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Abstract. We consider an optimal control problem for systems described by a
Fourier problem for parabolic equations. We prove the existence of solutions,

and obtain necessary conditions of the optimal control in the case of final

observation when the control functions occur in the coefficients.

1. Introduction

Optimal control of determined systems governed by partial differential equations
(PDEs) is currently of much interest. Optimal control problems for PDEs are most
completely studied for the case in which the control functions occur either on the
right-hand sides of the state equations, or the boundary or initial conditions. So far,
problems in which control functions occur in the coefficients of the state equations
are less studied. A simple model of such type problem is the following.

Let Ω be a bounded domain in Rn with piecewise smooth boundary Γ, T > 0,
Q := Ω × (0, T ), Σ := ∂Ω × (0, T ). A state of controlled system for given control
v ∈ U := L∞(Q) is defined by a weak solution y = y(v) = y(x, t; v), (x, t) ∈ Q,
from the space L2(0, T ;H1

0 (Ω)) ∩ C([0, T ];L2(Ω)), of the problem

yt −∆y + vy = f ∈ L2(Q), y
∣∣
Σ

= 0, y
∣∣
t=0

= y0 ∈ L2(Ω).

The cost functional is

J(v) := ‖y(·, T ; v)− z0(·)‖2L2(Ω) + µ‖v‖2L∞(Q) ∀v ∈ U,

where µ > 0, z0 ∈ L2(Ω) are given. An optimal control problem is to find a function
u ∈ U∂ :=

{
v ∈ U : v ≥ 0 a. e. on Q

}
such that

J(u) = inf
v∈U∂

J(v).

This problem is nonlinear, since the dependence between the state and the control
is nonlinear.

The direct generalization of this problem is given as only one among many other
problems which were considered in monograph [19]. Other various generalizations
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of this problem were investigated in many papers, including [1, 2, 4, 5, 9, 11, 15,
17, 21, 22, 25, 26] where the state of controlled system is described by the initial-
boundary value problems for parabolic equations.

In [1, 22, 25, 26] the state of controlled system is described by linear parabolic
equations and systems, while in [1, 22] control functions appears as coefficients at
lower derivatives, and in [25, 26] the control functions are coefficients at higher
derivatives. In [22] the existence and uniqueness of optimal control in the case of
final observation was shown and a necessary optimality condition in the form of the
generalized rule of Lagrange multipliers was obtained. In [1] the authors proved
the existence of at least one optimal control for system governed by a system of
general parabolic equations with degenerate discontinuous parabolicity coefficient.
In papers [25, 26] the authors consider cost function in general form, and as special
case it includes different kinds of specific practical optimization problems. The
well-posedness of the problem statement is investigated and a necessary optimality
condition in the form of the generalized principle of Lagrange multiplies is estab-
lished in this papers.

In [2, 9, 11, 15, 17, 21] the authors investigate optimal control of systems gov-
erned by nonlinear PDEs. In particular, in [2] the problem of allocating resources to
maximize the net benefit in the conservation of a single species is studied. The pop-
ulation model is an equation with density dependent growth and spatial-temporal
resource control coefficient. The existence of an optimal control and the uniqueness
and the characterization of the optimal control are established. Numerical simu-
lations illustrate several cases with Dirichlet and Neumann boundary conditions.
In [9] the problem of optimal control of a Kirchhoff plate is considered. A bilinear
control is used as a force to make the plate close to a desired profile taking into
the account, a quadratic cost of control. The authors prove the existence of an
optimal control and characterize it uniquely through the solution of an optimal-
ity system. In [12] the optimal control problem is converted to an optimization
problem which is solved using a penalty function technique. The existence and
uniqueness theorems are investigated. The derivation of formula for the gradient
of the modified function is explained by solving the adjoint problem. Paper [17]
presents analytical and numerical solutions of an optimal control problem for quasi-
linear parabolic equations. The existence and uniqueness of the solution are shown.
The derivation of formula for the gradient of the modified cost function by solving
the conjugated boundary value problem is explained. In [18] the authors consider
the optimal control of the degenerate parabolic equation governing a diffusive pop-
ulation with logistic growth terms. The optimal control is characterized in terms
of the solution of the optimality system, which is the state equation coupled with
the adjoint equation. Uniqueness for the solutions of the optimality system is valid
for a sufficiently small time interval due to the opposite time orientations of the
two equations involved. In [21] optimal control for semilinear parabolic equations
without Cesari-type conditions is investigated.

In this article, we study an optimal control problem (see (4.1), (3.2), (3.4), (4.2),
(4.3) below) for systems whose states are described by problems without initial
conditions or, other words, Fourier problems for parabolic equations. The model
example of considered optimal control problem is a problem which differs from
the previous one (see beginning of this section) by the following facts: the initial
moment is −∞ and, correspondingly, the state equation and control functions are
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considered in the domain Q = Ω× (−∞, T ), a boundary condition is given on the
surface Σ = ∂Ω× (−∞, T ), while the initial condition is replaced by the condition

lim
t→−∞

‖y(·, t)‖L2(Ω) = 0.

The problem without initial conditions for evolution equations describes pro-
cesses that started a long time ago and initial conditions do not affect on them in
the actual time moment. Such problem were investigated in the works of many
mathematicians (see [3, 7, 24] and bibliography there).

As we know among numerous works devoted to the optimal control problems
for PDEs, only in [4, 5] the state of controlled system is described by the solution
of Fourier problem for parabolic equations. In the current paper, unlike the above
two, we consider optimal control problem in case when the control functions occur
in the coefficients of the state equation. The main result of this paper is existence
of the solution of this problem.

The outline of this article is as follows. In Section 2, we give notation, definitions
of function spaces and auxiliary results. In Section 3, we prove existence and
uniqueness of the solutions for the state equations. Furthermore, we construct
a priori estimates for the weak solutions of the state equations. In Section 4,
we formulate the optimal control problem. Finally, the existence and necessary
conditions of the optimal control are presented in Section 5.

2. Preliminaries

Let n be a natural number, Rn be the linear space of ordered collections x =
(x1, . . . , xn) of real numbers with the norm |x| := (|x1|2 + . . .+ |xn|2)1/2. Suppose
that Ω is a bounded domain in Rn with piecewise smooth boundary Γ. Set S :=
(−∞, 0], Q := Ω× S, Σ := Γ× S.

Denote by L∞loc(Q) the linear space of measurable functions on Q such that their
restrictions to any bounded measurable set Q′ ⊂ Q belong to the space L∞(Q′).

Let X be an arbitrary Hilbert space with the scalar product (·, ·)X and the norm
‖ · ‖X . Denote by L2

loc(S;X) the linear space of measurable functions defined on S
with values in X, whose restrictions to any segment [a, b] ⊂ S belong to the space
L2(a, b;X).

Let ω ∈ R, α ∈ C(S) be such that α(t) > 0 for all t ∈ S, γ = α or γ = 1/α, and
let X be as above. Put by definition

L2
ω,γ(S;X) :=

{
f ∈ L2

loc(S;X) :
∫
S

γ(t)e2ω
R t
0 α(s)ds‖f(t)‖2Xdt <∞

}
.

This space is a Hilbert space with respect to the scalar product

(f, g)L2
ω,γ(S;X) =

∫
S

γ(t) e2ω
R t
0 α(s) ds(f(t), g(t))X dt

and the norm

‖f‖L2
ω,γ(S;X) :=

(∫
S

γ(t) e2ω
R t
0 α(s) ds‖f(t)‖2X dt

)1/2

.

For an interval I, we denote by C1
c (I) the linear space of continuously differ-

entiable functions on I with compact supports (if I = (t1, t2), then we will write
C1
c (t1, t2) instead of C1

c ((t1, t2))).
Let H1(Ω) := {v ∈ L2(Ω) : vxi ∈ L2(Ω) (i = 1, n)} be a Sobolev space, which is a

Hilbert space with respect to the scalar product (v, w)H1(Ω) :=
∫

Ω

{
∇v∇w+vw

}
dx
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and the corresponding norm ‖v‖H1(Ω) :=
( ∫

Ω

{
|∇v|2 + |v|2

}
dx
)1/2, where ∇v =

(vx1 , . . . , vxn), |∇v|2 =
∑n
i=1 |vxi |2. Under H1

0 (Ω) we mean the closure in H1(Ω) of
the space C∞c (Ω) consisting of infinitely differentiable functions on Ω with compact
supports. Denote by H−1(Ω) the dual space of H1

0 (Ω), that is, the space of all
continuous linear functionals on H1

0 (Ω).
We suppose (after appropriate identification of functionals), that the space L2(Ω)

is a subspace of H−1(Ω). Identifying spaces L2(Ω) and
(
L2(Ω)

)′, we obtain con-
tinuous and dense embeddings

H1
0 (Ω) ⊂ L2(Ω) ⊂ H−1(Ω). (2.1)

Note, that in this case 〈g, v〉H1
0 (Ω) = (g, v) for every v ∈ H1

0 (Ω), g ∈ L2(Ω), where
(·, ·) is the scalar product on L2(Ω) and 〈·, ·〉H1

0 (Ω) is the scalar product for the
duality H−1(Ω), H1

0 (Ω). Therefore, further we use the notation (·, ·) instead of
〈·, ·〉H1

0 (Ω).
We define

K := inf
v∈H1

0 (Ω), v 6=0

∫
Ω
|∇v|2 dx∫

Ω
|v|2 dx

. (2.2)

It is well known that the constant K is finite and coincides with the first eigenvalue
of the eigenvalue problem

−∆v = λv, v|∂Ω = 0. (2.3)

From (2.2) it clearly follows the Friedrichs inequality∫
Ω

|∇v|2 dx ≥ K
∫

Ω

|v|2 dx ∀v ∈ H1
0 (Ω). (2.4)

Further, an important role will be played by the following statement, which is
a well-known result (see, e.g. [10, Theorem 3, p. 287]), but we reformulate it
according to our needs.

Lemma 2.1. Suppose that a function z ∈ L2(t1, t2;H1
0 (Ω)), with t1 < t2, satisfies∫ t2

t1

∫
Ω

{
− zψϕ′ + (g0ψ +

n∑
i=1

giψxi)ϕ
}
dx dt = 0, (2.5)

for ψ ∈ H1
0 (Ω), ϕ ∈ C1

c (t1, t2), where gi ∈ L2(Ω× (t1, t2)) (i = 0, n). Then
(1) the derivative zt of the function z in the sense D′(t1, t2;H−1(Ω)) (the dis-

tributions space) belongs to L2(t1, t2;H−1(Ω)), furthermore for a.e. t ∈ (t1, t2),

zt(·, t) = −g0(·, t) +
n∑
i=1

(
gi(·, t)

)
xi

in H−1(Ω), (2.6)

1
2
d

dt
‖z(·, t)‖2L2(Ω) = (zt(·, t), z(·, t)), (2.7)∫ t2

t1

‖zt(·, t)‖2H−1(Ω) dt ≤
n∑
i=0

‖gi‖2L2(Ω×(t1,t2)); (2.8)
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(2) the function z belongs to the space C([t1, t2];L2(Ω)) and for all τ1, τ2 ∈
[t1, t2] (τ1 < τ2) and for every θ ∈ C1([t1, t2]), q ∈ L2(t1, t2;H1

0 (Ω)) we have

1
2
θ(t)

∫
Ω

|z(x, t)|2 dx
∣∣∣t=τ2
t=τ1
− 1

2

∫ τ2

τ1

∫
Ω

|z|2θ′ dx dt

+
∫ τ2

τ1

∫
Ω

{
g0z +

n∑
i=1

gizxi
}
θ dx dt = 0,

(2.9)

∫ τ2

τ1

(
zt(·, t), q(·, t)

)
dt+

∫ τ2

τ1

∫
Ω

g0q dx dt+
n∑
i=1

∫ τ2

τ1

∫
Ω

giqxi dx dt = 0. (2.10)

Proof. As it has already been mentioned, this lemma follows directly from the well-
known result. But for clarity we re-present schematically some points of the proof.
The first statement is: Since the spaces L2(t1, t2;H1

0 (Ω)), L2(t1, t2;H−1(Ω)) can
be identified with subspaces of the space of distributions D′(t1, t2;H−1(Ω)), then
it allows us to speak about derivatives of functions from L2(t1, t2;H1

0 (Ω)) in the
sense D′(t1, t2;H−1(Ω)) and their belonging to the space L2(t1, t2;H−1(Ω)).

Let us rewrite equality (2.5) in the form

−
∫ t2

t1

∫
Ω

zψϕ′ dx dt = −
∫ t2

t1

∫
Ω

(g0ψ +
n∑
i=1

giψxi)ϕdx dt, (2.11)

for ψ ∈ H1
0 (Ω), ϕ ∈ C1

c (t1, t2). According to the definition of the derivative of dis-
tributions from D′(t1, t2;H−1(Ω)), (2.11) implies existence of zt and its belonging
to the space L2(t1, t2;H−1(Ω)), then according to [10, Theorem 3, p. 287] identity
(2.7) holds. From (2.11) for almost all t ∈ (t1, t2) we have

(
zt(·, t), ψ(·)

)
= −

∫
Ω

[
g0(x, t)ψ(x) +

n∑
i=1

gi(x, t)ψxi(x)
]
dx, (2.12)

that is, (2.6) holds.
From (2.12), using the Cauchy-Schwarz inequality, for almost all t ∈ (t1, t2) we

obtain ∣∣(zt(·, t), ψ(·)
)∣∣

≤ ‖g0(·, t)‖L2(Ω)‖ψ(·)‖L2(Ω) +
n∑
i=1

‖gi(·, t)‖L2(Ω)‖ψxi(·)‖L2(Ω)

≤
( n∑
i=0

‖gi(·, t)‖2L2(Ω)

)1/2

‖ψ(·)‖H1(Ω).

(2.13)

From (2.13) it follows that for almost all t ∈ (t1, t2) the following estimate is valid

‖zt(·, t)‖2H−1(Ω) ≤
n∑
i=0

‖gi(·, t)‖2L2(Ω),

which easily implies (2.8).
Let us prove the second statement of Lemma 2.1. The fact that the function z

belongs to the space C([t1, t2];L2(Ω)) follows directly from [10, Theorem 3, p. 287]
according to the first statement.
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Since for a.e. t ∈ S the function q(·, t) ∈ H1
0 (Ω), we can take ψ(·) = q(·, t) in

(2.12) and obtain(
zt(·, t), q(·, t)

)
= −

∫
Ω

[
g0(x, t)q(x, t) +

n∑
i=1

gi(x, t)qxi(x, t)
]
dx, t ∈ S. (2.14)

Integrating this inequality by t over (τ1, τ2) for arbitrary τ1, τ2 ∈ S, we obtain
(2.10).

Taking q(·, t) = θ(t)z(·, t), t ∈ S, in (2.10) and integrating over (τ1, τ2), we obtain∫ τ2

τ1

θ(t)
(
zt(·, t), z(·, t)

)
dt+

∫ τ2

τ1

∫
Ω

{
g0z +

n∑
i=1

gizxi
}
θ dx dt = 0. (2.15)

Using (2.7) and integration by parts, we have∫ τ2

τ1

θ(t)
(
zt(·, t), z(·, t)

)
dt =

1
2

∫ τ2

τ1

θ(t)
d

dt
‖z(·, t), z(·, t‖2L2(Ω) dt

=
1
2
θ(t)‖z(·, t)‖2L2(Ω)

∣∣∣t=τ2
t=τ1
− 1

2

∫ τ2

τ1

θ′‖z(·, t)‖L2(Ω) dt,

which, together with (2.15), gives (2.9). �

3. Well-posedness of the problem without initial conditions for
linear parabolic equations

Consider the equation

yt −
n∑

i,j=1

(
aij(x, t)yxi

)
xj

+ a0(x, t)y = f(x, t), (x, t) ∈ Q, (3.1)

where y : Q→ R is an unknown function and data-in satisfies conditions:
(A1) a0, aij ∈ L∞loc(Q), aij = aji (i, j = 1, n), a0(x, t) ≥ 0 for a. e. (x, t) ∈ Q,

there exists a function α ∈ C(S) such that α(t) > 0 for all t ∈ S and∑n
i,j=1 aij(x, t)ξiξj ≥ α(t)|ξ|2 for every ξ ∈ Rn and for a. e. (x, t) ∈ Q;

(A2) f ∈ L2
loc(S;L2(Ω)).

Additionally, we impose the boundary condition

y
∣∣
Σ

= 0 (3.2)

on a solution of equation (3.1).

Definition 3.1. A weak solution of problem (3.1), (3.2) is a function y which
belongs to L2

loc(S;H1
0 (Ω)) ∩ C(S;L2(Ω)) and satisfies∫∫
Q

{
− yψϕ′ +

n∑
i,j=1

aijyxiψxjϕ+ a0yψϕ
}
dx dt

=
∫∫

Q

fψϕdx dt, ψ ∈ H1
0 (Ω), ϕ ∈ C1

c (−∞, 0).

(3.3)

In other words: a weak solution of problem (3.1), (3.2) is the function y which
belongs to L2

loc(S;H1
0 (Ω)) ∩ C(S;L2(Ω)) with yt ∈ L2

loc(S;H−1(Ω)), and satisfies

yt −
n∑

i,j=1

(aijyxi)xj + a0y = f in L2
loc(S;H−1(Ω)).
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Remark 3.2. There may exist many weak solutions of problem (3.1), (3.2). E.g.,
the functions yc(x, t) = cv(x)e−Kt, (x, t) ∈ Q (c ∈ R), where v is an eigenfunction of
problem (2.3) corresponding to the first eigenvalue, are weak solutions of problem
(3.1), (3.2) when aij = δij , a0 = 0 and f = 0, where δij is Kronecker’s delta
(i, j = 1, n). Therefore, to ensure uniqueness of the weak solution of (3.1) satisfying
condition (3.2), we have to impose some additional conditions on solutions, for
instance, some restrictions on their behavior as t→ −∞.

We will consider the problem of finding the weak solution of (3.1), (3.2) satisfying
the analogue of the initial condition

lim
t→−∞

eω
R t
0 α(s)ds‖y(·, t)‖L2(Ω) = 0, (3.4)

where ω ∈ R is given.
We will briefly call this problem by problem (3.1), (3.2), (3.4), and the function

y is called the solution of problem (3.1), (3.2), (3.4).

Theorem 3.3. Suppose that condition (A1) holds, K is a constant defined by (2.2).
The following two statements hold:

(1) If ω ≤ K then (3.1), (3.2), (3.4) has at most one weak solution.
(2) If ω < K and

f ∈ L2
ω,1/α(S;L2(Ω)), (3.5)

then there exists a unique weak solution of (3.1), (3.2), (3.4), it belongs to the space
L2
ω,α(S;H1

0 (Ω)) and the following estimates are satisifed

eω
R τ
0 α(s) ds‖y(·, τ)‖L2(Ω) ≤ C1‖f‖L2

ω,1/α(Sτ ;L2(Ω)), τ ∈ S, (3.6)

‖y‖L2
ω,α(Sτ ;H1

0 (Ω)) ≤ C2‖f‖L2
ω,1/α(Sτ ;L2(Ω)), τ ∈ S, (3.7)

where Sτ := (−∞, τ ] (τ ∈ (−∞, 0], S0 = S), C1, C2 are positive constants depend-
ing only on K and ω.

Remark 3.4. In the particular case of equation (3.1), which was considered in
Remark 3.2, we have α(t) = 1, therefore condition (3.4) takes on the form:

eωt‖y(·, t)‖L2(Ω) → 0 as t→ −∞.
Obviously in this case for the nonzero solutions of (3.1), (3.2), (3.4), indicated in
Remark 3.2, we have limt→−∞ eKt‖yc(·, t)‖L2(Ω) = C, where C is a nonzero con-
stant; limt→−∞ eωt‖yc(·, t)‖L2(Ω) = +∞, if ω < K; limt→−∞ eωt‖yc(·, t)‖L2(Ω) = 0,
if ω > K. This means that the condition ω ≤ K is essential for ensuring the
uniqueness of the weak solution of (3.1), (3.2), (3.4), i.e., it cannot be simplified.

Proof of Theorem 3.3. In the proof we use the same technique as in the proofs of
corresponding results in [4,5]. Nevertheless, we present the proof, because it is
important for us to obtain more precise estimates of the solution of (3.1), (3.2),
(3.4) and to track how this solution depends on the coefficient (which serves as a
control in the following sections).

Let us prove the first statement of Theorem 3.3. Assume the opposite. Let
y1, y2 be two weak solutions of (3.1), (3.2), (3.4). Substituting them one by one
into integral identity (3.3) and subtracting the obtained equalities, for the difference
z := y1 − y2 we obtain

−
∫∫

Q

zψϕ′ dx dt+
∫∫

Q

( n∑
i,j=1

aijzxiψxj + a0zψ
)
ϕdx dt = 0, (3.8)
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for all ψ ∈ H1
0 (Ω), ϕ ∈ C1

c (−∞, 0).
From (3.4) it follows that

e2ω
R t
0 α(s)ds

∫
Ω

|z(x, t)|2 dx→ 0 as t→ −∞. (3.9)

According to Lemma 2.1 with θ(t) = 2e2ω
R t
0 α(s) ds, t ∈ R, (3.8) implies that

e2ω
R τ2
0 α(s) ds

∫
Ω

|z(x, τ2)|2 dx− e2ω
R τ1
0 α(s) ds

∫
Ω

|z(x, τ1)|2 dx

− 2ω
∫ τ2

τ1

∫
Ω

α(t)e2ω
R t
0 α(s) ds|z|2 dx dt

+ 2
∫ τ2

τ1

∫
Ω

e2ω
R t
0 α(s) ds

[ n∑
i,j=1

aijzxizxj + a0|z|2
]
dx dt = 0,

where τ1, τ2 ∈ S (τ1 < τ2) are arbitrary numbers.
Taking into account condition (A1) and inequality (2.4), we obtain

e2ω
R τ2
0 α(s) ds

∫
Ω

|z(x, τ2)|2 dx− e2ω
R τ1
0 α(s) ds

∫
Ω

|z(x, τ1)|2 dx

+ 2(K − ω)
∫ τ2

τ1

∫
Ω

α(t)e2ω
R t
0 α(s) ds|z|2 dx dt ≤ 0.

(3.10)

Since ω ≤ K, from (3.10) we obtain

e2ω
R τ2
0 α(s) ds

∫
Ω

|z(x, τ2)|2 dx ≤ e2ω
R τ1
0 α(s) ds

∫
Ω

|z(x, τ1)|2 dx. (3.11)

In (3.11) fix τ2 and let τ1 to −∞. According to condition (3.9) we obtain the
equality

e2ω
R τ2
0 α(s) ds

∫
Ω

|z(x, τ2)|2 dx = 0.

Since τ2 ∈ S is an arbitrary number, we have z(x, t) = 0 for a. e. (x, t) ∈ Q, that
is, y1(x, t) = y2(x, t) = 0 for a. e. (x, t) ∈ Q. The resulting contradiction proves
the first statement.

Let us prove the second statement. First we determine a priori estimates of a
weak solution of (3.1), (3.2), (3.4). According to Lemma 2.1, condition (3.3) implies

1
2
θ(τ2)

∫
Ω

|y(x, τ2)|2 dx− 1
2
θ(τ1)

∫
Ω

|y(x, τ1)|2 dx

− 1
2

∫ τ2

τ1

∫
Ω

|y|2θ′ dx dt+
∫ τ2

τ1

∫
Ω

[ n∑
i,j=1

aijyxiyxj + a0|y|2
]
θ dx dt

=
∫ τ2

τ1

∫
Ω

fyθ dx dt,

(3.12)

where θ ∈ C1(S) is an arbitrary function, τ1, τ2 ∈ S (τ1 < τ2) are arbitrary numbers.
Further assume that θ(t) ≥ 0 for all t ∈ S.

Using the Cauchy inequality with “ε“:

ab ≤ ε

2
a2 +

1
2ε
b2, a, b ∈ R, ε > 0,
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we estimate the right side of (3.12) as follows:∣∣ ∫ τ2

τ1

∫
Ω

fyθ dx dt
∣∣ ≤ ε

2

∫ τ2

τ1

∫
Ω

α|y|2θ dx dt+
1
2ε

∫ τ2

τ1

∫
Ω

[α]−1|f |2θ dx dt, (3.13)

where ε > 0 is arbitrary.
From condition (A1) we obtain∫ τ2

τ1

∫
Ω

[ n∑
i,j=1

aijyxiyxj + a0|y|2
]
θ dx dt ≥

∫ τ2

τ1

∫
Ω

α|∇y|2θ dx dt, (3.14)

where ∇y := (yx1 , . . . , yxn) is the gradient of y.
According to (3.13) and (3.14), equality (3.12) implies

1
2
θ(τ2)

∫
Ω

|y(x, τ2)|2 dx− 1
2
θ(τ1)

∫
Ω

|y(x, τ1)|2 dx

− 1
2

∫ τ2

τ1

∫
Ω

|y|2θ′ dx dt+
∫ τ2

τ1

∫
Ω

α|∇y|2θ dx dt

≤ ε

2

∫ τ2

τ1

∫
Ω

α|y|2θ dx dt+
1
2ε

∫ τ2

τ1

∫
Ω

[α]−1|f |2θ dx dt,

where ε > 0 is arbitrary.
Taking θ(t) = 2e2ω

R t
0 α(s) ds with t ∈ S, we obtain

e2ω
R τ2
0 α(s) ds

∫
Ω

|y(x, τ2)|2dx− e2ω
R τ1
0 α(s) ds

∫
Ω

|y(x, τ1)|2dx

− 2ω
∫ τ2

τ1

∫
Ω

α(t)e2ω
R t
0 α(s) ds|y|2dx dt+ 2

∫ τ2

τ1

∫
Ω

α(t)e2ω
R t
0 α(s) ds|∇y|2 dx dt

≤ ε
∫ τ2

τ1

∫
Ω

α(t)e2ω
R t
0 α(s) ds|y|2 dx dt+

1
ε

∫ τ2

τ1

∫
Ω

[α(t)]−1e2ω
R t
0 α(s) ds|f |2 dx dt.

By the above inequality and using (2.4), we obtain

e2ω
R τ2
0 α(s) ds

∫
Ω

|y(x, τ2)|2 dx− e2ω
R τ1
0 α(s) ds

∫
Ω

|y(x, τ1)|2 dx

+ χ(K,ω, ε)
∫ τ2

τ1

∫
Ω

α(t)e2ω
R t
0 α(s) ds|∇y|2 dx dt

≤ 1
ε

∫ τ2

τ1

∫
Ω

[α(t)]−1e2ω
R t
0 α(s) ds|f |2 dx dt,

(3.15)

where

χ(K,ω, ε) :=

{
2(K−ω)−ε

K if 0 < ω < K,
2K−ε
K if ω ≤ 0.

Taking ε = K if ω ≤ 0, and ε = K − ω if 0 < ω < K in (3.15), we obtain

e2ω
R τ2
0 α(s) ds

∫
Ω

|y(x, τ2)|2 dx− e2ω
R τ1
0 α(s) ds

∫
Ω

|y(x, τ1)|2 dx

+ C3

∫ τ2

τ1

∫
Ω

α(t)e2ω
R t
0 α(s) ds|∇y|2 dx dt

≤ C4

∫ τ2

τ1

∫
Ω

[α(t)]−1e2ω
R t
0 α(s) ds|f |2 dx dt,

(3.16)

where C3 > 0, C4 > 0 are constants depending only on K and ω.
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Taking into account (3.4) and (3.5), we let τ1 → −∞ in (3.16). As a result,
adopting τ2 = τ ∈ S, we obtain

e2ω
R τ
0 α(s) ds

∫
Ω

|y(x, τ)|2 dx+ C3

∫ τ

−∞

∫
Ω

α(t)e2ω
R t
0 α(s) ds|∇y|2 dx dt

≤ C4

∫ τ

−∞

∫
Ω

[α(t)]−1e2ω
R t
0 α(s) ds|f |2 dx dt.

(3.17)

Hence, using inequality (2.4), we easily obtain estimates (3.6) and (3.7).
Now let us prove the existence of a weak solution of problem (3.1), (3.2), (3.4).

First, for eachm ∈ N we defineQm := Ω×(−m, 0], fm(·, t) := f(·, t), if−m < t ≤ 0,
and fm(·, t) := 0, if t ≤ −m, and consider the problem of finding a function
ym ∈ L2(−m, 0;H1

0 (Ω))∩ C([−m, 0];L2(Ω)) satisfying the initial condition

ym(x,−m) = 0, x ∈ Ω, (3.18)

(as an element of space C([−m, 0];L2(Ω))) and equation (3.1) in Qm in the sense
of integral identity; that is,∫∫

Qm

{
− ymψϕ′ +

n∑
i,j=1

aijym,xiψxjϕ+ a0ymψϕ
}
dx dt =

∫∫
Qm

fmψϕdx dt,

for ψ ∈ H1
0 (Ω), ϕ ∈ C1

c (−m, 0).
The existence and uniqueness of the solution of this problem easily follows from

the known results (see, for example, [16]). For every m ∈ N we extend ym by zero
for the entire set Q and keep the same notation ym for this extension. Note that for
each m ∈ N , the function ym belongs to L2(S;H1

0 (Ω)) ∩ C(S;L2(Ω)) and satisfies
integral identity (3.3) with fm substituted for f , i.e.,∫∫

Q

{
− ymψϕ′ +

n∑
i,j=1

aijym,xiψxjϕ+ a0ymψϕ
}
dx dt =

∫∫
Q

fmψϕdx dt, (3.19)

for ψ ∈ H1
0 (Ω), ϕ ∈ C1

c (−∞, 0). Consequently, we have shown that ym is a weak
solution of problem (3.1), (3.2), (3.4) with fm substituted for f . Therefore, for ym
we obtain estimates similar to (3.6), (3.7), in particular, for τ ∈ S,

e2ω
R τ
0 α(s) ds‖ym(·, τ)‖2L2(Ω) ≤ C1

∫ τ

−∞
[α(t)]−1e2ω

R t
0 α(s) ds‖f(·, t)‖2L2(Ω) dt, (3.20)

Let us take identity (3.19) with alternating m = k and m = l, where k, l are
arbitrary positive integers, l > k, and then subtract the obtained identities. As a
result, we obtain the same identity as (3.19) with zk,l := yk − yl, fk,l := fk − fl
instead of ym and fm, respectively. Finally taking into account that the function
zk,l satisfies conditions (3.2) and (3.4), replacing y with zk,l, we see that the function
zk,l is a weak solution of the problem, which differs from problem (3.1), (3.2), (3.4)
only in that instead of y and f , there are zk,l and fk,l, respectively. Thus, for zk,l
we have estimates similar to (3.6), (3.7), i.e.

e2ω
R τ
0 α(s) ds‖yk(·, τ)− yl(·, τ)‖2L2(Ω)

≤ C1

∫ −k
−l

[α(t)]−1e2ω
R t
0 α(s) ds‖f(·, t)‖2L2(Ω) dt, τ ∈ S,

(3.21)

‖yk − yl‖L2
ω,α(S;H1

0 (Ω)) ≤ C2

∫ −k
−l

[α(t)]−1e2ω
R t
0 α(s) ds‖f(·, t)‖2L2(Ω) dt. (3.22)
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Condition (3.5) implies that the right-hand sides of inequalities (3.21) and (3.22)
tend to zero when k and l tend to +∞. This means that the sequence {ym}∞m=1

is a Cauchy sequence in the space L2
ω,α(S;H1

0 (Ω)) and C(S;L2(Ω)). Consequently,
we obtain the existence of the function y ∈ L2

ω,α(S;H1
0 (Ω))∩C(S;L2(Ω)) such that

ym −→
m→∞

y strongly in L2
ω,α(S;H1

0 (Ω)) and C(S;L2(Ω)). (3.23)

Note that (3.23) implies

ym −→
m→∞

y, ym,xi −→
m→∞

yxi (i = 1, n) strongly in L2
loc(S;L2(Ω)). (3.24)

Let us show that the function y is a weak solution of (3.1), (3.2), (3.4). To
do this, first we let m → ∞ in identity (3.19), taking into account (3.24) and the
definition of the function fm. Consequently, we obtain identity (3.3). Now, taking
into account (3.23), we let m → +∞ in (3.20). From the resulting inequality and
condition (3.5), we obtain condition (3.4). Hence, we have proven that y is a weak
solution of problem (3.1), (3.2), (3.4). �

4. Formulation of the optimal control problem and main result

Let U := L∞(Q) be a space of controls and U∂ be a convex and closed subset of
{v ∈ U : v ≥ 0 a. e. in Q}. We suppose that U∂ is the set of admissible controls.

We assume that the state of the investigated evolutionary system for a given
control v ∈ U∂ is described by a weak solution of (3.1), (3.2), (3.4) when a0 = ã0+v,
where ã0 ∈ L∞loc(Q) is a given function such that ã0 ≥ 0 a. e. in Q. Then, equation
(3.1) has the form

yt −
n∑

i,j=1

(
aij(x, t)yxi

)
xj

+ (ã0(x, t) + v(x, t))y = f(x, t), (x, t) ∈ Q. (4.1)

The specified problem will be called problem (4.1), (3.2), (3.4). The weak solution
y of (4.1), (3.2), (3.4) for a given control v, denoted by y, or y(v), or y(x, t),
(x, t) ∈ Q, or y(x, t; v), (x, t) ∈ Q. Further, we assume that conditions (A1), (3.5)
and the inequality ω < K hold. From the previous section (see Theorem 3.3), we
immediately obtain the existence and uniqueness of the weak solution of problem
(4.1), (3.2), (3.4) and its estimates (3.6), (3.7).

We assume that the cost functional has the form

J(v) = ‖y(·, 0; v)− z0(·)‖2L2(Ω) + µ‖v‖L∞(Q), v ∈ U∂ , (4.2)

where z0 ∈ L2(Ω), µ ≥ 0 if U∂ is bounded, and µ > 0 otherwise.
We consider the following optimal control problem: find a control u ∈ U∂ such

that
J(u) = inf

v∈U∂
J(v). (4.3)

We call this problem (4.3), and its solutions will be called optimal controls.
The main results of this paper are the following.

Theorem 4.1 (Existence of an optimal control). With the above assumptions in
this section, a set of optimal controls of problem (4.3) is nonempty and ∗-weakly
closed in L∞(Q).
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Theorem 4.2 (Necessary conditions of an optimal control). Let U∂ be bounded,
µ = 0, and

α(t) ≥ α0 = const. > 0 for a.e. t ∈ S. (4.4)
Then an optimal control of problem (4.3) satisfies the relations

y ∈ L2
ω,α(S;H1

0 (Ω)), yt ∈ L2
loc(S;H−1(Ω)),

yt −
n∑

i,j=1

(aijyxi)xj + (ã0 + u)y = f in L2
loc(S;H−1(Ω)),

y
∣∣
Σ

= 0, lim
t→−∞

eω
R t
0 α(s)ds‖y(·, t)‖L2(Ω) = 0,

(4.5)

p ∈ L2
−ω,1/α(S;H1

0 (Ω)), pt ∈ L2
loc(S;H−1(Ω)),

−pt −
n∑

i,j=1

(aijpxi)xj + (ã0 + u)p = 0 in L2
loc(S;H−1(Ω)),

p
∣∣
Σ

= 0, p(·, 0) = y(·, 0)− z0(·),

(4.6)

∫∫
Q

yp(v − u) dx dt ≤ 0 ∀ v ∈ U∂ . (4.7)

Since y belongs to L2
ω,α(S;H1

0 (Ω)), and p belongs to L2
−ω,1/α(S;H1

0 (Ω)), the
product py belongs to L1(Q), and thus the left-hand side of inequality (4.7) is
well-defined.

Problem (4.6) is called an adjoint problem, its solution is called an adjoint state
and is introduced in order to characterize an optimal control.

5. Proof of main results

Proof of Theorem 4.1. Since the cost functional J is bounded below, there exists
a minimizing sequence {vk} in U∂ : limk→∞ J(vk) = infv∈U∂ J(v). This and (4.2)
imply that the sequence {vk} is bounded in the space L∞(Q), that is

ess sup(x,t)∈Q |vk(x, t)| ≤ C5, (5.1)

where C5 is a constant, which does not depend on k.
Since for each k ∈ N the function yk := y(vk) (k ∈ N) is a weak solution of (4.1),

(3.2), (3.4) for v = vk, the following identity holds:∫∫
Q

{
− ykψϕ′ +

n∑
i,j=1

aijyk,xiψxjϕ+ (ã0 + vk)ykψϕ
}
dx dt

=
∫∫

Q

fψϕdx dt, ψ ∈ H1
0 (Ω), ϕ ∈ C1

c (−∞, 0).

(5.2)

According to Theorem 3.3 we have the estimates

e2ω
R τ
0 α(s) ds‖yk(·, τ)‖2L2(Ω) ≤ C1‖f‖L2

ω,1/α(Sτ ;L2(Ω)) , τ ∈ S, (5.3)

‖yk‖L2
ω,α(Sτ ;H1

0 (Ω)) ≤ C2‖f‖L2
ω,1/α(Sτ ;L2(Ω)) . (5.4)

Taking into account the first statement of Lemma 2.1, from (5.2) for arbitrary
τ1, τ2 ∈ S (τ1 < τ2) we obtain∫ τ2

τ1

‖yk,t‖2H−1(Ω) dt ≤
∫ τ2

τ1

∫
Ω

( n∑
j=1

∣∣ n∑
i=1

aijyk,xi
∣∣2 + |(ã0 +vk)yk−f |2

)
dx dt. (5.5)
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By condition (A1), (3.5), (5.1), and (5.4), estimate (5.5) implies∫ τ2

τ1

‖yk,t(·, t)‖2H−1(Ω) dt ≤ C6, (5.6)

where τ1, τ2 ∈ S (τ1 < τ2) are arbitrary, C6 > 0 is a constant which depends on τ1
and τ2, but does not depend on k.

By the Compactness Lemma (see [20, Proposition 4.2]), and the compactness of
the embedding H1

0 (Ω) ⊂ L2(Ω) (see [19, p. 245]), estimates (5.1), (5.4), (5.6) yield
that there exist a subsequence of the sequence {vk, yk} (which is also denoted by
{vk, yk}) and functions u ∈ U∂ , and y ∈ L2

ω,α(S;H1
0 (Ω)) such that

vk −→
k→∞

u ∗ -weakly in L∞(Q), (5.7)

yk −→
k→∞

y weakly in L2
ω,α(S;H1

0 (Ω)), (5.8)

yk −→
k→∞

y strongly in L2
loc(S;L2(Ω)). (5.9)

Note that (5.8) implies

yk −→
k→∞

y, yk,xi −→
k→∞

yxi (i = 1, n) weakly in L2
loc(S;L2(Ω)). (5.10)

Let us show that (5.7) and (5.9) yield∫∫
Q

ykvkψϕdx dt −→
k→∞

∫∫
Q

yuψϕdx dt ∀ψ ∈ H1
0 (Ω),∀ ϕ ∈ C1

c (−∞, 0). (5.11)

Indeed, let g := ψϕ, and t1, t2 ∈ S be such that suppϕ ⊂ [t1, t2]. Then we have∫∫
Q

ykvkg dx dt =
∫ t2

t1

∫
Ω

(ykvk − yvk + yvk)g dx dt

=
∫ t2

t1

∫
Ω

yvkg dx dt+
∫ t2

t1

∫
Ω

(yk − y)vkg dx dt.
(5.12)

From (5.1) and (5.9) it follows that∣∣∣ ∫ t2

t1

∫
Ω

(yk − y)vkg dx dt
∣∣∣

≤
(∫ t2

t1

∫
Ω

|vkg|2 dx dt
)1/2(∫ t2

t1

∫
Ω

|yk − y|2 dx dt
)1/2

→ 0 as k →∞.
(5.13)

Thus, using (5.7) and (5.13), (5.12) implies (5.11).
Using (5.10) and (5.11), and letting k →∞ in (5.2), we obtain∫∫

Q

{
− yψϕ′ +

n∑
i,j=1

aijyxiψxjϕ+ (ã0 + u)yψϕ
}
dx dt

=
∫∫

Q

fψϕdx dt, ψ ∈ H1
0 (Ω), ϕ ∈ C1

c (−∞, 0).

(5.14)

According to Lemma 2.1, identity (5.14) implies that y ∈ C(S;L2(Ω)) and yt ∈
L2

loc(S;H−1(Ω)). Hence, the function y = y(u) is a weak solution of problem (4.1),
(3.2). Let us show that y satisfies condition (3.4). First, we prove the convergence

∀τ ∈ S : yk(·, τ) −→
k→∞

y(·, τ) strongly in L2(Ω). (5.15)
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For this purpose, we subtract (5.2) from (5.14). To the resulting identity, we apply
Lemma 2.1 with z = y − yk, g0 = (ã0 + u)y − (ã0 + vk)yk, gi =

∑n
j=1 aij(yxj −

yk,xj ) (i = 1, n), θ(t) = 2(t − τ + 1), τ1 = τ − 1, τ2 = τ , where τ ∈ S is arbitrary.
Consequently,∫

Ω

|y(x, τ)− yk(x, τ)|2 dx−
∫ τ

τ−1

∫
Ω

|y − yk|2 dx dt

+
∫ τ

τ−1

∫
Ω

[ n∑
i,j=1

aij(yxi − yk,xi)(yxj − yk,xj )
]
θ dx dt

+
∫ τ

τ−1

∫
Ω

(
(ã0 + u)y − (ã0 + vk)yk

)(
y − yk

)
θ dx dt = 0.

(5.16)

Let us transform the last term on the left side of (5.16) as follows:∫ τ

τ−1

∫
Ω

(
(ã0 + u)y − (ã0 + vk)yk

)(
y − yk

)
θ dx dt

=
∫ τ

τ−1

∫
Ω

(
(ã0 + u)y − (ã0 + vk)(yk − y + y)

)(
y − yk

)
θ dx dt

=
∫ τ2

τ1

∫
Ω

[
(ã0 + vk)|y − yk|2 + (u− vk)y(y − yk)

]
θ dx dt.

(5.17)

From (5.16), taking into account (A1) and (5.17), we obtain∫
Ω

|y(x, τ)− yk(x, τ)|2 dx+ 2
∫ τ

τ−1

∫
Ω

(ã0 + vk)|y − yk|2 dx dt

≤
∫ τ

τ−1

∫
Ω

|y(y − yk)||u− vk| dx dt+
∫ τ

τ−1

∫
Ω

|y − yk|2 dx dt.
(5.18)

Using (5.1) and Cauchy-Schwarz inequality, (5.18) yields∫
Ω

|y(x, τ)− yk(x, τ)|2 dx

≤ C7

(∫ τ

τ−1

∫
Ω

|y − yk|2 dx dt
)1/2

+
∫ τ

τ−1

∫
Ω

|y − yk|2 dx dt,
(5.19)

where C7 > 0 is a constant which does not depend on k.
From (5.9), according to (5.19), we obtain (5.15). Taking into account (5.15),

letting k →∞ in (5.3), the resulting inequality, according to condition (3.5), implies

lim
τ→−∞

e2ω
R τ
0 α(s) ds

∫
Ω

|y(x, τ)|2 dx = 0. (5.20)

Hence, we have shown that y = y(u) = y(x, t;u), (x, t) ∈ Q, is the state of the
controlled system for the control u.

It remains to prove that u is a minimizing element of the functional J . Indeed,
(5.15) implies

‖yk(·, 0)− z0(·)‖2L2(Ω) −→
k→∞

‖y(·, 0)− z0(·)‖2L2(Ω). (5.21)

Also, (5.7) and properties of ∗-weakly convergent sequences yield

lim inf
k→∞

‖vk‖L∞(Q) ≥ ‖u‖L∞(Q). (5.22)
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From (4.2), (5.21) and (5.22), it easily follows that limk→∞ J(vk) ≥ J(u). Thus,
we have shown that u is a solution of problem (4.3).

Now let us show that the set of optimal controls of problem (4.3) is ∗-weakly
closed. Indeed, let {uk} is a sequence of optimal controls such that uk → u ∗-
weakly in L∞(Q). Similarly as above we show that lim infk→∞ J(uk) ≥ J(u). But
J(uk) = infv∈U∂ J(v) ∀k ∈ N. Then u is an optimal control of (4.3). �

We now turn to the proof of Theorem 4.2. To do this we need some extra
statements.

Lemma 5.1. Under condition (4.4) the following continuous embeddings hold

L2
ω,α(Sτ ;H1

0 (Ω)) ⊂ L2
ω,1/α(Sτ ;H1

0 (Ω)) ⊂ L2
ω,1/α(Sτ ;L2(Ω)) ∀τ ∈ S,

so, there exist positive constants C8, C9 such that for arbitrary z ∈ L2
ω,α(S;H1

0 (Ω))
and τ ∈ S we have

‖z‖L2
ω,1/α(Sτ ;L2(Ω)) ≤ C8‖z‖L2

ω,1/α(Sτ ;H1
0 (Ω)) ≤ C9‖z‖L2

ω,α(Sτ ;H1
0 (Ω)). (5.23)

Proof. The first inequality of (5.23) follows easily from (2.2). According to (4.4)
we have 1/α(t) ≤ 1/α0 ≤ α(t)/(α0)2 for a.e. t ∈ S. This yields∫ τ

−∞

∫
Ω

[α(t)]−1e2ω
R t
0 α(s)ds|∇z|2 dx dt ≤ [α0]−2

∫ τ

−∞

∫
Ω

α(t)e2ω
R t
0 α(s)ds|∇z|2 dx dt.

So, we obtain (5.23) with C9 = C8[α0]−2. �

To proof Theorem 4.2, we need to differentiate the map v 7→ J(v) with respect
to the control v. Since y = y(v) appears in J(v), we first prove the appropriate
differentiability of the map v 7→ y(v) whose derivative is called sensitivity (see [2,
Section 5]).

Lemma 5.2. For every u, v ∈ U∂ there exists function χ = χ(u, v) = χ(x, t;u, v) =
χ(x, τ), (x, t) ∈ Q, from L2

ω,α(S;H1
0 (Ω)) such that χt ∈ L2

loc(S;H−1(Ω)) (so χ ∈
C(S;L2(Ω))), and

χε(u, v) :=
y(u+ ε(v − u))− y(u)

ε
−→
ε→0+

χ(u, v) weakly in L2
ω,α(S;H1

0 (Ω)),

(5.24)

χε(u, v) −→
ε→0+

χ(u, v) strongly in L2
loc(S;L2(Ω)), (5.25)

∀τ ∈ S : χε(·, τ) −→
ε→0+

χ(·, τ) strongly in L2(Ω) (ε ∈ (0, 1)). (5.26)

Moreover, sensitivity χ is a weak solution of the problem

χt −
n∑

i,j=1

(aijχxi)xj + (ã0 + u)χ = (u− v)y, (5.27)

χ
∣∣
Σ

= 0, (5.28)

lim
t→−∞

eω
R t
0 α(s)ds‖χ(·, t)‖L2(Ω) = 0. (5.29)

Proof. First we denote w := v − u, vε := u + εw, ε ∈ (0, 1). Since the set U∂ is
convex then for each ε ∈ (0, 1) an element vε belongs to U∂ for all u, v ∈ U∂ . It is
clear that

vε −→
ε→0

u strongly in L∞(Q). (5.30)
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Let the function yε := y(vε) be a weak solution of problem (4.1), (3.2), (3.4) for
v = vε, where ε ∈ (0, 1). Theorem 3.3 imply that yε exists, it is unique, belongs to
L2
ω,α(S;H1

0 (Ω)) and the following estimates hold

eω
R τ
0 α(s) ds‖yε(·, τ)‖L2(Ω) ≤ C1‖f‖L2

ω,1/α(Sτ ;L2(Ω)), τ ∈ S, (5.31)

‖yε‖L2
ω,α(Sτ ;H1

0 (Ω)) ≤ C2‖f‖L2
ω,1/α(Sτ ;L2(Ω)) , τ ∈ S. (5.32)

Also by Lemma 5.1 and (5.32) we have

‖yε‖L2
ω,1/α(Sτ ;L2(Ω)) ≤ C9‖yε‖L2

ω,α(Sτ ;H1
0 (Ω))

≤ C2C9‖f‖L2
ω,1/α(Sτ ;L2(Ω)), τ ∈ S.

(5.33)

Repeating the proof of Theorem 4.1 with vk being replaced by vε and yk replaced
by yε we easily obtain convergence similar to (5.8), (5.9), (5.15), i.e.,

yε −→
ε→0

y weakly in L2
ω,α(S;H1

0 (Ω)), (5.34)

yε −→
ε→0

y strongly in L2
loc(S;L2(Ω)), (5.35)

∀τ ∈ S : yε(·, τ) −→
ε→0

y(·, τ) strongly in L2(Ω), (5.36)

where y := y(u) is a solution of (4.1), (3.2), (3.4) for v = u, that is, problem (4.5).
Obviously, by the definition of χε, we obtain that χε is the weak solution of the

problem

χεt −
n∑

i,j=1

(aijχεxi)xj + (ã0 + u)χε = −wyε, (5.37)

χε
∣∣
Σ

= 0, (5.38)

lim
t→−∞

eω
R t
0 α(s)ds‖χε(·, t)‖L2(Ω) = 0. (5.39)

In particular, we have∫∫
Q

{
− χεψϕ′ +

n∑
i,j=1

aijχ
ε
xiψxjϕ+ (ã0 + u)χεψϕ

}
dx dt

= −
∫∫

Q

wyεψϕdx dt, ψ ∈ H1
0 (Ω), ϕ ∈ C1

c (−∞, 0).

(5.40)

Clearly, problem (5.37)-(5.39) coincides with problem (4.1), (3.2), (3.4) when
v = u and f = −wyε. Hence, taking into account Theorem 3.3 we obtain that
χε belongs to L2

ω,α(S;H1
0 (Ω)), χεt belongs to L2

loc(S;H−1(Ω)), and satisfies the
following estimates

eω
R τ
0 α(s) ds‖χε(·, τ)‖L2(Ω) ≤ C1‖wyε‖L2

ω,1/α(Sτ ;L2(Ω)), τ ∈ S,

‖χε‖L2
ω,α(Sτ ;H1

0 (Ω)) ≤ C2‖wyε‖L2
ω,1/α(Sτ ;L2(Ω)), τ ∈ S.

Estimate (5.33) implies that

‖wyε‖L2
ω,1/α(Sτ ;L2(Ω)) ≤ C2C9‖w‖L∞(Q)‖f‖L2

ω,1/α(Sτ ;L2(Ω)), (5.41)

which yields

eω
R τ
0 α(s) ds‖χε(·, τ)‖L2(Ω) ≤ C10‖f‖L2

ω,1/α(Sτ ;L2(Ω)), τ ∈ S, (5.42)

‖χε‖L2
ω,α(Sτ ;H1

0 (Ω)) ≤ C11‖f‖L2
ω,1/α(Sτ ;L2(Ω)), τ ∈ S, (5.43)
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where C10, C11 are positive constants which do not depend on ε.
Since L2

ω,α(S;H1
0 (Ω)) is a Hilbert space, then estimate (5.43) yield the existence

of function χ ∈ L2
ω,α(S;H1

0 (Ω)) such that convergence (5.24) holds.
Convergence (5.24), (5.35) imply that we can pass to the limit in (5.40) as ε→ 0

and we obtain that function χ satisfies (5.27), (5.28), so it suffices to prove that
function χ satisfies condition (5.29) and convergence (5.25), (5.26).

From (5.40) and the first statement of Lemma 2.1, for arbitrary τ1, τ2 ∈ S (τ1 <
τ2) we obtain∫ τ2

τ1

‖χεt‖2H−1(Ω) dt ≤
∫ τ2

τ1

∫
Ω

( n∑
j=1

∣∣ n∑
i=1

aijχ
ε
xi

∣∣2+|(ã0+u)χε+wyε|2
)
dx dt. (5.44)

By condition (A1), and (5.43), estimate (5.44) implies that∫ τ2

τ1

‖χεt (·, t)‖2H−1(Ω) dt ≤ C12, (5.45)

where τ1, τ2 ∈ S (τ1 < τ2) are arbitrary, C12 > 0 is a constant which depends on τ1
and τ2, but does not depend on k.

Having estimates (5.43), (5.45), we can conclude (similarly as it was done for
(5.9)) that there exists a subsequence of {vε, yε} (which is also denoted by {vε, yε})
such that

χε −→
ε→0

χ strongly in L2
loc(S;L2(Ω)). (5.46)

Let us prove the following convergence:

∀τ ∈ S : χε(·, τ) −→
ε→0

χ(·, τ) strongly in L2(Ω). (5.47)

For this purpose, we subtract identity (5.37) from identity (5.27). To the resulting
identity, we apply Lemma 2.1 with z = χ − χε, g0 = (ã0 + u)(χ − χε) − wyε,
gi =

∑n
j=1 aij(χxj − χεxj ) (i = 1, n), θ(t) = 2(t− τ + 1), τ1 = τ − 1, τ2 = τ , where

τ ∈ S is arbitrary. Consequently, we obtain∫
Ω

|χ(x, τ)− χε(x, τ)|2 dx−
∫ τ

τ−1

∫
Ω

|χ− χε|2 dx dt

+
∫ τ

τ−1

∫
Ω

[ n∑
i,j=1

aij(χxi − χεxi)(χxj − χ
ε
xj )
]
θ dx dt

+
∫ τ

τ−1

∫
Ω

(
(ã0 + u)(χ− χε)− wyε

)(
χ− χε

)
θ dx dt = 0.

(5.48)

Taking into account (A1), we obtain∫
Ω

|χ(x, τ)− χε(x, τ)|2 dx

≤
∫ τ

τ−1

∫
Ω

|χ− χε|2 dx dt+
∫ τ

τ−1

∫
Ω

|w||yε||χ− χε| dx dt.
(5.49)

Using Cauchy-Schwarz inequality, the above inequality yields∫
Ω

|χ(x, τ)− χε(x, τ)|2 dx ≤ C13

[ ∫ τ

τ−1

∫
Ω

|χ− χε|2 dx dt

+
(∫ τ

τ−1

∫
Ω

|χ− χε|2 dx dt
)1/2(∫ τ

τ−1

∫
Ω

|yε|2 dx dt
)1/2]

,
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where C13 > 0 is a constant depending on ‖w‖L∞(Q) only.
By (5.35) and (5.46), we obtain (5.47). Taking into account (5.47), and letting

ε → 0 in (5.42), the resulting inequality, according to condition (3.5), implies
(5.29). �

Lemma 5.3. There exists a unique weak solution of (4.6), and if ω < K, then it
belongs to L2

−ω,1/α(S;H1
0 (Ω)) and satisfies the following estimates:

e−ω
R τ
0 α(s)ds‖p(·, τ)‖L2(Ω) dx ≤ C14‖p(·, 0)‖L2(Ω), τ ∈ S, (5.50)

‖p‖L2
−ω,1/α(S;H1

0 (Ω)) ≤ C14‖p(·, 0)‖L2(Ω), (5.51)

where C14 > 0 is a constant independent of p.

Proof. The existence of a unique weak solution p of (4.6) is a well-known fact.
Lemma 2.1 yield pt ∈ L2

loc(S;H−1(Ω)). To conclude, it suffices to prove estimates
(5.50) and (5.51).

According to Lemma 2.1 when τ1 = τ < 0, τ2 = 0, z = −p, g0 = (ã0 + u)p,
gi =

∑n
j=1 aijpxj (i = 1, n), while θ ∈ C1(S) is arbitrary function, we obtain

1
2
θ(0)

∫
Ω

|p(x, 0)|2 dx− 1
2
θ(τ)

∫
Ω

|p(x, τ)|2 dx− 1
2

∫ 0

τ

∫
Ω

|p|2θ′ dx dt

−
∫ 0

τ

∫
Ω

[ n∑
i,j=1

aijpxipxj + (ã0 + u)|p|2
]
θ dx dt = 0.

Taking θ(t) = e−2ω
R t
0 α(s)ds, t ∈ S, we obtain

1
2
e−2ω

R τ
0 α(s)ds

∫
Ω

|p(x, τ)|2 dx− ω
∫ 0

τ

∫
Ω

α(t)e−2ω
R t
0 α(s)ds|p|2 dx dt

+
∫ 0

τ

∫
Ω

e−2ω
R t
0 α(s)ds

[ n∑
i,j=1

aijpxipxj + (ã0 + u)|p|2
]
dx dt

=
1
2

∫
Ω

|p(x, 0)|2 dx.

From this, using condition (A1) we have

e−2ω
R τ
0 α(s) ds

∫
Ω

|p(x, τ)|2dx− 2ω
∫ 0

τ

∫
Ω

α(t)e−2ω
R t
0 α(s) ds|p|2dx dt

+ 2(δ + 1− δ)
∫ 0

τ

∫
Ω

α(t)e−2ω
R t
0 α(s) ds|∇p|2 dx dt

≤
∫

Ω

|p(x, 0)|2 dx.

According to (2.4), for arbitrary δ ∈ (0, 1) we obtain

e−2ω
R τ
0 α(s) ds

∫
Ω

|p(x, τ)|2dx+ 2(δK − ω)
∫ 0

τ

∫
Ω

α(t)e−2ω
R t
0 α(s) ds|p|2dx dt

+ 2(1− δ)
∫ 0

τ

∫
Ω

α(t)e−2ω
R t
0 α(s) ds|∇p|2 dx dt

≤
∫

Ω

|p(x, 0)|2 dx.
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Since ω < K we choose δ ∈ [0, 1) such that δK − ω > 0 and obtain

e−2ω
R τ
0 α(s)ds

∫
Ω

|p(x, τ)|2 dx+
∫ 0

τ

∫
Ω

α(t)e−2ω
R t
0 α(s)ds|∇p|2 dx dt

≤ C11

∫
Ω

|p(x, 0)|2 dx,
(5.52)

where C11 > 0 is a constant depending on ω and K only. From (5.52) according to
Lemma 5.1 we easily obtain (5.50) and (5.51). �

Proof of Theorem 4.2. Let u be an optimal control of problem (4.3), v ∈ U∂ be
an arbitrary, then using the same notations as in the proof of Lemma 5.2, for all
ε ∈ (0, 1) we have

J(vε)− J(u) ≥ 0. (5.53)

Multiplying variational inequality (5.53) by 1/ε and denoting w = v−u, we obtain

0 ≤ 1
ε

(
J(vε)− J(u)

)
=

1
ε

[ ∫
Ω

(
y(x, 0; vε)− z0(x)

)2
dx−

∫
Ω

(
y(x, 0;u)− z0(x)

)2
dx
]

=
1
ε

∫
Ω

(
y2(x, 0; vε)− y2(x, 0;u)− 2z0(x)y2(x, 0; vε) + 2z0(x)y(x, 0;u)

)
dx

=
∫

Ω

y(x, 0; vε)− y(x, 0;u)
ε

[
y(x, 0; vε) + y(x, 0;u)− 2z0(x)

]
dx.

We rewrite the above inequality as∫
Ω

(
χε(x, 0)

(
yε(x, 0) + y(x, 0)

)
− 2χε(x, 0)z0(x)

)
dx ≥ 0. (5.54)

According to (5.26) and (5.36), we pass to the limit in (5.54) as ε → 0+. As a
result we obtain the following variational inequality∫

Ω

χ(x, 0)
(
y(x, 0)− z0(x)

)
dx ≥ 0. (5.55)

Applying formula 2.10 of Lemma (2.1) for the adjoint problem (4.6) with test
function χ, i.e. q = χ, for any τ ∈ S, we obtain

0 =
∫ 0

τ

(
− pt −

n∑
i,j=1

(aijpxi)xj + (ã0 + u)p, χ
)
dt

= −
∫ 0

τ

(pt, χ) dt+
∫ 0

τ

∫
Ω

[ n∑
i,j=1

aijpxiχxj + (ã0 + u)pχ
]
dx dt = 0.
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Using integration by parts and condition (A1) (the symmetry of coefficients aij),
we obtain

0 = −
∫

Ω

pχ dx
∣∣∣t=0

t=τ
+
∫ 0

τ

(p, χt) dt

+
∫ 0

τ

∫
Ω

[ n∑
i,j=1

aijpxiχxj + (ã0 + u)pχ
]
dx dt

= −
∫

Ω

χ(x, 0)p(x, 0) dx+
∫

Ω

χ(x, τ)p(x, τ) dx

+
∫ 0

τ

(χt, p) dt+
∫ 0

τ

∫
Ω

[ n∑
i,j=1

aijχxipxj + (ã0 + u)χp
]
dx dt

= −
∫

Ω

χ(x, 0)p(x, 0) dx+
∫

Ω

χ(x, τ)p(x, τ) dx

+
∫ 0

τ

(
χt −

n∑
i,j=1

(aijχxi)xj + (ã0 + u)χ, p
)
−
∫

Ω

χ(x, 0)p(x, 0) dx

+
∫

Ω

χ(x, τ)p(x, τ) dx−
∫ 0

τ

∫
Ω

wyp dx dt.

(5.56)

By the weak solution formulation for problem (5.27)–(5.29), from (5.56) we obtain∫
Ω

(
y(x, 0)− z0(x)

)
χ(x, 0) dx =

∫
Ω

p(x, τ)χ(x, τ) dx−
∫ 0

τ

∫
Ω

pyw dx dt. (5.57)

Let us show that we can pass to the limit in (5.57) as t→ −∞. Indeed, according
to (5.50) and (5.29), we have∫

Ω

|p(x, τ)χ(x, τ)| dx ≤ ‖p(·, τ)|L2(Ω)‖χ(·, τ)‖L2(Ω)

≤ eω
R τ
0 α(s)ds‖p(·, 0)‖L2(Ω)‖χ(·, τ)‖L2(Ω)

= ‖p(·, 0)‖L2(Ω)γ(τ),

(5.58)

where because of condition (5.29), the function γ(t) := eω
R τ
0 α(s)ds‖χ(·, τ)‖L2(Ω),

t ∈ S, is such that γ(t)→ 0 as t→ −∞.
Condition (A2), Theorem 3.3 (estimate (3.7)) and estimate (5.51), by the Cauchy-

Schwarz inequality, imply∫ 0

τ

∫
Ω

|pyw| dx dt ≤
(∫ 0

τ

∫
Ω

[α]−1e−2ω
R t
0 α(s)ds|p(x, t)|2dx dt

)1/2

,(∫ 0

τ

∫
Ω

αe2ω
R t
0 α(s)ds|y|2dx dt

)1/2

≤ C2C10‖p(·, 0)‖2L2(Ω)‖f‖L2
ω,1/α(S;L2(Ω)),

which yields wpy ∈ L1(Q).
According to this and (5.58), we pass to the limit in (5.57) as τ → −∞, and

obtain ∫
Ω

(
y(x, 0)− z0(x)

)
χ(x, 0) dx = −

∫∫
Q

pyw dx dt. (5.59)

From (5.55) taking into account (5.59) we obtain (4.7). �



EJDE-2017/72 OPTIMAL CONTROL PROBLEM WITHOUT INITIAL CONDITIONS 21

Acknowledgments. We want to thank the anonymous referees for the careful
reading and their helpful suggestions.

References

[1] V. V. Akimenko, A. G. Nakonechnyi, O. Yu. Trofimchuk; An optimal control model for a sys-

tem of degenerate parabolic integro-differential equations, Cybernetics and Systems Analysis,
Vol. 43 (2007), No. 6, 838-847.

[2] J. Bintz, H. Finotti, S. Lenhart; Optimal control of resourse coefficient in a parabolic popu-

lation model, edited by R. Mondaini, BIOMAT 2013 International Symposium on Mathe-
matical and Computational Biology, World Scientific Press, Singapore, 2013, 121-135.

[3] Mykola Bokalo; Dynamical problems without initial conditions for elliptic-parabolic equations

in spatial unbounded domains, Electron. J. Differential Equations, Vol. 2010 (2010), No. 178,
1-24.

[4] M. M. Bokalo; Optimal control of evolution systems without initial conditions, Visnyk of the
Lviv University. Series Mechanics and Mathematics, Vol. 73 (2010), 85–113.

[5] M. M. Bokalo; Optimal control problem for evolution systems without initial conditions,

Nonlinear boundary problem, Vol. 20 (2010), 14–27.
[6] M. M. Bokalo, O. M. Buhrii, R. A. Mashiyev; Unique solvability of initial-boundary-value

problems for anisotropic elliptic-parabolic equations with variable exponents of nonlinearity,

Journal of nonlinear evolution equations and applications, Vol. 2013 (2014), No. 6, 67–87.
[7] M. M. Bokalo, A. Lorenzi; Linear evolution first-order problems without initial conditions,

Milan Journal of Mathematics, Vol. 77 (2009), 437–494.

[8] V. G. Boltyanskiy; Mathematical methods of optimal control, Moscow, Nauka, 1969.
[9] M. E. Bradley, S. Lenhart; Bilinear Optimal Control of a Kirchhoff Plate, Systems & Control

Letters, Vol. 22 (1994), 27–38.

[10] Lawrence C. Evans; Partial differential equations, American Mathematical Society, 1998.
[11] M. H. Farag; Computing optimal control with a quasilinear parabolic partial differential

equation, Surveys in mathematics and its applications, Vol. 4 (2009), 139-153.
[12] S. H. Farag, M. H. Farag; On an optimal control problem for a quasilinear parabolic equation,

Applicationes mathematicae, Vol. 27 (2000), No. 2, 239-250.

[13] H. O. Fattorini; Optimal control problems for distributed parameter systems governed by
semilinear parabolic equations in L1 and L∞ spaces, Optimal Control of Partial Differential

Equations. Lecture Notes in Control and Information Sciences, Vol. 149 (1991), 68-80.

[14] Feiyue He, A. Leung, S. Stojanovic; Periodic Optimal Control for Parabolic Volterra-Lotka
Type Equations, Mathematical Methods in the Applied Sciences, Vol. 18 (1995), 127-146.

[15] K. R. Fister; Optimal Control of Harvesting in a Predator-Prey Parabolic System, Houston

Journal of Mathematics, Vol. 23-2 (1997), 341-355.
[16] H. Gayevskyy, K. Greger, K. Zaharias; Nonlinear operator equations and operator differential

equations, Moscow, Mir, 1978.

[17] A. H. Khater, A. B. Shamardanb, M. H. Farag, A. H. Abel-Hamida; Analytical and numerical
solutions of a quasilinear parabolic optimal control problem, Journal of Computational and
Applied Mathematics, Vol. 95 (1998), No. 1-2, 29-43.

[18] Suzanne M. Lenhart, Jiongmin Yong; Optimal Control for Degenerate Parabolic Equations
with Logistic Growth, Nonlinear Analysis Theory, Methods and Applications, Vol. 25 (1995),

681-698.
[19] J.-L. Lions; Optimal Control of Systems Gocerned by Partial Differentiul Equations, Springer,

Berlin, 1971.
[20] Lions J.-L.; Operational differential equations and boundary value problems, 2 ed, Berlin-

Heidelberg-New York, 1970.
[21] Hongwei Lou; Optimality conditions for semilinear parabolic equations with controls in lead-

ing term, ESAIM: Control, Optimisation and Calculus of Variations, Vol. 17 (2011), No. 4,
975-994.

[22] Zuliang Lu; Optimal control problem for a quasilinear parabolic equation with controls in the

coefficients and with state constraints, Lobachevskii Journal of mathematics, Vol. 32 (2011),
No. 4, 320-327.



22 M. BOKALO, A. TSEBENKO EJDE-2017/72

[23] I. D. Pukalskyi; Nonlocal boundary-value problem with degeneration and optimal control

problem for linear parabolic equations, Journal of Mathematical Sciences, Vol. 184 (2012),

No. 1, 19-35.
[24] R. E. Showalter; Monotone operators in Banach space and nonlinear partial differential equa-

tions, Amer. Math. Soc., Vol. 49, Providence, 1997.

[25] R. K. Tagiev; Existance and uniquiness of second order parabolic bilinear optimal control
problems, Differential Equations, Vol. 49 (2013), No. 3, 369-381.

[26] R. K. Tagiyev, S. A. Hashimov; On optimal control of the coefficients of a parabolic equation

involing phase constraints, Proceedings of IMM of NAS of Azerbaijan, Vol. 38 (2013), 131-
146.

[27] L. A. Vlasenko, A. M. Samoilenko; Optimal control with impulsive component for systems

described by implicit parabolic operator differential equations, Ukrainian Mathematical Jour-
nal, Vol. 61 (2009), No. 8, 1250-1263.

Mykola Bokalo

Department of Differential Equations, Ivan Franko National University of Lviv, Lviv,
Ukraine

E-mail address: mm.bokalo@gmail.com

Andrii Tsebenko

Department of Differential Equations, Ivan Franko National University of Lviv, Lviv,

Ukraine
E-mail address: amtseb@gmail.com


	1. Introduction
	2. Preliminaries
	3. Well-posedness of the problem without initial conditions for linear parabolic equations
	4. Formulation of the optimal control problem and main result
	5. Proof of main results
	Acknowledgments

	References

