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Abstract. In this article we present a semi-analytic method for solving ellip-

tic partial differential equations. The technique is based on using a spectral

method approximation for the second-order derivative in one of the spatial
directions followed by solving the resulting system of second-order differen-

tial equations by an analytic method. That is, the system of second-order

two-point boundary-value problems are solved analytically by casting them in
first-order form and solving the resulting set of first-order equations by using

the matrix exponential. An important aspect of our technique is that the so-

lution obtained is semi-analytic, e.i., using analytic method in y and spectral
method in x. The new method can be used for both linear and non-linear

boundary conditions as well as for nonlinear elliptic partial differential equa-
tions.

1. Introduction

Elliptic partial differential equations (PDEs) are frequently used to model a va-
riety of engineering phenomena, such as steady-state heat conduction in a solid,
or reaction-diffusion type problems. However, computing a solution of these type
PDEs can sometimes be difficult or inefficient using standard solvers. Techniques
have been developed, including the method of lines, which can solve parabolic PDEs
using well developed numerical solvers, but are not directly applicable to elliptic
PDEs. Laplace equation is the well known example of elliptic PDEs. There are
many numerical techniques to solve the Laplace equations. Some of them are im-
plicit alternative direction method, over relaxation method [4]. Schiesser [14, 15]
introduce the false transients method in which a time derivative of dependent vari-
able gets add to the Laplace equation and then spatial derivatives are approximated
by the the finite differences, after that obtained system of equations are solved by
the method of lines [6, 8, 9, 13, 14, 15, 16, 19, 20, 22]. Laplace equations have solu-
tions that are well known as harmonic functions. They are analytic in the domain
where the equation is satisfied and if there exists two functions that are solutions
of a Laplace equation then there sum is also a solution of that Laplace equation.

2010 Mathematics Subject Classification. 35J25, 65N35.
Key words and phrases. Semi-analytical technique; Chebyshev-spectral method;

exponential matrix.
c©2017 Texas State University.

Submitted October 26, 2016. Published February 10, 2017.

1



2 I. ALI, M. T. SALEEM EJDE-2017/43

In this article, a semi-analytical method is used to solve the Laplace equation.
Spectral method is used to approximates the second-order derivatives in one of the
spacial direction and the resultant system is then solved by using any analytical
method suitable for a system of second order differential equations. That is, a
system of two points second order boundary-value problems can analytically be
solved by converting them into first-order by using the exponential matrix. Spectral
method are global method, generally a faster method and is more accurate for
sufficiently regular geometries than other two methods [12]. In dealing with PDEs
let say time dependent, the solution with spectral method is obtained by writing it
in the summation of the basis function. There are several types of spectral method
such as Galerikn spectral method deals with the PDEs that has coefficient of this
expression. A spectral collocation method that deals with the direct usage of grid
points hence it considered as similar to finite difference method [10, 24]. More
details about spectral methods can be find in [17, 18]. The collocation method is
the most useful method of them all in a sense that it deals with the non linear terms
more easily then any other methods. Our semi-analytical technique is applicable
for both non linear and linear problems having boundary conditions at y = 0 and
y = 1.

2. Semi-analytical spectral method for elliptic PDEs

Let there be a heat transfer in rectangle of height H and length L. For dimen-
sionless temperature distribution the governing equations could be [5, 14].

ε2
∂2u

∂x2
+
∂2u

∂y2
= 0, (2.1)

with boundary conditions

u(0, y) = 0, for 0 ≤ y ≤ 1,

u(1, y) = 0, for 0 ≤ y ≤ 1,

u(x, 0) = 0, for 0 ≤ x ≤ 1,

u(x, 1) = sinh(επ) sin(πx). for 0 ≤ x ≤ 1.

(2.2)

Here ε is the aspect ratio and its considered value is ε = H/L. The analytical
solution of this problem is [14].

u = sinh(επy) sin(πx). (2.3)

First of all, discritizing the spatial coordinate in x direction i.e. ∂2u/∂x2 by a
Chebyshev approximation to gives.

∂2u

∂y2
= −ε2

[ N∑
l=0

(
D2
N

)
jl
ul(y)

]
, (2.4)

here N is known as interior node points and j is from 1 to N − 1. The boundary
conditions are transformed into

u0 = 0,
uN+1 = 0,

u(y = 0) = 0,

u(y = 1) = sinh(επ) sin(πix) for i = 1, . . . , N.

(2.5)
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Just for our convenience let ξ = yε which results in the system of equation

d2ui
dξ2

=
N∑
l=0

(
D2
N

)
jl
ul(y), (2.6)

with
u0 = 0,

uN+1 = 0,

u(ξ = 0) = 0,

u(ξ = ε) = sinh(επ) sin(πix).

(2.7)

It is difficult to handle the N second order equations as above so one can transform
them to 2N first order equations as follows [13, 21]

dui
dξ

= uN+1+i, (2.8)

duN+1+i

dξ
=

N∑
l=0

(
D2
N

)
jl
ul(y), (2.9)

similarly the boundary equations should be transformed for ξ = 0, . . . , 2N as
u0 = 0,

uN+1 = 0,

u(ξ = 0) = 0,

uN+1+i(ξ = 0) = ci,

u(ξ = ε) = sinh(επ) sin(πix).

(2.10)

Here the constants ci are found by integrating and by using the boundary condition
at y = 1 in it. The required form of linear first order 2N system of equations are
obtained in the matrix form

dY

dξ
= AY + b(ξ), (2.11)

considering
Y = [u1, u2, . . . , uN , uN+2, uN+3, . . . , u2N+1]T . (2.12)

where uN+1 corresponds the boundary condition at (x = 1) = 0. Also A is a
coefficient matrix that is symmetric and of order 2N having matrices 0 (zeros
matrix), I(identity matrix) and a which are of N ×N order respectively.

A =
[
0 I
a 0

]
, (2.13)

b(ξ) is 2N×1 order column matrix and zero vector in this case because of boundary
value problems i-e u0 = uN+1 = 0. Y can be found by integrating using exponential
matrix [2, 19, 22, 24].

Y = exp(Aξ)Y0 +
∫ ξ

0

exp[A(ξ − λ)]b(λ)dλ. (2.14)

Where λ is a dummy variable of integration. Y0is a vector of initial conditions.
Like in our case Y0 is chosen as

Y = [u1, u2, . . . , uN , uN+2, uN+3, . . . , u2N+1]Tξ=0

= [0, 0, . . . , 0, c1, c2, . . . , cN ]T .
(2.15)
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Now, let us solve the example for the simplest case N = 1, this makes the dependent
variable because of the boundary condition x = 0 and 1, as u0 = 0 and u2 = 0.
Considering that, for the chosen example matrix b(ξ) is zero and so, one gets the
solution on interior node point because N = 1.

Y =
[
u1

u3

]
=
[
u1
du1
dξ

]
=

[
cosh(

√
2ξ) 1√

2
sinh(

√
2ξ)√

2 sinh(
√

2ξ) cosh(
√

2ξ)

] [
0
c1

]
, (2.16)

on more simplification gives

Y =

[
c1√
2

sinh(
√

2ξ)
c1 sinh(

√
2ξ)

]
. (2.17)

which is considered as analytical solution because the above solution is analytical
in y. Where c1 is still not found yet. It can be calculated by using the boundary
condition at y = 1, where ε is considered as 1.

c1 =
√

2
sinh(π)

sinh(
√

2)
. (2.18)

As we are using N = 1 so there is only one constant exists like c1 but if N is more
then 1 then we would get more than just one constants.

3. Exponential matrix calculation

In our problem, Maple coding is used for obtaining the exponential matrix. By
increasing N , calculation time of matrix also increases and after some certain value
it would take hours to calculate the matrix. Finding Eigenvalues and Eigenvector
this particular issue can be resolved [24]. Changing the conditions on y = 0 or 1
can not effect the coefficient matrix, but changing in x boundary condition would
change the coefficient matrix. So one has to be very careful while dealing with the
different problems. For the calculation at large scale, one can convert the coefficient
matrix into the canonical form as [2, 24].

A = PBP−1, (3.1)

For elliptic PDEs it can be considered that all the eigenvalues are real and distinct,
where Bis the diagonal matrix of 2N × 2N order and P is the eigen matrix and is
given by

P = [P1, P2, . . . , P2N ]. (3.2)

Now taking exponent of equation, it results in

exp(Aξ) = P exp(Bξ)P−1, (3.3)

where

exp(Bξ) =


e(λ1)ξ 0 · · · 0 0

0 e(λ2)ξ · · · 0 0
...

...
...

...
...

0 0 · · · e(λ2N−1)ξ 0
0 0 · · · 0 e(λ2N )ξ

 . (3.4)

Here comes the discussion that Maple takes very few time as in seconds to calcu-
late the eigenvalues, but still there is a long required time for the calculation of
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eigenvectors. Hence lets find some particular eigenvector Pk instead of the whole
vector as [24].

(A− λkU)Pk = 0, (3.5)

taking U is an identity matrix and Pk = [β1, β2, · · · , β2N ]T and putting these values
in above equation by letting N ≥ 3 gives

−λkβ1 + βN+1

. . .
−λkβN + β2N

−λkβN+1 − β2 + 2β1

−λkβN+2 + 2β2 − β1 − β3

. . .
−λkβ2N−1 + 2βN−1 − βN−2 − βN

−λkβ2N + 2βN − βN−1


= 0, (3.6)

so the above equation can be solved by letting initially β1 = 1, which start to give
the values of remaining expressions as.

β2 = (2− λ2
k)β1, βi = βi−2 + (2− λ2

k)βi−1, βN+i = λkβi. (3.7)

Here one only needs to find the exponential matrix only for once and it would
become automatically valid for any boundary condition that is at y = 0 or 1 and
at x = 1 but if at x = 0 conditions changes it would change β2 value.

Dimensionless temperature profile for the solved example is given in figures with
varying number of N . As N increases, results become more accurate but time taken
for the computation increases drastically. Few of the profiles obtained for different
N are as under.

Figure 1. 2D dimensionless temperature profile for linear elliptic
partial differential equation taking N = 2

3.1. Error estimates. For error analysis, we work out the average flux at x = 0
(along y) using ε = 1, in equation (2.3), to get [20].

u = cosh(π)− 1. (3.8)
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Figure 2. 3D dimensionless temperature profile for linear elliptic
partial differential equation taking N = 2

Figure 3. 2D dimensionless temperature profile for linear elliptic
partial differential equation taking N = 3

The associated error with our proposed method is obtained by using the following
formula

Error(%) =
|fluxsemi−analytical − fluxexact|

fluxexact
. (3.9)

The error obtained from equation (3.9) is decreasing as we increase the number
of interior collocations points N as shown in Figure 7. For N = 10, the error of
our proposed method is less then 0.5% for average flux as compare to the other
methods, which is clear evidence that our proposed method is most suitable of
these type of differential equations.

3.2. Nonlinear boundary conditions. Let there be a boundary value problem
having the nonlinear boundary condition as

∂2u

∂x2
+
∂2u

∂y2
= 0, (3.10)



EJDE-2017/43 A SEMI-ANALYTIC SPECTRAL METHOD 7

Figure 4. 3D dimensionless temperature profile for linear elliptic
partial differential equation taking N = 3

Figure 5. 2D dimensionless temperature profile for linear elliptic
partial differential equation taking N = 8

with boundary conditions

u(0, y) = 0, for 0 ≤ y ≤ 1,
∂u

∂x
(1, y) = 0 for 0 ≤ y ≤ 1,

∂u

∂y
(x, 0) = u4(x, 0) for 0 ≤ x ≤ 1,

u(x, 1) = 1 for 0 ≤ x ≤ 1.

(3.11)

Exponential matrix for semi-analytical method do not get any change in this case.
The only change we are facing while solving the nonlinear boundary condition is in
calculating the constants i-e ci’s. The profile is obtained at N = 5 and is shown in
figure 8.

3.3. Nonlinear elliptic partial differential equation. The method discussed
in this paper can also be useful for solving non-linear elliptic PDEs. to illustrate
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Figure 6. 3D dimensionless temperature profile for linear elliptic
partial differential equation taking N = 8

Figure 7. Error(%) using false transient method (FTM), semi-
analytical Finite Difference Method (FDM) and semi-analytical
spectral methods (SPM) for different interior collocation points N

this, let us have equations as follows:

∂2u

∂x2
+
∂2u

∂y2
= u2, (3.12)

with boundary conditions

∂u

∂x
(0, y) = 0 for 0 ≤ y ≤ 1,

u(1, y) = 0 for 0 ≤ y ≤ 1,

u(x, 0) = 0 for 0 ≤ x ≤ 1,
∂u

∂y
(x, 1) = 0 for 0 ≤ x ≤ 1.

(3.13)
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Figure 8. Dimensionless temperature distribution inside a rec-
tangle for Elliptic partial differential equation having non linear
boundary condition

As one can see that because of term u2 the presenting problem is acting as
nonlinear, so the only change we have in our program is by adding the u2(x, y) as

duN+1+i

dξ
=
[ N∑
l=0

(
D2
N

)
jl
ul(y)

]
+ u2

i (ξ), (3.14)

that would cast change in matrix b not A. Instead of zero matrix b would be now

b = [0, 0, · · · , 0, u2
1(ξ), u2

2(ξ), · · · , u2
N (ξ)]T (3.15)

Further, after implying the required changes in maple coding, At N = 5 one would
gives the result as figure 9

Figure 9. Dimensionless temperature distribution inside a rec-
tangle for non linear Elliptic partial differential equation

Conclusion. A semi-analytical solution based on matrix exponential method is
used for the solution of elliptic PDEs. The method is then extended to non-linear
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elliptic PDEs and elliptic PDEs with non-linear boundary conditions. A Chebyshev-
spectral method is used to discretize the given elliptic PDEs in x-direction combin-
ing with any other analytical technique in y-direction. The numerical simulations
results was obtained for different numbers of N to observe the accuracy of our
our proposed semi-analytical method. It was found that our numerical simulations
results have a very good agreement with the other available semi-analytical tech-
niques. Even though the technique has been developed for a single elliptic linear
and non-linear and with non-linear boundary conditions, the same concept could
be extended to couple linear and non-linear elliptic PDEs.
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