Jacques Giacomoni, Abdelhamid Gouasmia, Abdelhafid Mokrane
Abstract:
In this article, we study a class of doubly nonlinear parabolic problems involving
the fractional p-Laplace operator. For this problem, we discuss existence, uniqueness
and regularity of the weak solutions by using the time-discretization method and
monotone arguments. For global weak solutions, we also prove stabilization results
by using the accretivity of a suitable associated operator. This property is strongly
linked to the Picone identity that provides further a weak comparison principle,
barrier estimates and uniqueness of the stationary positive weak solution.
Submitted June 6, 2020. Published February 23, 2021.
Math Subject Classifications: 35B40, 35K59, 35K55, 35K10, 35R11.
Key Words: Fractional p-Laplace equation; doubly nonlinear evolution equation;
Picone identity; stabilization; nonlinear semi-group theory.
DOI: https://doi.org/10.58997/ejde.2021.09
Show me the PDF file (553 KB), TEX file for this article.
![]() |
Jacques Giacomoni Université de Pau et des Pays de l'Adour, CNRS, E2S LMAP (UMR 5142), IPRA Avenue de l'Université-F-64013 Pau, France email: jacques.giacomoni@univ-pau.fr |
---|---|
![]() |
Abdelhamid Gouasmia Laboratoire d'équations aux dérivées partielles non linéaires et histoire des mathématiques École Nationale Supérieure, B.P. 92 Vieux Kouba, 16050 Algiers, Algeria email: gouasmia.abdelhamid@gmail.com |
![]() |
Abdelhafid Mokrane Laboratoire d'équations aux dérivées partielles non linéaires et histoire des mathématiques École Nationale Supérieure, B.P. 92 Vieux Kouba, 16050 Algiers, Algeria email: abdelhafid.mokrane@ens-kouba.dz |
Return to the EJDE web page