. For 0 < k ≤ 1/3 we have

f ′′(0) = α >
2√
3
. (4.1)

For k > 1/3 we have

f ′′(0) = α >

√
54k2 − 2
9k3/2

(4.2)

For k ≥ k̂ ≈ 2.2825 we have

f ′′(0) = α <
2√
3
. (4.3)

The exact value of k̂ will be defined in the proof.

Proof. Using the fact that f ′ approaches one from below in the ODE (1.1), we
conclude that ff ′′ tends to zero. Letting η →∞ in (3.47) we conclude that

f ′′(0) = α∗ >
2√
3

for 0 < k ≤ 1
3
, (4.4)

whereas the result of Lemma 3.5 gives

f ′′(0) = α∗ >

√
54k2 − 2
9k3/2

for k >
1
3
. (4.5)

To obtain the upper bound on α for k > k̂ we again let η →∞ in (3.47) to obtain∫ ∞
0

(1− 3kf ′)ff ′′2 dt =
1
2

(
α2 − 4

3

)
. (4.6)

If the integral on the left hand side of (4.6) is negative the result follows. Suppose
for contradiction that the integral is non-negative. Then α ≥ 2/

√
3. From §2 we

have that for a solution that satisfies 0 < f ′ < 1 and f ′′ > 0 for all η > 0, we also
have f (4) > 0 for all η > 0. This again leads to the bounds

−1 < f ′′′(η) < 0, (4.7)

α− η < f ′′(η) < α, (4.8)

αη − η2

2
< f ′(η) < αη, (4.9)

αη2

2
− η3

6
< f(η) <

αη2

2
. (4.10)

Using α ≥ 2/
√

3 and (4.9) we have f ′(2/
√

3) > 2/3. Since f ′′′ < 0 we have
η√
3

= l(η) < f ′(η) on [0, 2/
√

3], (4.11)

where l(η) = η/
√

3 is the line through (0, 0) and (2/
√

3, 2/3). Let η5 be the point
where f ′ increases through 1/3k. Using (4.11) we have that η5 < 1/

√
3k. Using

(4.8) through (4.11) we have∫ η5

0

(1− 3kf ′)ff ′′2 dt <
∫ 1/

√
3k

0

(
1− 3k

( t√
3

))(αt2
2

)
(α)2 dt

=
α3

72
√

3k3
.

(4.12)
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Next, again employing the bounds (4.8) through (4.11) we have∫ 1/
√

3

η5

(1− 3kf ′)ff ′′2 dt <
∫ 1/

√
3

1/
√

3k

(1− 3k(αt))
( 6k − 1

18
√

3k3

)( 1√
3

)2

dt

=
(6k − 1)(1 + k − k2)

162k4
.

(4.13)

Combining (4.12) and (4.13) we have∫ 1/
√

3

0

(1− 3kf ′)ff ′′2 dt <
α3

72
√

3k3
+

(6k − 1)(1 + k − k2)
162k4

. (4.14)

We arrive at a contradiction (of the assumption that
∫∞
0

(1 − 3kf ′)ff ′′2 dt ≥ 0) if
the right hand side of (4.14) is negative and thus we must have

α >
(4
√

3(6k − 1)(k2 − k − 1)
9k

)1/3

. (4.15)

Using (4.15) in (4.9) we have

f ′(1/
√

3) >
(4
√

3(6k − 1)(k2 − k − 1)
9k

)1/3 1√
3
− 1

6
. (4.16)

We obtain a contradiction (of 0 < f ′ < 1 for all η > 0) if the right side of (4.16) is
greater or equal to 1. This occurs if k ≥ k̂ ≈ 2.2825 where k̂ is the positive root of(4

√
3(6k − 1)(k2 − k − 1)

9k

)1/3 1√
3
− 7

6
= 0. (4.17)

Thus for k ≥ k̂ we have α < 2/
√

3. �

5. Discussion and open problems

Through direct analysis of the BVP (1.1)-(1.2) we have proven the existence
of a solution for stagnation point flow of an upper-convected Maxwell fluid. This
solution is shown to satisfy 0 < f ′ < 1 and f ′′ > 0 for all η > 0. For k ≥ k0 we have
also shown that a solution with these properties is unique. Any further solutions
must exhibit the physically unrealistic property of flow reversal in the boundary
layer.

The analysis presented here should prove useful in the study of generalizations
of the stagnation point problem posed in Sadeghy et al. [11]. Kumari and Nath
[7] extended this model by considering the effects of heat transfer and an induced
magnetic field on the flow. (See equations (8) and (11) in [7].) More recently, Lok et
al. [8] considered a generalization that incorporated the effects of a shrinking sheet
with suction. (See equations (7) and (9) in [8].) Straightforward extensions of the
arguments given here should yield existence results for both of these problems. The
uniqueness results will no doubt prove more problematic. One reason is that the
already technical nature of Theorem 3.1 will no doubt become more involved in these
more complicated problems. Another reason is that the numerical results of Lok et
al. [8] indicate that no solution to their boundary value problem exists for values of
the shrinking parameter λ less than a critical value. There are really no “standard”
methods for proving nonexistence of solutions to BVPs. Each problem generally
has to be approached on an ad-hoc basis. However, the techniques of [9] may prove
applicable to the problem posed in [8]. Finally, we mention that the techniques
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employed here involved a third order ODE with two boundary conditions at η = 0
and one boundary condition at infinity. The method does generalize to higher
dimensional ODEs where the dimension of the topological shooting space may also
increase depending on the number of boundary conditions at each boundary. Thus,
the methods could be applied to the higher dimensional problems considered in [4],
[5], [7] and [8].
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