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GLOBAL STABILITY FOR INFECTIOUS DISEASE MODELS
THAT INCLUDE IMMIGRATION OF INFECTED INDIVIDUALS

AND DELAY IN THE INCIDENCE

CHELSEA UGGENTI, C. CONNELL MCCLUSKEY

Communicated by Ratnasingham Shivaji

Abstract. We begin with a detailed study of a delayed SI model of disease

transmission with immigration into both classes. The incidence function allows
for a nonlinear dependence on the infected population, including mass action

and saturating incidence as special cases. Due to the immigration of infectives,

there is no disease-free equilibrium and hence no basic reproduction number.
We show there is a unique endemic equilibrium and that this equilibrium is

globally asymptotically stable for all parameter values. The results include

vector-style delay and latency-style delay. Next, we show that previous global
stability results for an SEI model and an SVI model that include immigration

of infectives and non-linear incidence but not delay can be extended to systems
with vector-style delay and latency-style delay.

1. Introduction

Many countries throughout the world have high numbers of both immigrants
and short-term visitors. For example, according to the 2006 Canadian Census [3],
1, 109, 980 people immigrated to Canada, between January 1, 2001 and May 16,
2006 (the day of the census). At the time of the census, there were 6, 186, 950
immigrants in Canada, comprising 19.8% of the population. Additionally, there
are millions of short-term visitors to Canada each year.

With so many individuals entering Canada (for example), it is inevitable that
some individuals will already be infected with a given disease at the time of arrival.
This makes it desirable to consider models that account for the immigration of
infected individuals.

An immediate consequence of including immigration of infected individuals is
that the disease-free space is no longer positively invariant. Thus, there is no
disease-free equilibrium, and hence no basic reproduction number.

In this work, we study disease transmission models that include immigration of
infected individuals. The models also include delayed effects. We consider both
delay due to vector transmission and delay due to latency.

For vector transmitted diseases, one can view the vector as providing a connec-
tion between a susceptible individual at time t and an infected individual from an
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earlier time, say t− τ . This puts a delay in the incidence term, as done by Cooke
[4] and Takeuchi et al. [11], and many others since. For mass action models, this
vector-style delay generally results in a term of the form βS(t)I(t − τ) being sub-
tracted from the susceptible equation and a corresponding term being added to the
equation for the first infected class.

Another way that delay often arises in compartmental models for disease trans-
mission relates to a latency period of duration τ between the time when an individ-
ual becomes infected and when they become infectious. For mass action models, it
is then common to have a negative term βS(t)I(t) to represent the rate at which
individuals infected at time t leave the susceptible class and a related positive term
βS(t − τ)I(t − τ) to represent the rate at which individuals were infected at time
t− τ , who are now entering the infectious class, for example.

Another feature that we include in this work is that the force of infection may
have a non-linear dependence on the size of the infectious population, so that the
incidence function takes the form Sf(I), for some reasonable function f , described
in Section 2. This form of incidence includes mass action βSI and saturating
incidence β SI

1+mI as special cases.
We now provide a brief review of earlier work on models that include immigra-

tion of infected individuals. In [2], the authors study a non-delayed SIS model.
They show that there is a unique equilibrium, which is strictly positive. Using the
Bendixson-Dulac Criterion, they show that the equilibrium is globally asymptot-
ically stable. They also consider an SIRS model, again showing that the unique
(positive) equilibrium is globally asymptotically stable. This time the proof was
based on converting the system of ordinary differential equations to a scalar inte-
gral equation. In each case they first work with mass action incidence βSI, before
extending their work to the case where β is a function of the total population size.

In [8] an ODE model including standard incidence was studied, finding a unique
positive equilibrium. Using compound matrix techniques, they prove the unique
positive equilibrium is globally asymptotically stable for a portion of the parameter
space.

In [9], the authors study an ODE model of HIV infection with proportional
mixing. Using a Lyapunov function they show that the unique positive equilibrium
is globally asymptotically stable for a portion of the parameter space.

The paper [12] presents an ODE model of vector transmission of malaria, ac-
counting for the vector population (mosquitoes) explicitly and including immigra-
tion of infected hosts. Using compound matrix techniques, they prove the unique
positive equilibrium is globally asymptotically stable.

In [10] an SEI model was studied and in [5] an SVI model (where V stands for
vaccinated) was studied. For each of these models, which were systems of ordinary
differential equations, it was shown that there was a globally asymptotically stable
equilibrium through the use of a Lyapunov function.

In [1], the authors studied an SVIR model that includes diffusion within the re-
gion of interest. The unique endemic equilibrium was shown to be globally asymp-
totically stable through the use of a Lyapunov functional.

In [7], an SEI model with continuous age-in-class structure for the infected classes
is studied. The unique endemic equilibrium was shown to be globally asymptotically
stable through the use of a Lyapunov functional.
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The current paper is organized as follows. In Sections 2-5, an SI model with im-
migration of infecteds, vector-style delay and non-linear incidence is studied in full
detail. In Section 6, it is shown that the same results also apply to a corresponding
SI model with latency-style delay. In Section 7, the global dynamics are resolved
for two SEI models, one with vector-style delay and the other with latency-style
delay. In Section 8, the global dynamics are resolved for two SVI models, one with
vector-style delay and the other with latency-style delay. A discussion of the results
is given in Section 9.

2. An SI model with immigration and vector-style delay

A human population is divided into two classes: susceptible and infectious. The
sizes of the classes are denoted by S and I, respectively. The influxes of new indi-
viduals entering the population into each group (through birth and immigration)
are denoted by ΛS > 0 for the susceptible class and by ΛI > 0 for the infectious
class.

The incidence rate at which susceptibles become infectious is assumed to be linear
in S but may have a non-linear dependence on the size of the infectious population,
taking the form Sf(I), where f is a twice differentiable function satisfying the
following hypotheses:

(H1) f(I) ≥ 0 with equality if and only if I = 0.
(H2) f ′(I) ≥ 0.
(H3) f ′′(I) ≤ 0.

These hypotheses were also used in [5, 10].
We assume that the disease is transmitted through a vector (such as a mosquito).

Following the work of Cooke [4], we assume that infected vectors become infectious
after a fixed time τ , and that the number of infected humans is a good proxy for
the number of infected vectors. This implies that rate of new human infections at
time t is S(t)f(I(t − τ)). We note that the form of incidence used here includes
mass action βSI and saturating incidence β SI

1+mI as special cases.
Individuals leave the susceptible and infectious classes with per capita death

rates of µS and µI , respectively. We assume that 0 < µS ≤ µI so that the death
rate for those infected with the disease is at least as high as for those who are not
infected. The transfer diagram for the model is shown below.

ΛS

��
ΛI

��
S

Sf(I(t−τ)) //

µSS

��

I

µII

��

The corresponding system of differential equations is
dS

dt
= ΛS − Sf(I(t− τ))− µSS

dI

dt
= ΛI + Sf(I(t− τ))− µII.

(2.1)

The phase space for the system is Y = R≥0×C([−τ, 0],R≥0), where C([−τ, 0],R≥0)
is the space of continuous functions from [−τ, 0] to R≥0.
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Given a function h : [T − τ, T ] → R≥0, we define the associated function hT :
[−τ, 0] → R≥0 by hT (θ) = h(T + θ) for all θ ∈ [−τ, 0]. The initial condition for
(2.1) is (

S(0), I0(·)
)

=
(
S̄, φ(·)

)
∈ Y.

Note that we are using the convention that if the argument for S or I is omitted,
then the variable is to be evaluated at time t; if the variable is to be evaluated
at any other time (such as t − τ , for example) then the argument will be given
explicitly.

3. Equilibria

Since dI
dt

∣∣
I=0

= ΛI > 0, there is no disease-free equilibrium, and so there is no
basic reproduction number. There is, however, an endemic equilbrium. The proof
of the following result is similar to the proof of [10, Proposition 3.1].

Proposition 3.1. There exists a unique equilibrium (S∗, I∗) ∈ R2
≥0. Furthermore,

S∗, I∗ > 0.

Proof. Since dS
dt

∣∣
S=0

= ΛS > 0 and dI
dt

∣∣
I=0

= ΛI > 0, it follows that there are
no equilibria for which either S or I is zero. Thus, we may restrict our search for
equilibria to R2

>0.
Solving dS

dt + dI
dt = 0, gives S∗ = 1

µS
(ΛS + ΛI − µII∗), and therefore to have S∗

positive, we must have I∗ < Imax, where Imax = ΛS+ΛI

µI
.

Rearranging dS
dt = 0 gives H(I∗) = 0, where

H(I∗) = f(I∗) + µS −
µSΛS

ΛS + ΛI − µII∗
. (3.1)

Recalling from (H1) that f(0) = 0, we note that H(0) = µS − µSΛS

ΛS+ΛI
> 0. Also,

H(I∗) tends to negative infinity as I∗ increases to Imax. Thus, there exists at least
one zero of H in the interval (0, Imax).

Note that H ′′(I∗) = f ′′(I∗)− 2µ2
IµSΛS

(ΛS+ΛI−µII∗)3 , which is negative for I∗ ∈ (0, Imax).
Since H is positive at 0 and concave down on (0, Imax), it follows that the zero of
H in (0, Imax) is unique. The result follows. �

4. Local stability

Proposition 4.1. The equilibrium (S∗, I∗) is locally asymptotically stable.

Proof. We begin by determining the characteristic equation. Let s(t) = S(t) − S∗
and i(t) = I(t)− I∗. Then for sufficiently small s and i,

ds

dt
=
dS

dt
= ΛS − Sf(I(t− τ))− µSS

= ΛS − (S∗ + s)f(I∗ + i(t− τ))− µS(S∗ + s)

≈ ΛS − (S∗ + s) [f(I∗) + f ′(I∗)i(t− τ)]− µS(S∗ + s)

= [ΛS − S∗f(I∗)− µSS∗]− [S∗f ′(I∗)i(t− τ) + sf(I∗) + µSs]

− sf ′(I∗)i(t− τ)

= − [S∗f ′(I∗)i(t− τ) + sf(I∗) + µSs]− sf ′(I∗)i(t− τ)

≈ −S∗f ′(I∗)i(t− τ)− sf(I∗)− µSs,

(4.1)
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where the first approximation comes from taking a first order Taylor series of f and
the second approximation comes from dropping the quadratic term s(t)f ′(I∗)i(t−
τ). A similar calculation yields

di

dt
≈ S∗f ′(I∗)i(t− τ) + sf(I∗)− µI i. (4.2)

We now use the exponential ansatz[
s(t)
i(t)

]
= eλt

[
s(0)
i(0)

]
.

Filling into (4.1) and (4.2), and canceling eλt from each side, the equations can be
re-written as

(M − λI2×2)
[
s(0)
i(0)

]
=
[
0
0

]
, M =

[
−(f(I∗) + µS) −S∗f ′(I∗)e−λτ

f(I∗) S∗f ′(I∗)e−λτ − µI

]
(4.3)

and I2×2 is the 2× 2 identity matrix.
There are nontrivial solutions if and only if M − λI2×2 is singular. Thus, the

characteristic equation is

0 = det (M − λI2×2)

= (f(I∗) + µS + λ)[(µI + λ)− S∗f ′(I∗)e−λτ ] + f(I∗)S∗f ′(I∗)e−λτ

= λ2 + (f(I∗) + µS + µI)λ+ (f(I∗) + µS)µI − (λ+ µS)S∗f ′(I∗)e−λτ

= λ2 + p1λ+ p0 + (q1λ+ q0) e−λτ ,

(4.4)

where

p1 = f(I∗) + µS + µI q1 = −S∗f ′(I∗)
p0 = (f(I∗) + µS)µI q0 = −µSS∗f ′(I∗).

To assist with the upcoming calculations, we first obtain a useful inequality.
Using (H1)–(H3) and following the proof of [10, Proposition 4.1] it can be shown
that f ′(I∗) ≤ f(I∗)

I∗ . Then, using the fact that dI
dt is zero at the equilibrium, we can

replace f(I∗) in this inequality to write f ′(I∗) ≤ µII
∗−ΛI

S∗I∗ . It follows that

µI > S∗f ′(I∗). (4.5)

We now use a four step approach, part of which comes from the approach de-
scribed in [13, Section 2], to show that all solutions λ of (4.4) have negative real
part.
Step A: Consider the matrix M for τ = 0. Note that the (2, 2)-entry becomes
S∗f ′(I∗)− µI . By (4.5), this is negative and so, for τ = 0, M has the sign pattern[

− −
+ −

]
.

Thus, trace(M) < 0 and det(M) > 0. It follows that the eigenvalues of M both
have negative real part and so (S∗, I∗) is locally asymptotically stable for τ = 0.
Step B: In this step, we study the possibility of eigenvalues appearing at infinity.
In particular, we show for τ ≥ 0, that there is an upper bound on the magnitude
of any eigenvalues with positive real part, thereby precluding the possibility of
eigenvalues appearing at infinity.
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Let K > max{|p1| + |q1| + 1, |p0| + |q0|}. Suppose λ is a solution of (4.4) with
Re(λ) > 0 and |λ| > K. Let Z = λ2 + p1λ+ p0 + (q1λ+ q0)e−λτ . Then,

|Z| ≥ |λ2| − |p1λ+ p0 + (q1λ+ q0)e−λτ |

≥ |λ2| − |p1λ| − |p0| − |q1λ||e−λτ | − |q0||e−λτ |
≥ |λ2| − |p1||λ| − |p0| − |q1||λ| − |q0|
= |λ|(|λ| − |p1| − |q1|)− (|p0|+ |q0|)
> |λ|(K − |p1| − |q1|)− (|p0|+ |q0|)
> |λ| − (|p0|+ |q0|)
> K − (|p0|+ |q0|) > 0.

Thus, Z 6= 0 and so λ is not a solution to the characteristic equation. This means
that each solution of the characteristic equation either has negative real part or has
a magnitude of at most K. Combining this with the result of Step A, it follows
that the only possible loss of (local) stability that can happen as τ increases from 0,
is that eigenvalues could cross from the left half-plane to the right half-plane (but
only with magnitude less than K). In Steps C and D, we rule out that possibility.

Step C: For any τ ≥ 0, filling λ = 0 into the expression on the right-hand side
of the characteristic equation (4.4) gives p0 + q0 = (f(I∗) + µS)µI − µSS∗f ′(I∗),
which is positive by (4.5). Thus, λ = 0 is never a solution to (4.4).

Step D: Suppose τ > 0 and suppose λ = ωi (with ω 6= 0) is a solution of (4.4).
Replacing λ in (4.4) and separating the real and imaginary parts gives

ω2 − p0 = q1ω sinωτ + q0 cosωτ,
p1ω = q0 sinωτ − q1ω cosωτ.

Squaring both equations, adding the results and letting z = ω2 > 0, gives

z2 +
(
p2

1 − 2p0 − q2
1

)
z + p2

0 − q2
0 = 0. (4.6)

We now show that the constant and linear terms on the left-hand side of (4.6) are
positive. Since z is positive, it will then follow that (4.6) has no valid solutions,
and so ωi must not be a characteristic root for the equilibrium.

It follows from (4.5) that µSµI > µSS
∗f ′(I∗). This means that p0 is further

from 0 than q0 is, and so p2
0 − q2

0 > 0. That is, the constant term on the left-hand
side of (4.6) is positive.

Also, p2
1− 2p0− q2

1 =
(
f(I∗)2 + µS

)2 +µ2
I − (S∗f ′(I∗))2

> µ2
I − (S∗f ′(I∗))2

> 0.
Thus, the linear coefficient on the left-hand side of (4.6) is positive. Therefore,
(4.6) has no positive roots and so ωi cannot be a solution to (4.4).

Combining the results of Steps A, B, C, D, it follows that all roots of (4.4) have
negative real part. Thus, the equilibrium (S∗, I∗) is locally asymptotically stable
for all τ ≥ 0. �

5. Global stability

Theorem 5.1. The equilibrium (S∗, I∗) is globally asymptotically stable on the set
Y.
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Proof. Let
g(x) = x− 1− ln(x),

V = S∗g
( S
S∗
)

+ I∗g
( I
I∗
)
,

W =
∫ τ

0

g
(f(I(t− σ))

f(I∗)

)
µIσ,

U = V + S∗f(I∗)W.

(5.1)

Note that dS
dt |S=0 = ΛS > 0 and dI

dt |I=0 = ΛI > 0 implies that S(t), I(t) > 0 for all
t > 0. Thus, we may assume that V, W and U are well-defined and finite for all
t > τ .

We begin by calculating dV
dt . Using ΛS = S∗f(I∗) + µSS

∗ and µI = ΛI+S∗f(I∗)
I∗ ,

we have
dV
dt

=
(

1− S∗

S

)
[ΛS − Sf(I(t− τ))− µSS] +

(
1− I∗

I

)
[ΛI + Sf(I(t− τ))− µII]

=
(

1− S∗

S

)
[S∗f(I∗)− Sf(I(t− τ)) + µS (S∗ − S)]

+
(

1− I∗

I

)[
ΛI + Sf(I(t− τ))−

(ΛI + S∗f(I∗)
I∗

)
I
]

= −µS
(S − S∗)2

S
+ S∗f(I∗)

(
1− S∗

S

)(
1− Sf(I(t− τ))

S∗f(I∗)

)
− ΛI

(I − I∗)2

II∗
+ S∗f(I∗)

(
1− I∗

I

)(Sf(I(t− τ))
S∗f(I∗)

− I

I∗

)
= −µS

(S − S∗)2

S
− ΛI

(I − I∗)2

II∗
+ S∗f(I∗)C,

(5.2)

where

C = 2 +
f(I(t− τ))
f(I∗)

− S∗

S
− I

I∗
− SI∗f(I(t− τ))

S∗If(I∗)

= g
(f(I(t− τ))

f(I∗)

)
− g
(S∗
S

)
− g
( I
I∗

)
− g
(SI∗f(I(t− τ))

S∗If(I∗)

)
.

(5.3)

(This last expression can be checked by using the definition of g to obtain the
previous line.) Also,

dW
dt

=
d

dt

∫ τ

0

g
(f(I(t− σ))

f(I∗)

)
µIσ

=
∫ τ

0

d

dt
g
(f(I(t− σ))

f(I∗)

)
µIσ

= −
∫ τ

0

d

dσ
g
(f(I(t− σ))

f(I∗)

)
µIσ

= g
( f(I)
f(I∗)

)
− g
(f(I(t− τ))

f(I∗)

)
.

(5.4)

To find dU
dt , we combine (5.2), (5.3) and (5.4), to obtain

dU
dt

= −µS
(S − S∗)2

S
− ΛI

(I − I∗)2

II∗
+ S∗f(I∗)µI , (5.5)
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where

D = g
( f(I)
f(I∗)

)
− g
(S∗
S

)
− g
( I
I∗

)
− g
(SI∗f(I(t− τ))

S∗If(I∗)

)
. (5.6)

By Proposition A.1 from [10], the hypotheses (H1)–(H3) ensure that g
(
f(I)
f(I∗)

)
−

g
(
I
I∗

)
≤ 0 for all I > 0. Thus,

µI ≤ −g
(S∗
S

)
− g
(SI∗f(I(t− τ))

S∗If(I∗)

)
≤ 0.

Therefore, dU
dt ≤ 0, with equality only if (S, I) = (S∗, I∗). Thus, by Lyapunov’s

Direct Method, the equilibrium is globally asymptotically stable. �

6. An SI model with immigration and latency-style delay

It is noteworthy that the model studied in Sections 2 to 5, which includes delay
due to vector transmission, is equivalent to a model that includes delay due to
latency. This can be seen by defining Y (t) = S(t+ τ). Then, (2.1) becomes

dY (t)
dt

= ΛS − Y (t)f(I(t))− µSY (t)

dI(t)
dt

= ΛI + Y (t− τ)f(I(t− τ))− µII(t),
(6.1)

which is a similar model, but with a latency-style delay. It follows that our results
also apply to (6.1).

Theorem 6.1. The equilibrium (S∗, I∗) is locally and globally asymptotically stable
under the flow described by (6.1).

7. Two SEI models with immigration and delay

In [10], a model including susceptible, exposed and infectious classes, with im-
migration of infected individuals, but no delay, was studied. The transfer diagram
for the model is shown below.

ΛS

��
ΛE

��
ΛI

��
S

Sf(I) //

µSS

��

E
γE //

µEE

��

I

µII

��

In this model, ΛE gives the influx of individuals entering the system into the
exposed class, µE is the per capita death rate of the exposed class and 1

γ is the
average time spent in the exposed class before moving to the infectious class; other
parameters have the same meaning as in the SI-model introduced in Section 2.

The system of differential equations for the model is
dS

dt
= ΛS − Sf(I)− µSS

dE

dt
= ΛE + Sf(I)− (µE + γ)E

dI

dt
= ΛI + γE − µII,

(7.1)
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with ΛE ,ΛI ≥ 0 and ΛE + ΛI ,ΛS , µS , µE , µI , γ > 0. Also, the force of infection f
is assumed to satisfy the hypotheses (H1)–(H3).

In [10], it is shown that there is a unique equilibrium X∗ = (S∗, E∗, I∗) ∈ R3
>0.

Using the Lyapunov function

V = S∗g
( S
S∗

)
+ E∗g

( E
E∗

)
+
S∗f(I∗)
γE∗

I∗g
( I
I∗

)
, (7.2)

it is shown that X∗ is globally asymptotically stable. In doing so, the authors of
[10] obtain the inequality

D(7.1)V ≤ −µS
(S − S∗)2

S
− ΛE

(E − E∗)2

E∗E
− S∗f(I∗)

γE∗
ΛI

(I − I∗)2

I∗I

− S∗f(I∗)
[
g
(S∗
S

)
+ g
( SE∗f(I)
S∗Ef(I∗)

)
+ g
(EI∗
E∗I

)]
.

(7.3)

Notation. For the remainder of this paper, we use notation similar to the previ-
ous equation, where D(7.1)V gives the derivative of V with respect to time as the
arguments of V(S,E, I) change according to the differential equation (7.1).

We now wish to consider delayed versions of (7.1). Consider vector-style delay
in the transmission term:

dS

dt
= ΛS − Sf(I(t− τ))− µSS

dE

dt
= ΛE + Sf(I(t− τ))− (µE + γ)E

dI

dt
= ΛI + γE − µII,

(7.4)

and latency-style delay in the transmission term

dS

dt
= ΛS − Sf(I)− µSS

dE

dt
= ΛE + S(t− τ)f(I(t− τ))− (µE + γ)E

dI

dt
= ΛI + γE − µII,

(7.5)

where τ > 0 in each case. Note that for each of (7.4) and (7.5), the unique
equilibrium is X∗ = (S∗, E∗, I∗), the same as for the ordinary differential equation
(7.1).

Also note that by making the substitution Y (t) = S(t+τ) (and then changing Y
to S), (7.5) can be shown to be equivalent to (7.4), similar to how (6.1) was shown
to be equivalent to (2.1). Thus, we will focus on the stability of just (7.5).

To do this, we first state a version of Theorem 5.1 from [6], which gives conditions
under which a Lyapunov function V for an ordinary differential equation can be
extended to a Lyapunov functional U for a related delay differential equation that
includes latency-style delay. In the terminology of [6], we are adding delay to the
transmission term q(X(t)) = S(t)f(I(t)); we also have xj = E, A = 1 and L = E∗

E .
Then [6, Theorem 5.1] and its proof give the following result.

Theorem 7.1. If

D(7.1)V +Aq(X∗)g
(q(X(t))
q(X∗)

L
)
≤ 0,
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then

U = V +Aq(X∗)
∫ τ

0

g
(X(t− σ)

X∗

)
dσ

is a Lyapunov functional for (7.5) satisfying

D(7.5)U = D(7.1)V +Aq(X∗)
[
g
(X(t)
X∗

L
)
− g
(X(t− τ)

X∗
L
)]
.

Filling the expressions for q, A and L into the theorem conditions, we see that it
is necessary to have D(7.1)V + S∗f(I∗)g

(
Sf(I)E∗

S∗f(I∗)E

)
less than or equal to 0. Using

(7.3) to replace D(7.1)V, we see that the condition is satisfied. Thus, Theorem 7.1
implies

D(7.5)U ≤ −µS
(S − S∗)2

S
− ΛE

(E − E∗)2

E∗E
− S∗f(I∗)

γE∗
ΛI

(I − I∗)2

I∗I

− S∗f(I∗)
[
g
(S∗
S

)
+ g
(S(t− τ)f(I(t− τ))E∗

S∗f(I∗)E

)
+ g
(EI∗
E∗I

)]
.

It follows from Lyapunov’s Direct Method that the equilibrium X∗ is globally
asymptotically stable under the flow described by (7.5). Due to the equivalence of
(7.4) and (7.5), X∗ is also globally asymptotically stable under the flow described
by (7.4).

Theorem 7.2. The equilibrium X∗ is globally asymptotically stable under the flow
described by (7.4) and also under the flow described by (7.5).

8. Two vaccination models with immigration and delay

In [5], a model including susceptible, vaccinated, infectious and recovered classes,
with immigration of infected individuals, but no delay, was studied. The transfer
diagram is:

ΛI��~~
~~

~~
~~

ΛS

// S
Sf(I)

//

µS

OO

αS

$$IIIIIIIIIIIIIIIIIIIII I
δI

//

(µ+γ)I

OO

R

µR

OO

ΛR

oo

ΛV

// V
µV

//

V h(I)

OO

γ1V

::uuuuuuuuuuuuuuuuuuuuu

In this model, ΛV and ΛR give the influxes of individuals entering the system
into the vaccinated and recovered classes, µ is the per capita death rate for death
that is not related to the disease, γ is the per capita disease-related death rate, α
is the per capita vaccination rate, γ1 is the per capita rate at which individuals in
the vaccinated class receive permanent immunity, δ is the per capita recovery rate,
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and h(I) is the force of infection for vaccinated individuals. Other parameters have
the same meaning as in the SI-model introduced in Section 2.

The corresponding differential equations are:

dS

dt
= ΛS − Sf(I)− (µ+ α)S

dV

dt
= ΛV + αS − V h(I)− (µ+ γ1)V

dI

dt
= ΛI + Sf(I) + V h(I)− (µ+ γ + δ)I

dR

dt
= ΛR + γ1V + δI − µR,

(8.1)

with ΛS ,ΛV ,ΛI ,ΛR, µ > 0 and α, δ, γ, γ1 > 0. Also, the functions f and h are
assumed to satisfy the hypotheses (H1)–(H3) and to satisfy h(I) ≤ f(I) for all
I ≥ 0.

The variable R does not appear in the first three equations and so it is sufficient
to only study those three equations.

In [5], it is shown that there is a unique equilibrium Z∗ = (S∗, V ∗, I∗) ∈ R3
>0.

Using the Lyapunov function

V = S∗g
( S
S∗

)
+ V ∗g

( V
V ∗

)
+ I∗g

( I
I∗

)
, (8.2)

it is shown that Z∗ is globally asymptotically stable. In doing so, the authors of
[5] obtain the inequality

D(8.1)V ≤ − (µ+ α)S∗g
(S∗
S

)
− µS∗g

( S
S∗

)
− ΛI

(I − I∗)2

II∗

− S∗f(I∗)
[
g
(S∗
S

)
+ g
( Sf(I)I∗

S∗f(I∗)I

)]
− (µ+ γ1)V ∗g

( V
V ∗

)
− αS∗g

(SV ∗
S∗V

)
− V ∗h(I∗)g

( V h(I)I∗

V ∗h(I∗)I

)
.

(8.3)

We now wish to consider delayed versions of (8.1). For the sake of brevity, we
omit the equation for dR

dt . Consider vector-style delay in the transmission terms:

dS

dt
= ΛS − Sf(I(t− τ))− (µ+ α)S

dV

dt
= ΛV + αS − V h(I(t− τ))− (µ+ γ1)V

dI

dt
= ΛI + Sf(I(t− τ)) + V h(I(t− τ))− (µ+ γ + δ)I.

(8.4)

and latency-style delay in the transmission terms:

dS

dt
= ΛS − Sf(I)− (µ+ α)S

dV

dt
= ΛV + αS − V h(I)− (µ+ γ1)V

dI

dt
= ΛI + S(t− τ)f(I(t− τ)) + V (t− τ)h(I(t− τ))− (µ+ γ + δ)I.

(8.5)
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where τ > 0 in each case. We have also assumed that the delay associated with
susceptible individuals is the same as the delay associated with vaccinated individ-
uals.

Recall that for (7.4) and (7.5), the unique equilibrium is Z∗ = (S∗, E∗, I∗), the
same as for the ordinary differential equation (7.1). By making the substitutions
YS(t) = S(t+ τ) and YV (t) = V (t+ τ), it can be shown that (8.5) is equivalent to
(8.4). Thus, we will focus only on the stability of (8.5).

By using [6, Theorem 5.1] twice (or Theorem 7.1 once), the Lyapunov function
V given in (8.2) that resolves the global stability of Z∗ for (8.1) can be extended
to the Lyapunov functional U given by

U = V + S∗f(I∗)
∫ τ

0

g
(S(t− σ)f(I(t− σ))

S∗f(I∗)

)
dσ

+ V ∗h(I∗)
∫ τ

0

g
(V (t− σ)h(I(t− σ))

V ∗h(I∗)

)
dσ.

By following the approach used in Section 7, and described in detail in [6], we
obtain

D(8.5)U =D(8.1)V + S∗f(I∗)
[
g
( Sf(I)I∗

S∗f(I∗)I

)
− g
(S(t− τ)f(I(t− τ))I∗

S∗f(I∗)I

)]
+ V ∗f(I∗)

[
g
( V h(I)I∗

V ∗h(I∗)I

)
− g
(V (t− τ)h(I(t− τ))I∗

V ∗h(I∗)I

)]
≤− (µ+ α)S∗g

(S∗
S

)
− µS∗g

( S
S∗

)
− ΛI

(I − I∗)2

II∗

− S∗f(I∗)
[
g
(S∗
S

)
+ g
(S(t− τ)f(I(t− τ))I∗

S∗f(I∗)I

)]
− (µ+ γ1)V ∗g

( V
V ∗

)
− αS∗g

(SV ∗
S∗V

)
− V ∗h(I∗)g

(V (t− τ)h(I(t− τ))I∗

V ∗h(I∗)I

)
≤ 0

with equality if and only if (S, V, I) = (S∗, V ∗, I∗). By Lyapunov’s Direct Method
the equilibrium is globally asymptotically stable under the flow described by (8.5).
Due to the equivalence of (8.4) and (8.5), it follows that the equilibrium Z∗ is also
globally asymptotically stable under the flow described by (8.4).

Theorem 8.1. The equilibrium Z∗ is globally asymptotically stable under the flow
described by (8.4) and also under the flow described by (8.5).

9. Discussion

We have studied SI, SEI and SVI models of disease spread that include immi-
gration of infected individuals and each of

• delay due to vector transmission
• delay due to a period of latency.

Due to the immigration of infecteds, there is no disease-free equilibrium for any
of these models. If one of the systems were somehow in a disease-free state, then
infected individuals would enter the population through immigration and so the
system would no longer be in a disease-free state. Significantly, since there is no
disease-free equilibrium, there is no basic reproduction number.
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For the SI model with vector-style delay, we provide a detailed analysis, showing
that for all parameter values there is a unique positive equilibrium and that it is
both locally and globally asymptotically stable. Thus, the level of disease in the
population will asymptotically approach the equilibrium level. We then show that
this vector-style model is equivalent to an SI model with latency-style delay so that
our results also apply to this new model.

Previous works [5, 10] have studied SEI and SVI models with immigration of
infected individuals, but without delay. Those works used Lyapunov functions to
show that the unique positive equilibrium was globally asymptotically stable. We
show that these Lyapunov functions can be extended to Lyapunov functionals,
showing that the equilibrium is still globally asymptotically stable if the system is
modified to include either vector-style or latency-style delay.

It is apparent that in order to eliminate disease in a connected world, it is neces-
sary either to screen travelers perfectly for infection (so that there is no immigration
of infecteds) or to treat disease elimination as a global problem. Due to the high
level of interconnectedness of today’s world, the global approach to elimination
seems more likely to be successful.
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dent at Wilfrid Laurier University. C. C. McCluskey is supported by an NSERC
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