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A Q-ANALOGUE OF KUMMER’S EQUATION

LUKUN JIA, JINFA CHENG, ZHAOSHENG FENG

Abstract. In this article we define a q-analogue of Kummer’s equation. It

has two singular points. Near the singular point at zero, using the Frobenius
method, we obtain two linearly independent series solutions in any one of

three cases according to the difference of roots of the characteristic equation.

Near the singular point at infinity, given that the only formal series solution
is divergent, we find two integral solutions which are convergent under some

condition. Finally, using the q-analogue of Kummer’s equation, we deduce six
contiguous relations about the q-hypergeometric series 1Φ1.

1. Introduction

Kummer’s equation can be written as [5]

zu′′(z) + (b− z)u′(z)− au(z) = 0, (1.1)

where a, b, z ∈ C. It has a regular singular point at z = 0 and an irregular singular
point at z =∞. We know that there are two formal series solutions around z = 0,
i.e.

u1 :=
∞∑
n=0

(a)nzn

(b)nn!
= 1F1(a; b; z),

u2 := z1−b
∞∑
n=0

(a+ 1− b)nzn

(2− b)nn!
= z1−b

1F1(a+ 1− b; 2− b; z),
(1.2)

where (a)n is the shifted factorial or Pochhammer symbol defined by

(a)n =

{
1, if n = 0,
a(a+ 1)(a+ 2) · · · (a+ n− 1), if n ≥ 1,

and 1F1(a; b; z) is a generalized hypergeometric series. The solutions u1 and u2

can be considered as functions of a, b, z with the other two variables held constant.
Then u1 defines an entire function of a or z except when b = 0,−1,−2, . . . . As a
function of b it is analytic except for poles at the non-positive integers. u2 defines
an entire function of a or z except when b = 2, 3, . . . . As a function of b it is analytic
except for poles at the positive integers greater than 1.
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The formal series solution at z =∞ is

u3 := z−a
∞∑
n=0

(−1)n(a)n(a+ 1− b)n
n!zn

= z−a2F0

(
a, a+ 1− b;−;−1

z

)
. (1.3)

The series u3 is divergent, but it has an integral representation.

u3 =
1

Γ(a)

∫ ∞
0

e−ztta−1(1 + t)c−a−1dt. (1.4)

This integral converges for Re a > 0 and Re z > 0 and is a solution of the Kummer’s
equation.

Let 0 < q < 1. For a function u(z) of the complex variable z with z 6= 0, define
its q-derivative as

Dqu(z) =
u(z)− u(qz)

(1− q)z
, (1.5)

and its nth order q-derivative as

Dn
q u(z) = Dq(Dn−1

q u(z)). (1.6)

An nth order q-difference equation is

Pn(Dq)u(z) = 0, (1.7)

where Pn(·) is an nth order polynomial.
When q tends to 1, the q-difference operator Dq “tends” to the usual derivation.

Hence every differential equation can be discretized by a q-difference equation.
The Euler’s hypergeometric equation

z(1− z)u′′(z) + [c− (a+ b+ 1)z]u′(z)− abu(z) = 0 (1.8)

has a q-analogue difference equation

z(qc−qa+b+1z)D2
qu(z)+[[c]q−(qb[a]q+qa[b+1]q)z]Dqu(z)−[a]q[b]qu(z) = 0, (1.9)

where a, b, c, z ∈ C and [a]q = 1−qa
1−q . Some of series solutions of equation (1.9) are

obtained in the form of basic hypergeometric series in [4]. However, it seems that
nowadays very little has been known about the q-analogues of Kummer’s equation.

In this study, we define a q-analogue of Kummer’s equation. In trying to get
formal series solutions, we find that the Frobenius method used in the classical
ordinary differential equations is also applicable to the q-difference equations when
the singular point is regular. At the regular singular point of zero, the characteristic
equation has two roots. According to the difference of these two roots, there are
three cases to consider. For each case, we obtain two linearly independent series
solutions. Near the irregular singular point at infinity, given that the only formal
series solution is divergent, we find two integral solutions which are convergent un-
der certain condition. Finally, six contiguous relations about the q-hypergeometric
series 1Φ1 are presented.

The rest of this article is organized as follows. In section 2, we obtain a q-analogue
difference equation satisfied by the q-hypergeometric series rΦs. As a special case,
we have a q-analogue of Kummer’s equation. In section 3, we define the singular
points for the second order q-difference equations. For the q-analogue of Kummer’s
equation it has two singular points at 0 and ∞. At the singular point 0, using the
Frobenius method we obtain the series solutions of the q-analogue of Kummer’s
equation. At the singular point ∞, given the only series solution is divergent, we
derive two integral solutions which are convergent under some condition. In section
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4, by using the q-analogue of Kummer’s equation, we find six contiguous relations
about the q-hypergeometric series 1Φ1.

2. q-analogue of Kummer’s equation

For the convenience of statement of q-difference equations, we still use the def-
inition of the basic hypergeometric series defined in [6]. Let 0 < q < 1, a basic
hypergeometric series or q-hypergeometric series is

rΦs

[
a1, . . . , ar
b1, . . . , bs

; q, z
]

= rΦs(a1, . . . , ar; b1, . . . , bs; q, z)

:=
∞∑
n=0

(a1; q)n . . . (ar; q)n
(b1; q)n . . . (bs; q)n(q; q)n

zn,

(2.1)

where r, s ∈ N := {0, 1, 2, . . . }, a1, . . . , ar, b1, . . . , bs, z ∈ C and (a; q)n is q-shifted
factorial defined by

(a; q)n =

{
1, if n = 0,
(1− a)(1− aq) · · · (1− aqn−1), if n ≥ 1.

To avoid zeros in the denominator of series (2.1), we require that

b1, . . . , bs 6= 1, q−1, q−2, . . . .

For the series in (2.1),

(n+ 1)th term
nth term

=
(1− a1q

n) · · · (1− arqn)z
(1− b1qn) · · · (1− bsqn)(1− qn+1)

.

The series (2.1) will terminate if an only if, for some i = 1, . . . , r, we have ai ∈
{1, q−1, q−2, . . . }. If ai = q−k (k = 0, 1, 2, . . . ), then all terms in the series with
n > k will vanish. In the non-vanishing case, by the ratio test, the convergence
radius of (2.1) is 1.

Since

lim
q→1

(qa; q)n
(1− q)n

= lim
q→1

1− qa

1− q
1− qa+1

1− q
· · · 1− q

a+n−1

1− q
= (a)n,

we can view the q-shifted factorial as a q-analogue of the shifted factorial. Hence
rΦs is a q-analogue of rFs by the formal (termwise) limit [4]

lim
q→1

rΦs

[
qa1 , . . . , qar

qb1 , . . . , qbs
; q, (1− q)1+s−rz

]
= rFs

[
a1, . . . , ar

b1, . . . , bs
; z
]
. (2.2)

The hypergeometric series

u(z) = rFs

[
a1, . . . , ar

b1, . . . , bs
; z
]

is a formal solution of the differential equation [1]:

{δ(δ + b1 − 1) · · · (δ + bs − 1)− z(δ + a1) · · · (δ + ar)}u(z) = 0, (2.3)

where δ = z d
dz .
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It has a q-analogue difference equation[
δq(qb1−1δq + [b1 − 1]q) · · · (qbs−1δq + [bs − 1]q)

− z(qa1δq + [a1]q) · · · (qarδq + [ar]q)
]
u(z) = 0,

(2.4)

where

δq = zDq, [a]q =
1− qa

1− q
.

For solutions of the equation (2.4) we have the following result.

Theorem 2.1. The equation (2.4) has a series solution as

rΦs(qa1 , . . . , qar ; qb1 , . . . , qbs ; q, (1− q)1+s−rz)
which converges when |(1− q)1+s−rz| < 1.

Proof. Let rΦs := rΦs(qa1 , . . . , qar ; qb1 , . . . , qbs ; q, (1− q)1+s−rz). By a straightfor-
ward calculation, it holds

[qbs−1δq + [bs − 1]q]rΦs = [bs − 1]q +
∞∑
n=1

(qa1 ; q)n · · · (qar ; q)n(1− q)n(1+s−r)zn

(1− q)(qb1 ; q)n · · · (qbs ; q)n−1(q; q)n
.

Then, it gives

(qb1−1δq + [b1 − 1]q) · · · (qbs−1δq + [bs − 1]q)rΦs

= [b1 − 1]q · · · [bs − 1]q +
∞∑
n=1

(qa1 ; q)n · · · (qar ; q)n(1− q)n(1+s−r)zn

(1− q)s(qb1 ; q)n−1 · · · (qbs ; q)n−1(q; q)n

= [b1 − 1]q · · · [bs − 1]q +
∞∑
n=0

(qa1 ; q)n+1 · · · (qar ; q)n+1(1− q)(n+1)(1+s−r)zn+1

(1− q)s(qb1 ; q)n · · · (qbs ; q)n(q; q)n+1
.

Thus, we have

δq(qb1−1δq + [b1 − 1]q) · · · (qbs−1δq + [bs − 1]q)rΦs

=
∞∑
n=0

(qa1 ; q)n+1 · · · (qar ; q)n+1(1− q)(n+1)(1+s−r)zn

(1− q)s+1(qb1 ; q)n · · · (qbs ; q)n(q; q)n
,

(2.5)

and

(qarδq + [ar]q)rΦs =
∞∑
n=0

(qa1 ; q)n · · · (qar ; q)n+1(1− q)n(1+s−r)zn

(1− q)(qb1 ; q)n · · · (qbs ; q)n(q; q)n
.

That is,

z(qa1δq + [a1]q) · · · (qarδq + [ar]q)rΦs

=
∞∑
n=0

(qa1 ; q)n+1 · · · (qar ; q)n+1(1− q)n(1+s−r)zn+1

(1− q)r(qb1 ; q)n · · · (qbs ; q)n(q; q)n
.

(2.6)

Since the right-hand sides of (2.5) and (2.6) are the same, we arrive at our conclu-
sion. �

We consider the case where r = s = 1 in (2.4) and the resulting equation is called
the q-analogue of Kummer’s equation. Let a1 = a and b1 = c, it can be re-written
as

qczD2
qu(z) + ([c]q − qaz)Dqu(z)− [a]qu(z) = 0. (2.7)
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In the next section, we will study other solutions of (2.7) and discuss the properties
of these solutions.

3. Solutions of the q-analogue of Kummer’s equation

Just as in the second-order ordinary differential equations, we try to find the
formal series solutions of (2.7). First of all, we give the definition of singular points
of the second order q-difference equations.

Consider the q-difference equation:

p2(z)D2
qu(z) + p1(z)Dqu(z) + p0(z)u(z) = 0 (3.1)

where p2(z), p1(z) and p0(z) are analytic in the neighborhood of z = z0. When
p2(z0) 6= 0, the point z0 is called an ordinary point of the equation (3.1). When
p2(z0) = 0 and p1(z0) and/or p0(z0) is not zero, then z = z0 is called a singular
point of (3.1). The point z = z0 is called a regular singular point of (3.1) if

lim
z→z0

(z − z0)p1(z)
p2(z)

and lim
z→z0

(z − z0)2p0(z)
p2(z)

both exist. If one of these limits does not exist, the singular point is irregular.
It is easy to see that the equation (2.7) has singular points at z = 0 and z =∞.

So we have two cases to consider.

3.1. Solutions at z = 0. Equation (2.7) has the form as in (3.1), where

p2(z) = qcz, p1(z) = [c]q − qaz, p0(z) = −[a]q.

Both of them are analytic near zero. Moreover, it holds

lim
z→0

zp1(z)
p2(z)

=
z([c]q − qaz)

qcz
= [c]qq−c and lim

z→0

z2p0(z)
p2(z)

= 0.

Thus, the singular point z = 0 is regular. We know that by using the Frobenius
method [7] one can find the formal series solutions of the second order ordinary
differential equations. In fact, as we can see below, the Frobenius method is also
applicable to the second order q-difference equations. Note that the detailed pro-
cedure to find the formal series solutions of the q-difference equations is described
in [4].

Let

L[u] = qczD2
qu(z) + ([c]q − qaz)Dqu(z)− [a]qu(z). (3.2)

Then equation (2.7) becomes L[u] = 0. Since both difference operators D2
q and Dq

are linear, the operator L[·] is also linear, i.e.,

L[αu+ β] = αL[u] + β.

for any complex numbers α and β.
We assume the solution of the form

u =
∞∑
n=0

dnz
λ+n with d0 6= 0. (3.3)
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It holds

Dqu(z) =
∞∑
n=0

dn[λ+ n]qzλ+n−1,

D2
qu(z) =

∞∑
n=0

dn[λ+ n]q[λ+ n− 1]qzλ+n−2.

(3.4)

Substituting (3.3), (3.4) in (3.2), we obtain

L[u] =
∞∑
n=0

dn[λ+ n]q(qc[λ+ n− 1]q + [c]q)zλ+n−1

−
∞∑
n=0

dn(qa[λ+ n]q + [a]q)zλ+n.

(3.5)

Changing the indices of n in the second term of (3.5) and then isolating the
terms with n = 0, we have

L[u] = d0[λ]q(qc[λ− 1]q + [c]q)zλ−1

+
∞∑
n=1

dn[λ+ n]q(qc[λ+ n− 1]q + [c]q)zλ+n−1

−
∞∑
n=1

dn−1(qa[λ+ n− 1]q + [a]q)zλ+n−1.

(3.6)

Choosing the cn’s to satisfy the recurrence relations:

dn[λ+ n]q(qc[λ+ n− 1]q + [c]q) = dn−1(qa[λ+ n− 1]q + [a]q). (3.7)

From the equation (3.7)

dn =
(qλ+a; q)n(1− q)n

(qλ+c; q)n(qλ+1; q)n
d0, (3.8)

(3.6) becomes
L[u] = d0[λ]q(qc[λ− 1]q + [c]q)zλ−1. (3.9)

The equation
[λ]q(qc[λ− 1]q + [c]q) = 0 (3.10)

is called the indicial equation.
The solutions of the above indicial equation are

λ = 0 or λ = 1− c.
According to the values of the above roots, there are three cases to consider about
the solutions of (2.7).
Case 1. If c is not an integer, by (3.8) we have

u1 := u|λ=0 = d01Φ1(qa; qc; q, (1− q)z),
u2 := u|λ=1−c = d0z

1−c
1Φ1(qa+1−c; q2−c; q, (1− q)z).

Since c is not an integer, the solutions u1 and u2 are linearly independent. Thus,
any linear combination of u1 and u2 is a solution of the equation (2.7).
Case 2. If c = 1, then

u1 := u|λ=0 = u|λ=1−c = d01Φ1(qa; q; q, (1− q)z).
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To obtain the other solution, we note that (3.9) becomes

L[u] = d0[λ]2qz
λ−1. (3.11)

Then differentiating with respect to λ in (3.11), we have

L[
∂u

∂λ
] =

∂L[u]
∂λ

= 2d0z
λ−1[λ]q

qλ ln q
q − 1

+ d0[λ]2qz
λ−1 ln z. (3.12)

If λ = 0, then the right-hand side of (3.12) is zero. Thus, the other solution of (2.7)
is

u2 :=
∂u

∂λ

∣∣∣
λ=0

=d0 ln z + d0

∞∑
n=1

(qa; q)n(1− q)nzn

(q; q)n(q; q)n

×
[

ln z + ln q
n−1∑
j=0

( 2
1− q1+j

− 1
1− qa+j

− 1
)]
.

Case 3. If c is an integer and c 6= 1, there are two cases to consider.
(i) If c < 1, then in the equation (3.8), when λ = 0 and n = 1−c, the denominator

(qλ+c; q)n = 0. Thus, we take d0 = g0(1− qλ). Since

(qλ+c; q)1−c = (1− qλ+c) · · · (1− qλ),

our assumed solution (3.3) has the form

ug :=g0zλ
∞∑
n=0

(1− qλ)(qλ+a; q)n(1− q)nzn

(qλ+c; q)n(qλ+1; q)n

=g0zλ
−c∑
n=0

(1− qλ)(qλ+a; q)n(1− q)nzn

(qλ+c; q)n(qλ+1; q)n

+
g0z

λ

(qλ+c; q)−c

∞∑
n=1−c

(qλ+a; q)n(1− q)nzn

(qλ+1; q)n−1+c(qλ+1; q)n
.

Hence, the first 1− c terms of ug vanish when λ = 0. Then the first solution takes
the form

u1 := ug|λ=0 =
g0

(qc; q)−c

∞∑
n=1−c

(qa; q)n(1− q)nzn

(q; q)n−1+c(q; q)n
.

For the solution ug|λ=1−c, let m = 1− c > 0. Then we find

ug|λ=1−c = g0

∞∑
n=0

(1− qm)(qa+m; q)n(1− q)nzn+m

(q; q)n(q1+m; q)n

= g0

∞∑
n=m

(1− qm)(qa+m; q)n−m(1− q)n−mzn

(q; q)n−m(q1+m; q)n−m

=
(qc; q)−c(1− qm)(q; q)m

(qa; q)m(1− q)m
u1
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Thus, u1 and u|λ=1−c are not linearly independent. To obtain the other linearly
independent solution, we note that

L[ug] = g0z
λ−1 (1− qλ)2(1− qλ+c−1)

(1− q)2
,

whose derivative with respect to λ is

L[
∂ug
∂λ

] =
∂L[ug]
∂λ

=g0zλ−1 ln z
(1− qλ)2(1− qλ+c−1)

(1− q)2

− 2g0zλ−1qλ ln q
(1− qλ)(1− qλ+c−1)

(1− q)2

− g0zλ−1 ln q
(qλ − 1)2qλ+c−1

(q − 1)2
.

(3.13)

If λ = 0, the right-hand side of (3.13) is zero. Thus, the other solution is

u2 :=
∂ug
∂λ

∣∣∣
λ=0

=− g0 ln q
−c∑
n=0

(qa; q)n(1− q)nzn

(qc; q)n(q; q)n

+
g0

(qc; q)−c

∞∑
n=1−c

{ (qa; q)n(1− q)nzn

(q; q)n−1+c(q; q)n

[
ln z + ln q

n−1∑
j=0

( 1
1− q1+j

− 1
1− qa+j

)

+ ln q
n−1∑

j=0,j 6=−c

qc+j

1− qc+j
]}
.

(ii) If c > 1, then in the equation (3.8), when λ = 1 − c and n = c − 1, the
denominator (qλ+1; q)n = 0. Hence, we take d0 = h0(1− qλ+c−1). Since

(qλ+1; q)c−1 = (1− qλ+1) · · · (1− qλ+c−1),

our assumed solution (3.3) takes a new form

uh :=h0

∞∑
n=0

(1− qλ+c−1)(qλ+a; q)n
(qλ+c; q)n(qλ+1; q)n

(1− q)nzλ+n

=h0

c−2∑
n=0

(1− qλ+c−1)(qλ+a; q)n
(qλ+c; q)n(qλ+1; q)n

(1− q)nzλ+n

+
h0

(qλ+1; q)c−2

∞∑
n=c−1

(qλ+a; q)n
(qλ+c; q)n−c+1(qλ+c; q)n

(1− q)nzλ+n.

So the first c− 1 terms of uh vanish when λ = 1− c.
Then the first solution takes the form

u1 := uh|λ=1−c =
h0z

1−c

(q2−c; q)c−2

∞∑
n=c−1

(qa−c+1; q)n
(q; q)n−c+1(q; q)n

(1− q)nzn.
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Let k = c− 1 > 0. Then it has

uh|λ=0 = h0

∞∑
n=0

(1− qc−1)(qa; q)n
(qc; q)n(q; q)n

(1− q)nzn

= h0

∞∑
n=k

(1− qc−1)(qa; q)n−k
(qc; q)n−k(q; q)n−k

(1− q)n−kzn−k

=
(1− qc−1)(q2−c; q)c−2(q; q)c−1

(qa−c+1; q)c−1(1− q)c−1
u1.

Thus, u1 and uh|λ=0 are not linearly independent.
For the other solution, by (3.9), it has

L[uh] = h0
(1− qλ)(1− qλ+c−1)2

(1− q)2
zλ−1

whose derivative with respect to λ is

L
[∂uh
∂λ

]
=
∂L[uh]
∂λ

=− h0
qλ ln q(1− qλ+c−1)2

(1− q)2
zλ−1

− 2h0
(1− qλ)(1− qλ+c−1)qλ+c−1 ln q

(1− q)2
zλ−1

+ h0
(1− qλ)(1− qλ+c−1)2

(1− q)2
zλ−1 ln z.

(3.14)

If λ = 1− c, the right-hand side of (3.14) is zero. Thus the other solution is

u2 :=
∂uh
∂λ

∣∣∣
λ=1−c

=− h0z
1−c ln q

c−2∑
n=0

(qa−c+1; q)n
(q; q)n(q2−c; q)n

(1− q)nzn

+
h0z

1−c

(q2−c; q)c−2

∞∑
n=c−1

{ (qa−c+1; q)n
(q; q)n+1−c(q; q)n

(1− q)nzn
[

ln z

+ ln q
n−1∑
j=0

( 1
1− q1+j

− 1
1− qa−c+1+j

)
+ ln q

n−1∑
j=0,j 6=c−2

q2−c+j

1− q2−c+j
]}
.

Consequently, we obtain the following results.

Theorem 3.1. Equation (2.7) has a regular singular point zero. At the singular
point zero:

(i) if c is not an integer, then there are two linearly independent series solutions

u1 = d01Φ1(qa; qc; q, (1− q)z),
u2 = d0z

1−c
1Φ1(qa−c+1; q2−c; q, (1− q)z).

(ii) If c = 1, then there are two linearly independent series solutions

u1 = d01Φ1(qa; q; q, (1− q)z),
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u2 = d0 ln z + d0

∞∑
n=1

(qa; q)n(1− q)nzn

(q; q)n(q; q)n

×
[

ln z + ln q
n−1∑
j=0

( 2
1− q1+j

− 1
1− qa+j

− 1
)]
.

(iii) If c is a non-positive integer, then there are two linearly independent series
solutions

u1 =
g0

(qc; q)−c

∞∑
n=1−c

(qa; q)n(1− q)nzn

(q; q)n−1+c(q; q)n
,

u2 =− g0 ln q
−c∑
n=0

(qa; q)n(1− q)nzn

(qc; q)n(q; q)n

+
g0

(qc; q)−c

∞∑
n=1−c

{ (qa; q)n(1− q)nzn

(q; q)n−1+c(q; q)n

[
ln z

+ ln q
n−1∑
j=0

( 1
1− q1+j

− 1
1− qa+j

)
+ ln q

n−1∑
j=0,j 6=−c

qc+j

1− qc+j
]}
.

(iv) If c is a positive integer such that c > 1, then there are two linearly inde-
pendent series solutions

u1 =
h0z

1−c

(q2−c; q)c−2

∞∑
n=c−1

(qa−c+1; q)n
(q; q)n−c+1(q; q)n

(1− q)nzn

u2 =− h0z
1−c ln q

c−2∑
n=0

(qa−c+1; q)n
(q; q)n(q2−c; q)n

(1− q)nzn

+
h0z

1−c

(q2−c; q)c−2

∞∑
n=c−1

{ (qa−c+1; q)n
(q; q)n+1−c(q; q)n

(1− q)nzn
[

ln z

+ ln q
n−1∑
j=0

( 1
1− q1+j

− 1
1− qa−c+1+j

)
+ ln q

n−1∑
j=0,j 6=c−2

q2−c+j

1− q2−c+j
]}
.

As a solution of (2.7), we now seek other representation forms of 1Φ1, especially
in its integral representation forms.

Theorem 3.2. For 0 < q < 1, |z| < 1 and Re(a) > 0, it holds

1Φ1(qa; qc; q, z) =
(qa; q)∞

(qc; q)∞(z; q)∞
2Φ0(qc−a, z;−; q, qa)

=
Γq(c)

Γq(a)Γq(c− a)

∫ 1

0

ta−1(qt; q)∞
(qc−at; q)∞(zt; q)∞

dqt.

(3.15)

Proof. By a direct calculation, we have

1Φ1(qa; qc; q, z) =
(qa; q)∞
(qc; q)∞

∞∑
n=0

(qc+n; q)∞
(q; q)n(qa+n; q)∞

zn

=
(qa; q)∞
(qc; q)∞

∞∑
n=0

zn

(q; q)n

∞∑
m=0

(qc−a; q)m
(q; q)m

qm(a+n)
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=
(qa; q)∞
(qc; q)∞

∞∑
m=0

(qc−a; q)m
(q; q)m(zqm; q)∞

qam

=
(qa; q)∞
(qc; q)∞

∞∑
m=0

(qc−a; q)m(z; q)m
(q; q)m(z; q)∞

qam

=
(qa; q)∞

(qc; q)∞(z; q)∞
2Φ0(qc−a, z;−; q, qa).

To prove the second equality, we note that

Γq(a) =
(q; q)∞
(qa; q)∞

(1− q)1−a.

Then, it yields
(qa; q)∞

(qc; q)∞(z; q)∞
2Φ0(qc−a, z;−; qa)

=
(qa; q)∞
(qc; q)∞

∞∑
m=0

(qc−a; q)∞(qm+1; q)∞
(qc−a+m; q)∞(zqm; q)∞(q; q)∞

qam

=
(qa; q)∞(qc−a; q)∞

(qc; q)∞(q; q)∞
1

1− q

∫ 1

0

(qt; q)∞ta−1

(qc−at; q)∞(zt; q)∞
dqt

=
Γq(c)

Γq(a)Γq(c− a)

∫ 1

0

ta−1(qt; q)∞
(qc−at; q)∞(zt; q)∞

dqt.

�

The q-hypergeometric series 1Φ1 also has a q-analogue of Barnes’ contour inte-
gral. The proof is very similar to [2, (4.2.2)].

Theorem 3.3.
1Φ1(a; c; q, z)

=
(a; q)∞

(c; q)∞(q; q)∞

(−1
2πi
) ∫ i∞

−i∞

(q1+s; q)∞(cqs; q)∞
(aqs; q)∞

π(−z)s

sinπs
ds

=
Γq(c)
Γq(a)

1
2πi

∫ i∞

−i∞

Γq(a+ s)Γ(−s)Γ(1 + s)
Γq(c+ s)Γq(1 + s)

(−z)sds.

(3.16)

3.2. Solutions at ∞. For the solutions near infinity, we rewrite the equation (2.7)
as

qc−1u(q2z)− [1 + qc−1 + qa(q − 1)z]u(qz) + [1 + (q − 1)z]u(z) = 0. (3.17)

Then let t = z−1, p = q−1 and w(t) = u(t−1). Then (3.17) becomes

tw(p2t)− [pc−a−2(1−p) + (1 +pc−1)t]w(pt) + [pc−2(1−p) +pc−1t]w(t) = 0. (3.18)

Equation (3.18) has a q-derivative form

t3D2
pw(t) + [pc−a−3t− [c− 2]pt2]Dpw(t) + pc−3[−a]pw(t) = 0, (3.19)

where

Dpw(t) =
w(t)− w(pt)

(1− p)t
,

D2
pw(t) =

w(p2t)− (1 + p)w(pt) + pw(t)
(1− p)2pt2

,

(3.20)
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and [a]p = 1−pa
1−p .

Equation (3.19) has the form as the one given in (3.1), where

p2(t) = t3, p1(t) = pc−a−3t− [c− 2]pt2, p0(t) = pc−3[−a]p.

All of them are analytic near zero. Since

lim
t→0

tp1(t)
p2(t)

= lim
t→0

t[pc−a−3t− [c− 2]pt2]
t3

does not exist, the singular point t = 0 of the equation (3.19) is irregular. Thus the
singular point z =∞ of the equation (2.7) is irregular.

If we still assume that the form of the solution is

u =
∞∑
n=0

fnz
λ−n with f0 6= 0, (3.21)

then we find

Dqu =
∞∑
n=0

fn[λ− n]qzλ−n−1,

D2
qu =

∞∑
n=0

fn[λ− n]q[λ− n− 1]qzλ−n−2.

(3.22)

Substituting (3.21) and (3.22) into the equation (2.7) leads to
∞∑
n=0

fn[λ− n]q
(
qc[λ− n− 1]q + [c]q

)
zλ−n−1

−
∞∑
n=0

fn
(
qa[λ− n]q + [a]q

)
zλ−n = 0.

(3.23)

Changing the indices of the first term of (3.23) and then isolating terms with n = 0,
we have

∞∑
n=1

fn−1[λ− n+ 1]q
(
qc[λ− n]q + [c]q

)
zλ−n

−
∞∑
n=1

fn
(
qa[λ− n]q + [a]q

)
zλ−n − f0(qa[λ]q + [a]q)zλ = 0

From the third term of the last equation, we have the indicial equation

f0(qa[λ]q + [a]q) = 0.

In view of f0 6= 0, there is one solution λ = −a.
From the rest terms, we obtain a recurrence relation between fn and fn−1 for

any n ≥ 1:

fn = −q
λ+c−a(1− q−λ+n−1)(1− q−c−λ+n)

(1− q−a−λ+n)(1− q)qn−1
fn−1.

From the recurrence relation, when λ = −a, we deduce that

fn = (−1)n
qn(c−2a)(qa; q)n(qa−c+1; q)n

(q; q)n(1− q)nqn(n−1)/2
f0.
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Thus, we obtain a formal series solution as

u3 = f0z
−a

∞∑
n=0

(−1)n
qn(c−2a)(qa; q)n(qa−c+1; q)n

(q; q)n(1− q)nqn(n−1)/2
z−n. (3.24)

Unfortunately, the series in (3.24) is divergent, so it does not directly give a
solution of the equation (2.7). However, it is possible to find integral solutions
which are convergent under some conditions. Before that we need some properties
about the definite q-integral.

Suppose t, z ∈ C. The definite q-integral of a function f(t) is∫ z

0

f(t)dqt = (1− q)
∞∑
j=0

zqjf(zqj). (3.25)

From this definition we can deduce a more general formula:∫ z

0

f(t)dqg(t) :=
∫ z

0

f(t)Dqg(t)dqt =
∞∑
j=0

f(zqj)(g(zqj)− g(zqj+1)), (3.26)

and a q-analogue of integration by parts [3]:∫ z

0

g(qt)dqf(t) = g(z)f(z)− g(0)f(0)−
∫ z

0

f(t)dqg(t). (3.27)

The improper q-integral of f(t) on [0,+∞) is defined by∫ ∞
0

f(t)dqt = (1− q)
∞∑

j=−∞
qjf(qj). (3.28)

Now, we need a formula about the q-derivative of a definite q-integral.

Proposition 3.4. If α, z ∈ C\{0}, then for any positive integer k, it holds

Dq

(∫ 1
αzk

0

f(z, t)dqt
)

=
∫ 1

αzk

0

Dqf(z, t)dqt−
k−1∑
j=0

qj−k

αzk+1
f
(
qz,

qj−k

αzk

)
, (3.29)

where Dq is the q-derivative with respect to z.

Proof. By the definition (3.25)∫ 1
αzk

0

f(z, t)dqt = (1− q)
∞∑
j=0

qj

αzk
f
(
z,

qj

αzk
)
.

Then the q-derivative with respect to z of the above definite q-integral is

Dq

(∫ 1
αzk

0

f(z, t)dqt
)

=
1

(1− q)z

[
(1− q)

∞∑
j=0

qj

αzk
f(z,

qj

αzk
)− (1− q)

∞∑
j=0

qj

αqkzk
f(qz,

qj

αqkzk
)
]

=
1

(1− q)z

[
(1− q)

∞∑
j=0

qj

αzk
f(z,

qj

αzk
)− (1− q)

∞∑
j=0

qj

αzk
f(qz,

qj

αzk
)

+ (1− q)
∞∑
j=0

qj

αzk
f(qz,

qj

αzk
)− (1− q)

∞∑
j=0

qj

αqkzk
f(qz,

qj

αqkzk
)
]
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= (1− q)
∞∑
j=0

qj

αzk
f(z, qj

αzk
)− f(qz, qj

αzk
)

(1− q)z

+
∞∑
j=0

qj

αzk+1
f(qz,

qj

αzk
)−

∞∑
j=0

qj−k

αzk+1
f
(
qz,

qj−k

αzk
)

=
∫ 1

αzk

0

Dqf(z, t)dqt−
k−1∑
j=0

qj−k

αzk+1
f
(
qz,

qj−k

αzk
)
.

�

Remark 3.5. When q → 1, the formula (3.29) becomes

d

dz

(∫ 1
αzk

0

f(z, t)dqt
)

=
∫ 1

αzk

0

∂

∂z
f(z, t)dqt−

k

αzk+1
f
(
z,

1
αzk

)
,

which is fundamental in calculus.

Next, we try to find an integral solution of (2.7) which has the form

u1(z) =
∫ 1

(1−q)q2z

0

E−qztq g(qt)dqt, (3.30)

where the q-analogue of exponential function is

E−qztq = ((1− q)qzt; q)∞.

Recall that the q-derivative with respect to z of E−qztq is

DqE
−qzt
q = −qtE−q

2zt
q .

By Proposition 3.4 we have

Dqu1(z) =
∫ 1

(1−q)q2z

0

−qtE−q
2zt

q g(qt)dqt

− 1
(1− q)q3z2

E−q
2zt

q g(qt)
∣∣∣
t=1/(1−q)q3z

= −
∫ 1

(1−q)q2z

0

qtE−q
2zt

q g(qt)dqt,

(3.31)

and

D2
qu1(z) = −Dq

(∫ 1
(1−q)q2z

0

qtE−q
2zt

q g(qt)dqt
)

=
∫ 1

(1−q)q2z

0

q3t2E−q
3zt

q g(qt)dqt

+
1

(1− q)q3z2
qtE−q

3zt
q g(qt)

∣∣
t=1/(1−q)q3z

=
∫ 1

(1−q)q2z

0

q3t2E−q
3zt

q g(qt)dqt.

(3.32)

Substituting (3.30), (3.31), (3.32) in (2.7), we deduce that∫ 1
(1−q)q2z

0

g(qt)[−Dq,t(E−q
2zt

q )qc+1t2 −Dq,t(E−qztq )qat
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− qt[c]qE−q
2zt

q − [a]qE−qztq ]dqt

=
∫ 1

(1−q)q2z

0

E−q
2zt

q Dq,t(g(t)qc−1t2) + E−qztq Dq,t(g(t)qa−1t)

− qt[c]qE−q
2zt

q g(qt)− [a]qE−qztq g(qt)dqt

=
∫ 1

(1−q)q2z

0

E−q
2zt

q {Dq,t(g(t)qc−1t2) + [1− (1− q)qzt]Dq,t(g(t)qa−1t)

− g(qt)[qt[c]q + [a]q − (1− q)q[a]qzt]}dqt = 0.

where Dq,t is the q-derivative with respect to t. We then get a q-difference equation
about g(t) as

{1 + [q − (1− q)qz]t}g(qt)− {qa−1 + [qc−1 − qa−1(1− q)qz]t}g(t) = 0. (3.33)

From the recurrence relation (3.33), one can obtain the following result immedi-
ately.

Lemma 3.6. The solution of the q-difference equation (3.33) is

g(t) = g0t
a−1 ([(1− q)qz − q]t; q)∞

([(1− q)qz − qc−a]t; q)∞
,

where g0 is a nonzero constant.

Thus, we can re-express u1(z) as

u1(z) = g0q
a−1

∫ 1
(1−q)q2z

0

E−qztq ta−1 ([(1− q)qz − q]qt; q)∞
([(1− q)qz − qc−a]qt; q)∞

dqt. (3.34)

To consider the convergence of the q-integral in (3.34), in view of the definition of
the definite q-integral, we obtain∫ 1

(1−q)q2z

0

E−qztq ta−1 ([(1− q)qz − q]qt; q)∞
([(1− q)qz − qc−a]qt; q)∞

dqt

=
∞∑
j=0

qja(qj−1; q)∞([(1− q)qz − q] qj−1

(1−q)z ; q)∞

(1− q)a−1q2aza([(1− q)qz − qc−a] qj−1

(1−q)z ; q)∞
.

(3.35)

Denote the j-th term of the infinite series in (3.35) as aj . Then, we find

lim
j→∞

|aj+1

aj
| = lim

j→∞

∣∣∣ qa

1− qj−1

1− qj−1[(1−q)qz−qc−a]
(1−q)z

1− qj−1[(1−q)qz−q]
(1−q)z

∣∣∣ = |qa|.

If Re(a) > 0, then |qa| < 1. By the ratio test, the infinite series in (3.35) converges
absolutely.

Since there is another q-analogue of the exponential function, we also need to
try another integral solution of the equation (2.7):

u2(z) =
∫ ∞

0

e−ztq g(qt)dqt, (3.36)

where

e−ztq =
1

(−(1− q)zt; q)∞
.
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The q-derivative of e−ztq with respect to z is

Dqe
−zt
q = −te−ztq .

So we further have

Dqu(z) = −
∫ ∞

0

te−ztq g(qt)dqt,

D2
qu(z) =

∫ ∞
0

t2e−ztq g(qt)dqt.
(3.37)

Substituting (3.36), (3.37) in (2.7) gives∫ ∞
0

g(qt)
[
− (Dq,te

−zt
q )qct2 − (Dq,te

−zt
q )qat− ([a]q + [c]qt)e−ztq

]
dqt

=
∫ ∞

0

e−ztq

[
Dq,t

(
g(t)qc−2t2

)
+Dq,t

(
g(t)qa−1t

)
− g(qt)([a]q + [c]qt)

]
dqt = 0,

where Dq,t is the q-derivative with respect to t. From the above equation, we obtain
a q-difference equation about g(t):

(1 + t)g(qt)−
(
qa−1 + qc−2t

)
g(t) = 0. (3.38)

For the solution of (3.38), it is not difficult to obtain the following lemma.

Lemma 3.7. The solution of the q-difference equation (3.38) is

g(t) = g0t
a−1 (−t; q)∞

(−qc−a−1t; q)∞
,

where g0 is a nonzero constant.

Thus, we can re-express u2(z) as

u2(z) = g0q
a−1

∫ ∞
0

e−ztq ta−1 (−qt; q)∞
(−qc−at; q)∞

dqt. (3.39)

For the convergence of the q-integral in (3.39), by the definition of the improper
q-integral (3.28) we have∫ ∞

0

e−ztq ta−1 (−qt; q)∞
(−qc−at; q)∞

dqt

=
∞∑

j=−∞

qja(−qj+1; q)∞
(−(1− q)qjz; q)∞(−qc−a+j ; q)∞

=:
∞∑
j=0

aj +
j=−1∑
j=−∞

aj =: I1 + I2.

(3.40)

Then, we obtain

lim
j→+∞

∣∣aj+1

aj

∣∣ = lim
j→+∞

∣∣∣qa[1 + (1− q)qjz](1 + qc−a+j)
1 + qj+1

∣∣∣ = |qa|.

If Re(a) > 0, then |qa| < 1. By the ratio test, the infinite series I1 converges
absolutely.

For the infinite series

I2 =
∞∑
j=1

q−ja(−q−j+1; q)∞
(−(1− q)q−jz; q)∞(−qc−a−j ; q)∞

(3.41)
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we denote the jth term of (3.40) by bj , and find that

lim
j→+∞

∣∣bj+1

bj

∣∣ = lim
j→+∞

|q−a|
∣∣∣ 1 + q−j

[1 + (1− q)q−j−1z](1 + qc−a−j−1)

∣∣∣ = 0 < 1.

Again by the ratio test, the infinite series I2 converges absolutely. Thus, if Re(a) >
0, the q-integral in (3.39) converges absolutely.

Consequently, for the equation (2.7) we have the following result.

Theorem 3.8. When Re(a) > 0, the equation (2.7) has two convergent integral
solutions:

u1 = g0q
a−1

∫ 1
(1−q)q2z

0

E−qztq ta−1 ([(1− q)qz − q]qt; q)∞
([(1− q)qz − qc−a]qt; q)∞

dqt,

u2 = g0q
a−1

∫ ∞
0

e−ztq ta−1 (−qt; q)∞
(−qc−at; q)∞

dqt.

4. Contiguous relations

Since 1Φ1(qa; qc; q, (1 − q)z) is a solution of (2.7), we now consider contiguous
relations about 1Φ1(qa; qc; q, (1− q)z). It is easily verified that

Dq

(
1Φ1(qa−1; qc−1; q, (1− q)z)

)
=

1− qa−1

1− qc−1 1Φ1(qa; qc; q, (1− q)z).

By (2.7), the function 1Φ1(qa−1; qc−1; q, (1− q)z) also satisfies

qc−1zD2
qu(z) + ([c− 1]q − qa−1z)Dqu(z)− [a− 1]qu(z) = 0.

From the above two equations, we obtain a contiguous relation:

Proposition 4.1. When |z| < 1/(1− q), we have

[c]q([c− 1]q − qa−1z)1Φ1(qa; qc; q, (1− q)z)
− [c]q[c− 1]q1Φ1(qa−1; qc−1; q, (1− q)z)
+ qc−1[a]qz1Φ1(qa+1; qc+1; q, (1− q)z) = 0.

(4.1)

Using (2.7), we deduce a set of four relations from which six contiguous relations
can be derived by equating the

(
2
4

)
pairs of them. The first two relations are as

follows.

Lemma 4.2. When |z| < 1/(1− q), it holds

δq(Φ) = −[−a]q(Φ(a+)− Φ), (4.2)

δq(Φ) = −[1− c]q(Φ(c−)− Φ), (4.3)

where

δq = zDq, Φ = 1Φ1(qa; qc; q, (1− q)z),
Φ(a+) = 1Φ1(qa+1; qc; q, (1− q)z),
Φ(c−) = 1Φ1(qa; qc−1; q, (1− q)z).

Proof. Since

1Φ1(qa; qc; q, (1− q)z) =
∞∑
n=0

(qa; q)n
(qc; q)n

zn

[n]!q
,
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where [n]!q = [1]q[2]q · · · [n]q, we have

δq(Φ) =
∞∑
n=1

(qa; q)n
(qc; q)n

zn

[n− 1]!q
. (4.4)

On the other hand, we know that

Φ(a+)− Φ =
∞∑
n=1

( (qa+1; q)n
(qc; q)n(q; q)n

− (qa; q)n
(qc; q)n(q; q)n

)
(1− q)nzn

=
∞∑
n=1

qa(qa+1; q)n−1

(qc; q)n
(1− q)zn

[n− 1]!q
,

(4.5)

and

Φ(c−)− Φ =
∞∑
n=1

( (qa; q)n
(qc−1; q)n(q; q)n

− (qa; q)n
(qc; q)n(q; q)n

)
(1− q)nzn

=
∞∑
n=1

qc−1(qa; q)n
[c− 1]q(qc; q)n

zn

[n− 1]!q
.

(4.6)

Combining the equations (4.4) and (4.5), we arrive at relation (4.2). Similarly,
relation (4.3) is proved by combining (4.4) and (4.6). �

To obtain the other two relations, we rewrite (2.7) as

{δq(qc−1δq + [c− 1]q)− z(qaδq + [a]q)}u(z) = 0. (4.7)

By reducing the order of δq in the equation (4.7), we have the following lemma.

Lemma 4.3. When |z| < 1/(1− q), it holds

δq(Φ) = (qa−cz + q1−a[a− c]q)Φ− q1−a[a− c]qΦ(a−), (4.8)

δq(Φ) = zqa−cΦ + z
[a− c]q

[c]q
Φ(c+), (4.9)

where

δq = zDq, Φ = 1Φ1(qa; qc; q, (1− q)z),
Φ(a−) = 1Φ1(qa−1; qc; q, (1− q)z),
Φ(c+) = 1Φ1(qa; qc+1; q, (1− q)z).

Proof. To prove (4.8), by (4.7) we have

{δq(qc−1δq + [c− 1]q)− z(qa−1δq + [a− 1]q)}Φ(a−) = 0. (4.10)

The operator δq(qc−1δq + [c− 1]q) can be factored as

δq(qc−1δq + [c− 1]q) = (qa−1δq + [a− 1]q)
(
qc−aδq +

[c− a]q
qa−1

)
+ [1− a]q[c− a]q.
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A direct calculation gives

(qa−1δq + [a− 1]q)Φ(a−)

=
∞∑
n=1

(qa−1; q)n
(qc; q)n

qa−1zn

[n− 1]!q
+
∞∑
n=0

(qa−1; q)n
(qc; q)n

[a− 1]qzn

[n]!q

=
∞∑
n=1

(qa−1; q)nzn

(qc; q)n[n− 1]!q

(
qa−1 +

[a− 1]q
[n]q

)
+ [a− 1]q

= [a− 1]qΦ.

(4.11)

Note that the operators qa−1δq + [a − 1]q and qc−aδq + [c−a]q
qa−1 are commutative.

Then (4.10) becomes(
qc−aδq +

[c− a]
qa−1

− z
)

[a− 1]qΦ + [1− a]q[c− a]qΦ(a−) = 0.

This implies the relation (4.8).
The proof of (4.9) is similar. By (4.7), we have

{δq(qcδq + [c]q)− z(qaδq + [a]q)}Φ(c+) = 0. (4.12)

Factor the operator z(qaδq + [a]q) as

z(qaδq + [a]q) = zqa−c(qcδq + [c]q) + z[a− c]q.
Note that

(qcδq + [c]q)Φ(c+) =
∞∑
n=1

(qa; q)n
(qc+1; q)n

qczn

[n− 1]!q
+
∞∑
n=0

(qa; q)n
(qc+1; q)n

[c]qzn

[n]!q

=
∞∑
n=1

(qa; q)nzn

(qc+1; q)n[n− 1]!q

(
qc +

[c]q
[n]q

)
+ [c]q

= [c]qΦ.

(4.13)

Then (4.12) becomes

(δq − zqa−c)[c]qΦ− z[a− c]qΦ(c+) = 0.

So, relation (4.9) is established. �

Consequently, by Lemmas 4.2 and 4.3, we can derive six contiguous relations as
follows.

Theorem 4.4 (contiguous relations). When |z| < 1/(1− q), it holds

[−a]qΦ(a+)− [1− c]qΦ(c−) = ([−a]q − [1− c]q)Φ,
[−a]qΦ(a+)− q1−a[a− c]qΦ(a−) = ([−a]q − q1−a[a− c]q − qa−cz)Φ,

[−a]q[c]qΦ(a+) + z[a− c]qΦ(c+) = [c]q([−a]q − qa−cz)Φ,
q1−a[a− c]qΦ(a−)− [1− c]qΦ(c−) = (qa−cz − [1− a]q)Φ,

[c]q[1− c]qΦ(c−) + z[a− c]qΦ(c+) = [c]q([1− c]q − qa−cz)Φ,
q1−a[c]qΦ(a−) + zΦ(c+) = q1−a[c]qΦ,

where

Φ = 1Φ1(qa; qc; q, (1− q)z),



20 L. JIA, J. CHENG, Z. FENG EJDE-2017/31

Φ(a±) = 1Φ1(qa±; qc; q, (1− q)z),
Φ(c±) = 1Φ1(qa; qc±; q, (1− q)z).
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