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EXISTENCE OF POSITIVE PERIODIC SOLUTIONS FOR A

NONLINEAR SYSTEM OF SECOND-ORDER ORDINARY

DIFFERENTIAL EQUATIONS

XIAO HAN, YUJING HE, HUI WEI

Abstract. This article concerns the positive periodic solutions for a system of

second-order nonlinear ordinary differential equations, in which the nonlinear

term is sublinear in one equation and superlinear in the other equation. By
using the fixed point theorem of cone expansion and compression we obtain

the existence of positive periodic solutions.

1. Introduction

System of ordinary differential equations appear in fields such as applied math-
ematics, mathematical physics, mechanical engineering, etc. To find special solu-
tions, for example, radial symmetric solutions of elliptic system, it is natural to
consider systems of ordinary differential equations (see [3, 4, 11, 12]). In recent
decades, the existence of solutions for ordinary differential equation and related
questions have attracted extensive attention (see [1, 2, 5, 7, 8, 13, 14]). Dunninger
and Wang [3] considered positive and radial symmetric solutions for a class of ellip-
tic systems. The corresponding problem was reduced to a Dirichlet boundary value
problem for a system of ordinary differential equations. In their work, the nonlinear
terms of the two equations are either both sublinear or superlinear, which means
that the corresponding solution operators have the properties of the cone compres-
sion or the cone expansion. Thus, the result on existence of positive solutions can
be obtained by constructing a single cone in the product space C[0, 1] × C[0, 1]
and applying the fixed point theorem of cone compression or expansion. Later,
Cheng and Zhong [2] studied the Dirichlet boundary value problem of a system of
the second-order ordinary differential equations in which the nonlinear terms have
the different growth properties and proved the existence of positive solutions by
investigating the properties of the fixed point index of the Cartesian product of two
cones in the space C[0, 1].

This article is mainly concerned with the periodic behavior of solutions to or-
dinary differential equations. Such a problem has always been the focus in the
study of ordinary differential equation. Guerrero-Flores et al. [9] studied the sea-
sonal SIQRS models with nonlinear infection terms and proved the existence of
periodic solutions by using Leray-Schauder degree theory. Kobilzoda and Naimov
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[10] considered a class of systems of nonlinear ordinary differential equations on
the plane and obtained the existence of positive periodic solutions by giving suit-
able estimations and applying the theory of rotation of vector fields. In [6, 16] the
authors studied periodic solutions of a system of (generalized) ordinary differential
equations by using the bifurcations method. Here we hope to develop the method
of fixed point theorem in cone to investigate the periodic solutions of the system
of ordinary differential equations. To do so, the first problem we face is to give the
Green’s function for the linear ordinary differential equation and study its prop-
erties. Then, we need to construct the suitable cone by analyzing the nonlinear
problem. Finally, we develop the fixed point theorem in a cone to establish the
existence of periodic solutions.

We consider the existence of positive periodic solutions for the system of second-
order nonlinear ordinary differential equations

−u′′(t) + u(t) = g1(t, u) + h1(u, v), 0 < t < 1,

−v′′(t) + v(t) = g2(t, u) + h2(u, v), 0 < t < 1,

u(0) = u(1), u′(0) = u′(1), v(0) = v(1), v′(0) = v′(1),

(1.1)

where gi ∈ C([0, 1] × R+,R+) are 1-periodic in t and hi ∈ C(R+ × R+,R+) for
i = 1, 2, R+ = [0,+∞). In this article we assume the folloing hypothesis on gi and
hi (i = 1, 2):

(H1) lim supu→0+ maxt∈[0,1]
g1(t,u)
u < 1 < lim infu→+∞mint∈[0,1]

g1(t,u)
u ;

(H2) lim supv→+∞maxt∈[0,1]
g2(t,v)
v < 1 < lim infv→0+ mint∈[0,1]

g2(t,v)
v ;

(H3) limu→0+
h1(u,v)

u = 0 uniformly for v ∈ R+;

(H4) limv→+∞
h2(u,v)

v = 0 uniformly for u ∈ R+, and for any fixed constant
M > 0, limu→+∞ h2(u, v) = 0 uniformly for v ∈ [0,M ].

From (H1) it follows that g1(t, u) is superlinear with respect to u at 0 and +∞.
Condition (H2) implies that g2(t, v) is sublinear with respect to v at 0 and +∞.
(H3) and (H4) show that h1(u, v) is superlinear with respect to u at 0, and h2(u, v)
is sublinear with respect to v at +∞.

The main results of this article read as follows.

Theorem 1.1. Assume that gi ∈ C([0, 1]×R+,R+) are 1-periodic in t and satisfy
(H1) and (H2), and hi ∈ C(R+×R+,R+) satisfy (H3) and (H4) for i = 1, 2. Then
(1.1) has at least one positive periodic solution.

This article is organized as follows. We first give some preliminaries and con-
struct the Green’s function for the corresponding homogeneous linear problem in
Section 2. Then the proof of Theorem 1.1 is completed in Section 3 and some
examples are presented in Section 4 as the application of our main result.

2. Preliminaries

In this section, we first construct a cone which can be viewed as the Cartesian
product of two cones in C[0, 1], and then we shall transform the problem of finding
the positive periodic solutions of (1.1) into a fixed-point index problem in this cone.

As we know, C[0, 1] is a Banach space with the norm

‖u‖ = max
t∈[0,1]

|u(t)|, ∀u ∈ C[0, 1].
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The space of non-negative functions belonging to C[0, 1] is defined by

C+[0, 1] = {u ∈ C[0, 1] : u(t) ≥ 0}.

To find positive periodic solutions of (1.1), we would like to transform the original
problem into a fixed point problem of some integral system; thus we first need to
construct the Green’s function G(t, s) of the corresponding linear problem

−u′′(t) + u(t) = 0, 0 < t < 1, (2.1)

u(0) = u(1), u′(0) = u′(1). (2.2)

To do so, we consider the Cauchy problems of equation (2.1) with the initial con-
ditions

u(0) = 1, u′(0) = 0,

and

u(0) = 0, u′(0) = 1,

respectively. It is obvious that

u1(t) = cosh t =
et + e−t

2

and

u2(t) = sinh t =
et − e−t

2

are, respectively, the solutions of the above Cauchy problems.
We denote

κ = u1(1) + u′2(1)− 2 = e+ e−1 − 2.

Then, a not very complicated calculation shows that the Green function is

G(t, s) =
u2(1)

κ
u1(t)u1(s)− u′1(1)

κ
u2(t)u2(s) + r(t, s),

with

r(t, s) =


u′
2(1)−1
κ u1(t)u2(s)− u1(1)−1

κ u1(s)u2(t), 0 ≤ s ≤ t ≤ 1,

u′
2(1)−1
κ u1(s)u2(t)− u1(1)−1

κ u1(t)u2(s), 0 ≤ t ≤ s ≤ 1.

From the expressions u1(t) and u2(t) and noting that

u1(1) = u′2(1) =
e+ e−1

2
, u′1(1) = u2(1) =

e− e−1

2
,

it is easy to see that

G(t, s) =

{
e−1
2κ (et−s−1 + es−t), 0 ≤ s ≤ t ≤ 1,

e−1
2κ (es−t−1 + et−s), 0 ≤ t ≤ s ≤ 1.

(2.3)

Lemma 2.1. The Green function G(t, s) given by (2.3) has the following properties:

(i) G(t, s) ≥ 0, ∀t, s ∈ (0, 1);
(ii) G(t, s) ≤ G(s, s), ∀t, s ∈ [0, 1];

(iii) G(t, s) ≥ 2
√
e

e+1G(s, s), for all t, s ∈ [0, 1].
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Proof. Firstly, from the expression of G(t, s) given by (2.3), it is easy to obtain the
property (i).

Because of the symmetry of G(t, s) with respect to t and s, it is sufficient for us
to consider one of the cases, for example, the case of 0 ≤ s ≤ t ≤ 1, in which

G(t, s) =
e− 1

2κ
(et−s−1 + es−t).

For this case, it is obvious that

G(s, s) =
e− 1

2κ
(e−1 + 1),

and
G(s, s)

G(t, s)
=

e−1 + 1

et−s−1 + es−t
.

Denote x = t− s and define

f(x) =
e−1 + 1

ex−1 + e−x
.

Then, in this case (that is, 0 ≤ s ≤ t ≤ 1), we have 0 ≤ x ≤ 1 and

f(x) =
G(s, s)

G(t, s)
.

A simple calculation yields that

max
x∈[0,1]

f(x) =
1 + e

2e1/2
, min

x∈[0,1]
f(x) = 1,

which shows that

1 ≤ f(x) ≤ 1 + e

2e1/2

holds for 0 ≤ x ≤ 1. Therefore, we have

1 ≤ G(s, s)

G(t, s)
≤ 1 + e

2e1/2
,

which implies the conclusions (ii) and (iii). The proof is complete. �

For each h ∈ C[0, 1], we consider the non-homogeneous problem associated with
(2.1) and (2.2) having the form

−u′′(t) + u(t) = h(t), 0 < t < 1, (2.4)

u(0) = u(1), u′(0) = u′(1). (2.5)

From the Green function G(t, s) given by (2.3), the periodic solution of (2.4)–(2.5)
can be expressed as

u(t) =

∫ 1

0

G(t, s)h(s)ds. (2.6)

Thus, the problem of finding positive periodic solutions of (1.1) is transformed into
the fixed point problem of the integral system

u(t) =

∫ 1

0

G(t, s)
(
g1(s, u(s)) + h1(u(s), v(s))

))
ds,

v(t) =

∫ 1

0

G(t, s)
(
g2(s, u(s)) + h2(u(s), v(s))

))
ds,

in C+[0, 1]× C+[0, 1].
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To prove the existence of fixed point for the above integral system, we introduce
a family of operators as following. For each θ ∈ [0, 1] and u, v ∈ C+[0, 1], we define

Av(θ, u)(t) =

∫ 1

0

G(t, s)
(

(1− θ)u2(s) + θ
(
g1(s, u(s)) + h1(u(s), v(s))

))
ds, (2.7)

Bu(θ, v)(t) =

∫ 1

0

G(t, s)
(

(1− θ)
√
v(s) + θ

(
g2(s, u(s)) + h2(u(s), v(s))

))
ds.

(2.8)

It is easy to check that, for any θ ∈ [0, 1], the operators Av(θ, ·) and Bu(θ, ·) :
C+[0, 1]→ C+[0, 1].

Now we define the vector operator

Tθ(u, v) =
(
Av(θ, u)(t), Bu(θ, v)(t)

)
, (2.9)

then Tθ(·, ·) : C+[0, 1] × C+[0, 1] → C+[0, 1] × C+[0, 1] for all θ ∈ [0, 1], and the
positive periodic solutions of (1.1) correspond to the fixed points of the vector
operator T1 in C+[0, 1]× C+[0, 1].

We define the cone K in C+[0, 1] by

K =
{
u ∈ C+[0, 1] : u(0) = u(1), u(t) ≥ 2

√
e

e+ 1
‖u‖, ∀t ∈ [

1

4
,

3

4
]
}
,

and, for a constant r > 0, we define

Kr = {u ∈ K : ‖u‖ < r}, ∂Kr = {u ∈ K : ‖u‖ = r}. (2.10)

Lemma 2.2. For each θ ∈ [0, 1], the operator Tθ : K ×K → K ×K is completely
continuous.

Proof. We first prove that for any θ ∈ [0, 1], the operator Tθ maps K × K into
K × K. In fact, for any u, v ∈ K, by using the properties of the Green function
G(t, s) given in Lemma 2.1, and taking into consideration the definition of operator
Av(θ, u) given in (2.7), it is easy to see that

Av(θ, u)(t) =

∫ 1

0

G(t, s)
(

(1− θ)u2(s) + θ
(
g1(s, u(s)) + h1(u(s), v(s))

))
ds

≥ 2
√
e

e+ 1

∫ 1

0

G(s, s)
(

(1− θ)u2(s) + θ
(
g1(s, u(s)) + h1(u(s), v(s))

))
ds

≥ 2
√
e

e+ 1
‖Av(θ, u)‖

holds for all t ∈ [1/4, 3/4]. In a similar way we obtain

Bu(θ, v)(t) ≥ 2
√
e

e+ 1
‖Bu(θ, v)‖

for t ∈ [1/4, 3/4]. Thus, we have

Tθ(u, v) ∈ K ×K, ∀(u, v) ∈ K ×K.

Finally, using the Arzelà-Ascoli theorem, it is not difficult to prove that Tθ is
completely continuous. �
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At the end of this section, we make some remarks and introduce two lemmas.
Let X be a Banach space and P ⊂ X be a closed convex cone. Assume that Ω ⊂ X
is a bounded open set and the operator A : P ∩ Ω → P is completely continuous.
If Au 6= u for all u ∈ P ∩ ∂Ω, then the fixed point index i(A,P ∩ Ω, P ) can be
defined as in [15]. Furthermore, if i(A,P ∩ Ω, P ) 6= 0, the operator A possesses a
fixed point in P ∩ Ω.

Lemma 2.3 ([2, 15]). Assume that A : Pr → Pr is completely continuous, where
Pr = {u ∈ P : ‖u‖ < r} with ∂Pr = {u ∈ P : ‖u‖ = r} for some constant r > 0.

(i) If ‖Au‖ > ‖u‖, for all u ∈ ∂Pr, then i(A,Pr, P ) = 0;
(ii) If ‖Au‖‖ < u‖, for all u ∈ ∂Pr, then i(A,Pr, P ) = 1.

Lemma 2.4 (Product rule for fixed point index, see [2]). Assume that Pi ⊂ X are
closed convex cone in Banach space X and Ai : Pi → Pi are completely continuous
operators for i = 1, 2. If Aiui 6= ui for any ui ∈ ∂Pi, then

i(A,Pr1 × Pr2 , P1 × P2) = i(A1, Pr1 , P1) · i(A2, Pr2 , P2),

where A(u, v) = (A1(u), A2(v)) for (u, v) ∈ P1 × P2, Pri = {u ∈ Pi : ‖u‖ < ri} and
∂Pri = {u ∈ Pi : ‖u‖ = ri} for some constants ri > 0.

3. Proof of main result

In this section, we shall prove the existence of positive periodic solutions of (1.1).
To do so, we first give the fixed point index of T0, and then we apply the homotopy
invariance to obtain the fixed point index of T1. In this process, the following
theorem plays a fundamental role.

Theorem 3.1. There exist constants 0 < ri < Ri for i = 1, 2 such that, for any
θ ∈ [0, 1], we have

Tθ(u, v) 6= (u, v), ∀(u, v) ∈ ∂
(

(KR1
\Kr1)× (KR2

\Kr2)
)
,

where KRi
and Kri are defined by (2.10).

Proof. The proof is divided into the following four steps.

Step 1. Denote

r0 =
(∫ 1

0

G(s, s)ds
)−1

=
2(e+ e−1 − 2)

e− e−1
. (3.1)

Then, by the assumptions (H1) and (H3), there exist ε ∈ (0, 1/2) and 0 < r1 <
min{r0, 1− ε}, such that

g1(t, u) ≤ (1− 2ε)u, ∀t ∈ [0, 1], 0 ≤ u ≤ r1, (3.2)

h1(u, v) ≤ εu, ∀v ≥ 0, 0 ≤ u ≤ r1. (3.3)

Thus, for any θ ∈ [0, 1], it is not difficult to verify that

Tθ(u, v) 6= (u, v), ∀(u, v) ∈ ∂Kr1 ×K.
In fact, if there exist θ0 ∈ [0, 1] and (u0, v0) ∈ ∂Kr1 ×K such that

Tθ0(u0, v0) = (u0, v0).

Then, by (2.7) and (2.9), u0 satisfies

−u′′0(t) + u0(t) = (1− θ)u2
0(t) + θ

(
g1(t, u0(t)) + h1(u0(t), v0(t))

)
, (3.4)
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u0(0) = u0(1), u′0(0) = u′0(1). (3.5)

Noting that 0 < r1 < 1− ε, by (3.2) and (3.3), we have

−u′′0(t) + u0(t) ≤ (1− θ)(1− ε)u0(t) + θ(1− ε)u0(t) = (1− ε)u0(t),

for 0 ≤ u ≤ r1. Integrating this inequality on [0, 1] yields∫ 1

0

u0(t)dt ≤ (1− ε)
∫ 1

0

u0(t)dt,

which implies 1 ≤ 1− ε because of u0 ∈ C+[0, 1]. This contradicts ε ∈ (0, 1
2 ).

Step 2. According to assumption (H2), there exist ε > 0 and 0 < ξ < 1
(1+ε)2 such

that

g2(t, v) ≥ (1 + ε)v, ∀t ∈ [0, 1], 0 ≤ v ≤ ξ.
From 0 ≤ v ≤ ξ and 0 < ξ < 1

(1+ε)2 , we have
√
v ≥ (1 + ε)v. Taking r2 ∈

(0,min{r0, ξ}) and noting h2(t) ≥ 0, a similar proof as Step 1 shows that

Tθ(u, v) 6= (u, v), ∀(u, v) ∈ K × ∂Kr2 ,

for any fixed θ ∈ [0, 1].

Step 3. By assumption (H1), there exist ε > 0 and M1 > 0 such that

g1(t, u) ≥ (1 + ε)u, ∀t ∈ [0, 1], u ≥M1.

Furthermore, since g1 is continuous, there exists a constant C1 > 0 such that

g1(t, u) ≥ (1 + ε)u− C1, ∀t ∈ [0, 1], u ≥ 0, (3.6)

u2 ≥ (1 + ε)u− (1 + ε)2 ≥ (1 + ε)u− C1, u ≥ 0. (3.7)

If there exist θ0 ∈ [0, 1] and (u0, v0) ∈ K ×K such that Tθ0(u0, v0) = (u0, v0),
then (3.4) and (3.5) hold. Noting h1(t) ≥ 0, by (3.4), (3.6) and (3.7), we have

−u′′0(t)+u0(t) ≥ (1−θ)
(

(1+ε)u0(t)−C1

)
+θ
(

(1+ε)u0(t)−C1

)
= (1+ε)u0(t)−C1.

Integrating this inequality on [0, 1] yields∫ 1

0

u0(t)dt ≥ (1 + ε)

∫ 1

0

u0(t)dt− C1,

which shows that C1 ≥ ε
∫ 1

0
u0(t)dt. Furthermore, by the definition of K, we have

C1 ≥ ε
∫ 1

0

u0(t)dt ≥ ε
∫ 3/4

1/4

2
√
e

e+ 1
‖u0‖dt = ε

√
e

e+ 1
‖u0‖,

which shows

‖u0‖ ≤
C1(e+ 1)√

eε
=: R1.

Taking R1 > max{R0, R1} with

R0 =
((2e1/2

e+ 1

)3 ∫ 3/4

1/4

G(s, s)ds
)−1

=
(e+ 1)3(e+ e−1 − 2)

2e3/2(e− e−1)
, (3.8)

for any θ ∈ [0, 1], we have

Tθ(u, v) 6= (u, v), ∀(u, v) ∈ ∂KR1 ×K.
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Step 4. By assumptions (H2) and (H4), there exist 0 < ε � 1 and M2 > 0 such
that

g2(t, v) ≤ (1− 2ε)v and h2(u, v) ≤ εv, ∀t ∈ [0, 1], v ≥M2, u ≥ 0.

Also, we have

g2(t, v) + h2(u, v) ≤ (1− ε)v + C2, ∀t ∈ [0, 1], v ≥ 0, u ≥ 0,

where

0 < C2 =
1

1− ε
+ max
t∈[0,1],0≤v≤M2,u≥0

(
g2(t, v) + h2(u, v)

)
< +∞,

because of the continuity of g2 and h2 and the assumption (H4).
Obviously, we have

√
v ≤ (1− ε)v + C2, ∀t ∈ [0, 1].

Let R2 = C2(e + 1)/(
√
eε). Taking R2 > max{R0, R2}, a similar proof as in Step

3 shows that
Tθ(u, v) 6= (u, v), ∀(u, v) ∈ K × ∂KR2 ,

for each fixed θ ∈ [0, 1]. Finally, the conclusion of this theorem is derived from the
results of steps 1–4, and thus the proof is completed. �

Proof of Theorem 1.1. By Lemma 2.1 and the definitions of Av(θ, u) and Au(θ, v)
given in (2.7) and (2.8), for any u, v ∈ K, we have

Av(0, u) =

∫ 1

0

G(t, s)u2(s)ds ≤
∫ 1

0

G(s, s)u2(s)ds,

Bu(0, v) =

∫ 1

0

G(t, s)
√
v(s)ds ≤

∫ 1

0

G(s, s)
√
v(s)ds.

Therefore,

‖Av(0, u)‖ ≤
∫ 1

0

G(s, s)ds‖u‖2,

‖Bu(0, v)‖ ≤
∫ 1

0

G(s, s)ds‖v‖1/2.

Moreover, by Lemma 2.1, we have

‖Av(0, u)‖ ≥
∫ 1

0

G
(1

2
, s
)
u2(s)ds ≥ 8e3/2

(e+ 1)3

∫ 3/4

1/4

G(s, s)ds‖u‖2,

and

‖Bu(0, v)‖ ≥
∫ 1

0

G
(1

2
, s
)√

v(s)ds ≥
(2e1/2

e+ 1

)3/2
∫ 3/4

1/4

G(s, s)ds‖v‖1/2.

Let

R0 =
(∫ 1

0

G(s, s)ds
)2

=
( e− e−1

2(e+ e−1 − 2)

)2

,

r̄0 =
((2e1/2

e+ 1

)3/2
∫ 3/4

1/4

G(s, s)ds
)2

=
2e3/2

(e+ 1)3
R0.

It is obvious that R0 > r̄0, and thus we have

‖Av(0, u)‖ < ‖u‖, ∀r ∈ (0, r0), u ∈ ∂Kr,
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‖Av(0, u)‖ > ‖u‖, ∀R ∈ (R0,+∞), u ∈ ∂KR,

‖Bu(0, v)‖ > ‖v‖, ∀r̄ ∈ (0, r̄0), v ∈ ∂Kr̄,

‖Bu(0, v)‖ < ‖v‖, ∀R ∈ (R0,+∞), u ∈ ∂KR,

where r0 and R0 are given by (3.1) and (3.8), respectively.
By Lemma 2.3, we have

i(Av(0, ·),Kr,K) = 1, ∀r ∈ (0, r0),

i(Av(0, ·),KR,K) = 0, ∀R ∈ (R0,+∞),

i(Bu(0, ·),Kr̄,K) = 0, ∀r̄ ∈ (0, r̄0),

i(Bu(0, ·),KR,K) = 1, ∀R ∈ (R0,+∞).

Thus, by Lemma 2.4, we have

i
(
T0, (KR\Kr)× (KR\Kr̄),K ×K

)
= i(Av(0, ·),KR\Kr,K) · i(Bu(0, ·),KR\Kr̄,K) = −1.

Therefore, by Theorem 3.1 and applying the homotopy invariance, we have

i
(
Tθ, (KR1\Kr1)× (KR2\Kr2),K ×K

)
= i
(
T0, (KR1\Kr1)× (KR2

\Kr2),K ×K
)

= −1,

for any fixed θ ∈ [0, 1], where Ri and ri (i = 1, 2) are given in Theorem 3.1 and
satisfy r1 ∈ (0, r0), R1 > R0, r2 ∈ (0, r̄0) and R2 > R0. Consequently,

i
(
T1, (KR1

\Kr1)× (KR2\Kr2),K ×K
)

= −1,

which implies that problem (1.1) has a positive periodic solution in K ×K. The
proof is complete. �

4. Applications

To demonstrate the usefulness of our main theorem, in this section we consider
the the existence of positive periodic solutions for

−u′′(t) + u(t) = ξ(t)up+1 + up+1 | sin v|
v

, 0 < t < 1,

−v′′(t) + v(t) = η(t)v1−q + v1−q | sinu|
u

, 0 < t < 1,

u(0) = u(1), u′(0) = u′(1), v(0) = v(1), v′(0) = v′(1),

(4.1)

where p > 0, 0 < q < 1 are constants, and ξ(t), η(t) ∈ C([0, 1];R+) are positive,
1-periodic, continuous functions.

Set

g1(t, u) = ξ(t)up+1, g2(t, v) = η(t)v1−q,

h1(u, v) =

{
up+1 | sin v|

v , v > 0,

up+1, v = 0,
h2(u, v) =

{
v1−q | sinu|

u , u > 0,

v1−q, u = 0.

Then a simple computation shows that all the conditions in Theorem 1.1 are satis-
fied. Thus we have the following result.
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Proposition 4.1. Let p > 0, 0 < q < 1. Then, for any positive, 1-periodic,
continuous functions ξ(t), η(t) ∈ C([0, 1];R+), system (4.1) has at least one positive
1-periodic solution.

More specifically, we present the following example.

Example 4.2. Consider the system of ordinary differential equations

−u′′(t) + u(t) = (2 + sin(πt))u
5
2 + u2(t)

| sin v|
v

, 0 < t < 1,

−v′′(t) + v(t) = (2 + sin(πt))v
1
3 + v

1
4 (t)
| sinu|
u

, 0 < t < 1,

u(0) = u(1), u′(0) = u′(1), v(0) = v(1), v′(0) = v′(1).

(4.2)

By choosing ξ(t) = η(t) = 2 + sin(πt) in system (4.1), it is reduced to the above
specific example. By Proposition 4.1, we can conclude that system (4.2) has at
least one positive 1-periodic solution.
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