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TRAVELING WAVES WITH SINGULARITIES IN A DAMPED

HYPERBOLIC MEMS TYPE EQUATION IN THE PRESENCE

OF NEGATIVE POWERS NONLINEARITY

YU ICHIDA

Abstract. We consider traveling waves with singularities in a damped hyper-

bolic MEMS type equation in the presence of negative powers nonlinearity. We

investigate how the existence of traveling waves, their shapes, and asymptotic
behavior change with the presence or absence of an inertial term. These are

studied by applying the framework that combines Poincaré compactification,

classical dynamical systems theory, and geometric methods for the desingular-
ization of vector fields. We report that the presence of this term causes the

shapes to change significantly for sufficiently large wave speeds.

1. Introduction

In this paper, we consider the following damped hyperbolic MEMS type equation
with negative powers nonlinearity,

ε2utt + ut = uxx + (1− u)−α, t > 0, x ∈ R, (1.1)

where α ∈ 2N and ε > 0. Here, ε is a small constant and the ratio of the interaction
due to the inertial and damped terms (see [5, 7, 8, 9] and references therein).

Equation (1.1) is based on the equation

ut = uxx + (1− u)−α, t > 0, x ∈ R, α ∈ N (1.2)

treated in [10, 15], with the term ε2utt added to the left-hand side. (1.1) is a
type of partial differential equation commonly referred to as a damped hyperbolic
equation. Since (1.1) has aspects of both parabolic and hyperbolic types, it has re-
cently attracted attention from the viewpoint of partial differential equation theory
(see [7, 6]). Guo [7] considers both parabolic and hyperbolic type problem about
MEMS, and provides some quenching criteria. For MEMS, see below. In addition,
it discusses the global existence of solutions. The previous work [6] is concerned
with the behavior of the solutions to the nonlinear damped hyperbolic Allen-Cahn
equation with appropriate boundary conditions and initial data in a bounded do-
main. They argue that reaction-diffusion equations have the lack of inertial and
others. There are many ways to overcome these unphysical properties; one of them
is to consider hyperbolic reaction-diffusion equations.

2020 Mathematics Subject Classification. 34C05, 34C08, 35B40, 35C07, 35L81, 74H35.
Key words and phrases. MEMS type equation; Poincaré compactification;
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Furthermore, (1.1) and (1.2) are special cases of the generalized MEMS type
partial differential equation (see [5, 8, 12] and references therein). The MEMS model
is the Micro-Electro Mechanical System devices and used in many machines around
us (for instance, see [16]). In general, the MEMS model is known to induce the
touchdown phenomenon (mathematically, quenching). Clarification of the structure
of singularity formation, such as quench, is one of the most important issues in
MEMS type equations, and there have been a lot of studies recently. However,
since the nonlinear terms of MEMS equations are not simple, then they have both
hyperbolic and parabolic aspects, it is not fully understood what kind of typical
solutions exist.

In this article, we investigate how the behavior (shapes and asymptotic behavior)
of traveling waves change depending on whether the ε2utt term is present or absent
in the left-hand side of [10]. More precisely, in the traveling wave framework,
we compare the family of functions satisfying (1.1) with the family of functions
satisfying (1.2) revealed in [10] in terms of the asymptotic behavior and shapes.
The reason why we refer to the traveling waves as families of functions satisfying
the equations is that they cause singularities at the endpoints of finite intervals
despite the equations being defined over the whole domain, which makes subsequent
analysis difficult (see [10]). In addition, we are interested in whether the asymptotic
behavior obtained from (1.1) and that from (1.2) coincide as ε → 0. Although it
appears to be nothing more than adding ε2utt to the left-hand side of (1.2), this
extension allows us to obtain conclusions from the perspective of traveling waves
that cannot be obtained in [10]. To the best of the author’s knowledge, there
has been no analysis of the existence, shapes and asymptotic behavior of traveling
waves in such a type of equation with both hyperbolic and parabolic forms. We
believe that this paper will provide this abundant information through a dynamical
systems approach and give a new perspective on these types of equations.

To consider the traveling waves of (1.1), we introduce the change of variables

φ(ξ) = 1− u(t, x), ξ = x− ct, 0 < c ∈ R.

Then solving (1.1) reduces to solving for φ(ξ) in

(1− ε2c2)φ′′ = −cφ′ + φ−α, (′=
d

dξ
). (1.3)

Equation (1.3) with ε = 0 is discussed in [10]. In (1.3), there is a case classification
for 1− ε2c2 that did not appear in [10].

When 1− ε2c2 = 0, i.e., c = 1/ε, from (1.3) we obtain the differential equation

0 = −cφ′ + φ−α.

This can be solved by

φ(ξ) =
(α+ 1

c
ξ +B

) 1
α+1

(1.4)

with a constant B ∈ R. In other words, we can express φ(ξ) explicitly in this case.
For a discussion of this case, see Remark 2.11.

Hereinafter 1− ε2c2 6= 0. Then, (1.3) is equivalent to

φ′ = ψ,

ψ′ = (1− ε2c2)−1(−cψ + φ−α).
(1.5)
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In (1.5), the dynamics to infinity in the equation with ε = 0 has been studied
in [10, 11]. In [11], although the partial differential equations are different, the
ordinary differential equations (ODEs for short) derived from them include the
ODEs of [10]. As can be seen from these previous studies, (1.5) is not easy to
analyze. However, as shown in [10, 11, 14, 15], it is possible to study the dynamics of
this ODE to infinity in the framework that combines Poincaré compactification (for
instance, see [10, Section 2] and [4, 14, 15] for the details of it), classical dynamical
systems theory, and geometric methods for desingularization of vector fields (see [4,
Section 3] and references therein). By using these methods, the whole dynamics on
the phase space R2 including infinity (denoted by Poincaré disk) generated by the
two-dimensional differential equation (1.5) is obtained. In other words, from these
dynamics, we expect to categorize all traveling waves as in these previous studies.
Furthermore, the strength of the analysis in this framework is that the existence
of connecting orbits in dynamical systems including infinity not only proves the
existence of these traveling waves, provides information about their shapes but
allows us to study their asymptotic behavior.

This article is organized as follows. In the next section, we reproduce the termi-
nology defined in [10] and the main results obtained, and state the main results of
this paper. In Section 3, we obtain the dynamics of (1.5) on the Poincaré disk via
Poincaré compactification and basic theory of the dynamical systems. The proof
of Theorems will be completed in Section 4. Section 5 is devoted to the concluding
remarks.

2. Known and main results

Before we state the main results of this paper, we reproduce the following def-
initions of quasi traveling waves and quasi traveling waves with quenching. The
reason for this is that the main result in this paper will be compared later with
that in [10] (see Proposition 2.3 and Theorem 2.5). Here, quenching in ODE (1.5)
roughly means that the following holds

φ(ξ)→ 0, |φ′(ξ)| → +∞, as ξ → |ξ∗|
with |ξ∗| < +∞.

Definition 2.1 (Definition 1, [10]). We say that a function u(t, x) ≡ 1− φ(ξ) is a
quasi traveling wave of (1.2) if the function φ(ξ) is a solution of (1.3) with ε = 0
on a finite interval or semi-infinite interval.

Definition 2.2 (Definition 2, [10]). We say that a function u(t, x) ≡ 1 − φ(ξ) is
a quasi traveling wave with quenching of (1.2) if the function u(t, x) is a quasi
traveling wave of (1.2) on a finite interval (resp. semi-infinite interval) such that φ
reaches 0 and |φ′| becomes infinite at both ends of the interval (resp. finite end point
of the semi-infinite interval). More precisely, we have the following three cases:

(I) The function φ(ξ) is a solution of (1.3) with ε = 0 on a semi-infinite interval
(−∞, ξ∗) (φ(ξ) ∈ C2(−∞, ξ∗) ∩ C0(−∞, ξ∗], |ξ∗| <∞), and satisfies

lim
ξ→ξ∗−0

φ(ξ) = 0 and lim
ξ→ξ∗−0

|ψ(ξ)| =∞.

(II) The function φ(ξ) is a solution of (1.3) with ε = 0 on a semi-infinite interval
(ξ∗,+∞) (φ(ξ) ∈ C2(ξ∗,+∞) ∩ C0[ξ∗,+∞), |ξ∗| <∞), and satisfies

lim
ξ→ξ∗+0

φ(ξ) = 0 and lim
ξ→ξ∗+0

|ψ(ξ)| =∞.
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(III) The function φ(ξ) is a solution of (1.3) with ε = 0 on a finite interval
(ξ−, ξ+) (φ(ξ) ∈ C2(ξ−, ξ+) ∩ C0[ξ−, ξ+], −∞ < ξ− < ξ+ < +∞), and
satisfies the following

lim
ξ→ξ+−0

φ(ξ) = 0, lim
ξ→ξ−+0

φ(ξ) = 0,

lim
ξ→ξ+−0

|ψ(ξ)| =∞, lim
ξ→ξ−+0

|ψ(ξ)| =∞.

With these definitions, we review the results obtained in [10]. Note that the
meaning of the symbol F (η) ∼ G(η) as η → +∞ is

lim
η→+∞

∣∣F (η)

G(η)

∣∣ = 1.

Proposition 2.3 (Theorem 2, [10]). Assume that α ∈ 2N. Then (1.2) possesses a
family of quasi traveling waves with quenching on a finite interval. Moreover, each
quasi traveling wave with quenching u(t, x) = 1− φ(ξ) satisfies the following:

• limξ→ξ+−0 φ(ξ) = 0, limξ→ξ−+0 φ(ξ) = 0, limξ→ξ+−0 ψ(ξ) =∞,
limξ→ξ−+0 ψ(ξ) = −∞.
• φ(ξ) < 0 holds for ξ ∈ (ξ−, ξ+).
• There exists a constant ξ∗ ∈ (ξ−, ξ+) such that ψ(ξ) < 0 for ξ ∈ (ξ−, ξ∗),
ψ(ξ∗) = 0, and ψ(ξ) > 0 for ξ ∈ (ξ∗, ξ+).

In addition, the quenching rates are

φ(ξ) ∼ −C(ξ+ − ξ)
2

α+1

ψ(ξ) ∼ C (ξ+ − ξ)−
α−1
α+1

(2.1)

as ξ → ξ+ − 0, and

φ(ξ) ∼ −C(ξ − ξ−)
2

α+1

ψ(ξ) ∼ −C (ξ − ξ−)
−α−1
α+1

(2.2)

as ξ → ξ− + 0, with C > 0.

Remark 2.4. Note that the asymptotic behavior for (2.1) and (2.2) in Proposition
2.3 differs in the exponential part from the asymptotic behavior obtained in [10,
Theorem 2] and [11, Proposition 1]. The reason for this is that, after the publication
of [10, 11], we chose more appropriate principal terms in the computational pro-
cess of deriving the asymptotic behavior, which resulted in higher accuracy. This
improvement is described in detail in Subsection 4.1. Furthermore, this improve-
ment has already been introduced into [12], and the asymptotic behavior, which
was previously difficult to derive, has been obtained. However, the underlying idea
is similar to the previous ones.

Next, the main results of this paper are described. Figures 1, 2, and 3 show the
schematic pictures of traveling waves obtained by each theorem.

Theorem 2.5. Assume that α ∈ 2N, ε > 0, and 1 − ε2c2 > 0. Then, for a
given positive constant 0 < c < 1/ε, there exists a family of the functions (which
corresponds to a family of the orbits of (1.5)) defined on the finite intervals such
that each function u(t, x) satisfies equation (1.1) on a finite interval (ξ−, ξ+) (−∞ <
ξ− < ξ+ < +∞). Moreover, each function u(t, x) ≡ 1−φ(ξ) satisfies the following:

• limξ→ξ+−0 φ(ξ) = 0, limξ→ξ−+0 φ(ξ) = 0, limξ→ξ+−0 ψ(ξ) =∞,
limξ→ξ−+0 ψ(ξ) = −∞.
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• φ(ξ) < 0 holds for ξ ∈ (ξ−, ξ+).
• There exists a constant ξ∗ ∈ (ξ−, ξ+) such that the following holds: ψ(ξ) < 0

for ξ ∈ (ξ−, ξ∗), ψ(ξ∗) = 0 and ψ(ξ) > 0 for ξ ∈ (ξ∗, ξ+).

In addition, the asymptotic behavior for ξ → ξ+ − 0 and ξ → ξ− + 0 are same as
(2.1) and (2.2).

On the other hand, assume that 1−ε2c2 < 0. Then, for a given positive constant
c > 1/ε, there exists a family of the functions (which corresponds to a family of the
orbits of (1.5)) defined on the finite intervals such that each function u(t, x) satisfies
equation (1.1) on a finite interval (ξ−, ξ+) (−∞ < ξ− < ξ+ < +∞). Moreover,
each function u(t, x) ≡ 1− φ(ξ) satisfies the following:

• limξ→ξ+−0 φ(ξ) = 0, limξ→ξ−+0 φ(ξ) = 0, limξ→ξ+−0 ψ(ξ) = −∞,
limξ→ξ−+0 ψ(ξ) = +∞.

• φ(ξ) > 0 holds for ξ ∈ (ξ−, ξ+).
• There exists a constant ξ∗ ∈ (ξ−, ξ+) such that ψ(ξ) > 0 for ξ ∈ (ξ−, ξ∗),
ψ(ξ∗) = 0 and ψ(ξ) < 0 for ξ ∈ (ξ∗, ξ+).

In addition, the asymptotic behaviors are

φ(ξ) ∼ C(ξ+ − ξ)
2

α+1

ψ(ξ) ∼ −C (ξ+ − ξ)−
α−1
α+1

(2.3)

as ξ → ξ+ − 0, and

φ(ξ) ∼ C(ξ − ξ−)
2

α+1

ψ(ξ) ∼ C (ξ − ξ−)
−α−1
α+1

(2.4)

as ξ → ξ− + 0, with C > 0.

ξ

u = 1− φ

ξ+ξ−

u = 1

0

ξ

u = 1− φ

ξ+ξ−

u = 1

0

Figure 1. Schematic picture of the functions defined on the finite
interval such that each function u(t, x) ≡ 1−φ(ξ) satisfies equation
(1.1) on a finite interval (ξ−, ξ+) in Theorem 2.5. Here it should
be noted that the position of the singular points ξ− and ξ+ are
not determined in our studies, however, they are shown in this
figure for the convenience. [Left: In the case that 1 − ε2c2 > 0.]
[Right: In the case that 1 − ε2c2 < 0.] Note that in the figure on
the right, the trajectory in which the minimum of u is below the
ξ-axis is chosen from among the infinitely many trajectories that
correspond to Theorem 2.5.
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Remark 2.6. In Theorem 2.5, the result for the case 1 − ε2c2 > 0 is almost the
same as in Proposition 2.3. However, since (1.1) is a hyperbolic equation and there
is room for consideration in adopting Definition 2.2 as a rigorous discussion of the
mathematical formulation of the solution, Theorem 2.5 is phrased as the existence
of a family of functions satisfying the equation. Notable points in Theorem 2.5 are
as follows:

(i) In addition, the asymptotic behavior obtained in the above theorem is
the same as Proposition 2.3, except for the difference in the sign of the
coefficients. This means that the behavior of these as ε → 0 does not
change. This may be due to the fact that the principal part of the derived
vector field (3.2) does not change.

(ii) The most important point to be emphasized in this result is that a condition
on the wave speed that is not obtained in [10] appears, and when the wave
speed exceeds c = 1/ε, that is, when the wave speed is sufficiently large,
traveling waves that are not seen in [10] are observed (see Figure 1 and [10,
Figure 1]).

Theorem 2.7. Assume that α ∈ 2N, ε > 0, and 1 − ε2c2 > 0. Then, for a given
positive constant 0 < c < 1/ε, there exists a family of the functions (which cor-
responds to a family of the orbits of (1.5)) defined on the semi-infinite intervals
such that each function u(t, x) satisfies (1.1) on a semi-infinite interval (−∞, ξ+)
(−∞ < ξ+ < +∞). Moreover, each function u(t, x) ≡ 1− φ(ξ) satisfies the follow-
ing:

• limξ→ξ+−0 φ(ξ) = 0, limξ→−∞ φ(ξ) = −∞, limξ→ξ+−0 ψ(ξ) =∞.
• φ(ξ) < 0 holds for ξ ∈ (−∞, ξ+).

In addition, the asymptotic behavior for ξ → ξ+ − 0 and ξ → −∞ are (2.1) and

φ(ξ) ∼ −Ce−
c

1−ε2c2 ξ asξ → −∞ (2.5)

with C > 0.
On the other hand, assume that 1−ε2c2 < 0. Then, for a given positive constant

c > 1/ε, there exists a family of the functions (which corresponds to a family of the
orbits of (1.5)) defined on the semi-infinite intervals such that each function u(t, x)
satisfies (1.1) on a semi-infinite interval (ξ−,+∞) (−∞ < ξ− < +∞). Moreover,
each function u(t, x) ≡ 1− φ(ξ) satisfies the following:

• limξ→ξ−+0 φ(ξ) = 0, limξ→∞ φ(ξ) = +∞, limξ→ξ−+0 ψ(ξ) = +∞.
• φ(ξ) > 0 holds for ξ ∈ (ξ−,+∞).

In addition, the asymptotic behavior for ξ → ξ− + 0 and ξ → +∞ are (2.4) and

φ(ξ) ∼ Ce−
c

1−ε2c2 ξ as ξ → +∞ (2.6)

with C > 0.

Theorem 2.8. Assume that α ∈ 2N, ε > 0, and 1 − ε2c2 > 0. Then, for a given
positive constant 0 < c < 1/ε, there exists a family of functions (which corresponds
to a family of the orbits of (1.5)) defined on the semi-infinite intervals such that
each function u(t, x) satisfies (1.1) on a semi-infinite interval (−∞, ξ+) (−∞ <
ξ+ < +∞). Moreover, each function u(t, x) ≡ 1− φ(ξ) satisfies the following:

• limξ→ξ+−0 φ(ξ) = 0, limξ→−∞ φ(ξ) = −∞, limξ→ξ+−0 ψ(ξ) =∞.
• φ(ξ) < 0 holds for ξ ∈ (−∞, ξ+).
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In addition, the asymptotic behavior for ξ → ξ+ − 0 and ξ → −∞ are (2.1) and

φ(ξ) ∼ O(ξ
1

α+1 ),

ψ(ξ) ∼ O((−ξ)− α
α+1 ),

(2.7)

as ξ → −∞.
On the other hand, assume that 1−ε2c2 < 0. Then, for a given positive constant

c > 1/ε, there exists a family of the functions (which corresponds to a family of the
orbits of (1.5)) defined on the semi-infinite intervals such that each function u(t, x)
satisfies equation (1.1) on a semi-infinite interval (ξ−,+∞) (−∞ < ξ− < +∞).
Moreover, each function u(t, x) ≡ 1− φ(ξ) satisfies the following:

• limξ→ξ−+0 φ(ξ) = 0, limξ→+∞ φ(ξ) = +∞, limξ→ξ−+0 ψ(ξ) = +∞.
• φ(ξ) > 0 holds for ξ ∈ (ξ−,+∞).

In addition, the asymptotic behavior for ξ → ξ− + 0 and ξ → +∞ are (2.4) and

φ(ξ) ∼ O(ξ
1

α+1 ),

ψ(ξ) ∼ O((−ξ)− α
α+1 ),

(2.8)

as ξ → +∞.

ξ

u = 1− φ

ξ+

u = 1

0

ξ

u = 1− φ

u = 1

0 ξ−

Figure 2. Schematic pictures of the functions defined on the semi-
infinite interval such that each function u(t, x) ≡ 1− φ(ξ) satisfies
equation (1.1) on a semi-infinite interval in Theorem 2.7 and The-
orem 2.8. Here it should be noted that the position of the singular
point ξ+ (or ξ−) are not determined in our studies, however, they
are shown in these figures for the convenience. [Left: In the case
that 1− ε2c2 > 0.] [Right: In the case that 1− ε2c2 < 0.]

Remark 2.9. Note that the families of functions satisfying the equations obtained
in Theorem 2.7 and Theorem 2.8 are lumped together in a rough form in Figure 2,
although their asymptotic behavior is strictly different.

Theorem 2.10. Assume that α ∈ 2N, ε > 0, and 1− ε2c2 > 0. Then, for a given
positive constant 0 < c < 1/ε, the equation (1.1) has a family of the traveling wave
solutions (which corresponds to a family of the orbits of (1.5)) with singularities at
ξ → −∞ and ξ → +∞. Moreover, its each function u(t, x) ≡ 1− φ(ξ) satisfies the
following:

• limξ→+∞ φ(ξ) = +∞, limξ→−∞ φ(ξ) = +∞.
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• φ(ξ) > 0 holds for ξ ∈ R.
• There exists a constant ξ∗ ∈ R such that the following holds: ψ(ξ) < 0 for
ξ ∈ (−∞, ξ∗), ψ(ξ∗) = 0 and ψ(ξ) > 0 for ξ ∈ (ξ∗,+∞).

In addition, the asymptotic behavior for ξ → +∞ and ξ → −∞ are

φ(ξ) ∼ O(ξ
1

α+1 ),

ψ(ξ) ∼ O((−ξ)− α
α+1 ),

(2.9)

as ξ → +∞, and

φ(ξ) ∼ Ce−
c

1−ε2c2 ξ as ξ → −∞, (2.10)

with C > 0.
On the other hand, assume that 1−ε2c2 < 0. Then, for a given positive constant

c > 1/ε, the equation (1.1) has a family of the traveling wave solutions (which
corresponds to a family of the orbits of (1.5)) with singularities at ξ → −∞ and
ξ → +∞. Moreover, its each function u(t, x) ≡ 1− φ(ξ) satisfies the following:

• limξ→+∞ φ(ξ) = −∞, limξ→−∞ φ(ξ) = −∞.
• φ(ξ) < 0 holds for ξ ∈ R.
• There exists a constant ξ∗ ∈ R such that the following holds: ψ(ξ) > 0 for
ξ ∈ (−∞, ξ∗), ψ(ξ∗) = 0 and ψ(ξ) < 0 for ξ ∈ (ξ∗,+∞).

In addition, the asymptotic behavior for ξ → +∞ and ξ → −∞ are

φ(ξ) ∼ −Ce−
c

1−ε2c2 ξ as ξ → +∞ (2.11)

with C > 0, and

φ(ξ) ∼ O(ξ
1

α+1 ),

ψ(ξ) ∼ O((−ξ)− α
α+1 ),

(2.12)

as ξ → −∞.

ξ

u = 1− φ

u = 1

0

ξ

u = 1− φ

u = 1

0

Figure 3. Schematic picture of the each traveling wave solutions
with the singularities at ξ → −∞ and ξ → +∞ in obtained Theo-
rem 2.10. [Left: In the case that 1− ε2c2 > 0.] [Right: In the case
that 1− ε2c2 < 0.] Note that in the figure on the right, the trajec-
tory in which the maximum of u is above the ξ-axis is chosen from
among the infinitely many trajectories that correspond to Theo-
rem 2.10.
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Remark 2.11. We mentioned that when 1 − ε2c2 = 0, φ(ξ) can be expressed
explicitly as in (1.4). This is the same as the number of order of φ(ξ) in (2.7), (2.8),
(2.9), and (2.12). However, the detailed relationships and mathematical meanings
of these are not known yet, and will be the subject of future work.

Remark 2.12. Some functions obtained in the above Theorems satisfy the equa-
tion only on finite interval or semi-infinite interval. In this paper, we do not discuss
the behavior of the solutions of (1.5) after ψ(ξ) becomes infinity (outside of the
interval on that φ(ξ) satisfies (1.3)). It is necessary that more detailed (and hard)
analysis in order to study the solutions after ψ(ξ) reaches the singularity. So we
leave it open here. It should be noted that equation (1.1) is invariant under transla-
tion for spatial coordinates, so many of the same waves connected together should
also satisfy the equation, except at the points where the derivatives diverge. How-
ever, since our interest in this paper is to study the traveling waves of (1.5) from
the viewpoint of dynamical systems, we do not discuss this paper.

3. Dynamics on the Poincaré disk of (1.5)

In this section, we study R2∪{(φ, ψ) | ‖(φ, ψ)‖ = +∞}, i.e., the dynamics on the
Poincaré disk, by the Poincaré compactification. In order to study the dynamics of
(1.5) on the Poincaré disk, we desingularize it by the time-scale desingularization

ds/dξ = φ−α for α ∈ 2N. (3.1)

Since that α is even, the direction of the time does not change via this desingular-
ization. Then, we have

φ′ = φαψ,

ψ′ = (1− ε2c2)−1(−cφαψ + 1),
(3.2)

where ′ = d
ds , with 1− ε2c2 6= 0. This system (3.2) does not have equilibria.

It should be noted that the time scale desingularization (3.1) is simply multi-
plying the vector field by φα. Then, except the singularity {φ = 0}, the solution
curves of the system (vector field) remain the same but are parameterized differ-
ently. Still, we refer to [13, Section 7.7] and references therein for the analytical
treatments of desingularization with the time rescaling. In what follows, we use
similar time rescaling (re-parameterization of the solution curves) repeatedly to
desingularize the vector fields.

Now we can consider the dynamics of (3.2) on the charts U j and V j (j = 1, 2).
See [4, 10, 11] and their references for definitions of these local coordinates. Note
that these results described below are consistent with the process shown in [10,
Theorem 2] and [11, Proposition 1], assuming ε = 0. For the reader’s convenience,
the calculation process is described here considering the case where ε > 0.

3.1. Dynamics on the chart U2. To obtain the dynamics on the chart U2, we
introduce coordinates (λ, x) by the formulas

φ = x/λ, ψ = 1/λ.

In this chart, it corresponds to φ → 0 and ψ → +∞ and the direction in which x
is positive corresponds to the direction in which φ is positive. See [10, Figure 2] for
a geometric image. Then, these transformations yield

λ′ = (1− ε2c2)−1(cλ−α+1xα − λ2),
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x′ = λ−αxα + (1− ε2c2)−1(cλ−αxα+1 − λx),

where ′ = d
ds . By using the time-scale desingularization dτ/ds = λ−α, we have

λτ = (1− ε2c2)−1(cλxα − λα+2),

xτ = xα + (1− ε2c2)−1(cxα+1 − λα+1x),
(3.3)

where λτ = dλ/dτ and xτ = dx/dτ . System (3.3) has the equilibria

E+
0 : (λ, x) = (0, 0), Ec : (λ, x) = (0,M1), M1 = −(1− ε2c2)c−1.

The Jacobian matrices of the vector field (3.3) at these equilibria are

E+
0 :

(
0 0
0 0

)
, Ec :

(
M2 0
0 M2

)
, M2 =

(1− ε2c2)α−1

cα−1
.

Therefore, Ec is a source when 1 − ε2c2 > 0, and a sink when 1 − ε2c2 < 0. The
equilibrium E+

0 is not hyperbolic. Thus, to determine the dynamics near E+
0 , we

desingularize it by introducing the blow-up coordinates

λ = rα−1λ̄, x = rα+1x̄

(see [4]). Since we are interested in the dynamics on the Poincaré disk, we consider
the dynamics of blow-up vector fields on the charts {λ̄ = 1} and {x̄ = ±1} (see also
[10, 11]).

3.1.1. Dynamics on the chart {λ̄ = 1}. By the change of coordinates λ = rα−1,
x = rα+1x̄, we have

rτ = r(α− 1)−1(1− ε2c2)−1(crα(α+1)x̄α − rα2−1),

x̄τ = 2(α− 1)−1(1− ε2c2)−1(rα
2−1x̄− crα(α+1)x̄α+1) + rα

2−1x̄α.

The time-rescaling dη/dτ = rα
2−1 yields

rη = (α− 1)−1(1− ε2c2)−1(crα+2x̄α − r),
x̄η = 2(α− 1)−1(1− ε2c2)−1(x̄− crα+1x̄α+1) + x̄α,

(3.4)

where rη = dr/dη and x̄η = dx̄/dη. The equilibria of (3.4) on {r = 0} are

E
+

0 : (r, x̄) = (0, 0), E
+

α : (r, x̄) = (0,M3), M3 = [−2(α− 1)−1(1− ε2c2)−1]
1

α−1 .

Note that M3 < 0 when 1− ε2c2 > 0 and M3 > 0 when 1− ε2c2 < 0. The Jacobian
matrices of the vector field (3.4) at these equilibria are

E
+

0 :

(
− 1

(α−1)(1−ε2c2) 0

0 2
(α−1)(1−ε2c2)

)
, E

+

α :

(− 1
(α−1)(1−ε2c2) 0

0 − 2
1−ε2c2

)
.

Therefore, E
+

0 is a saddle, and E
+

α is a sink in the case that 1 − ε2c2 > 0. In

addition, E
+

0 is a saddle, and E
+

α is a source in the case that 1− ε2c2 < 0.
Furthermore, since |−(α−1)−1(1−ε2c2)−1| < |−2(1−ε2c2)−1| holds, trajectories

near E
+

α are tangent to {x̄ = M3, r ≥ 0} as η → +∞. The solutions around E
+

α

are approximated as

r(η) = C1e
− 1

(α−1)(1−ε2c2)
η
(1 + o(1)),

x̄(η) = C2e
− 2

1−ε2c2 η +M3(1 + o(1)),
(3.5)

as η → +∞, with constants C1 and C2.
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3.1.2. Dynamics on the chart {x̄ = 1}. By the change of coordinates λ = rα−1λ̄,

x = rα+1, and time-rescaling dη/dτ = rα
2−1, we have

rη = (α+ 1)−1r + (α+ 1)−1(1− ε2c2)−1(crα+2 − rλ̄α+1),

λ̄η = −(α− 1)(α+ 1)−1λ̄+ (α+ 1)−1(1− ε2c2)−1(2crα+1λ̄− 2λ̄α+2).
(3.6)

If 1 − ε2c2 > 0, then the equilibrium on {r = 0, λ̄ ≥ 0} is (r, λ̄) = (0, 0). The
Jacobian matrix of the vector field (3.6) at this equilibrium is

(0, 0) :

( 1
α+1 0

0 −α−1α+1

)
.

Therefore, the equilibrium (0, 0) is a saddle.
If 1− ε2c2 < 0, system (3.6) has the equilibria on {r = 0, λ̄ ≥ 0}

(r, λ̄) = (0, 0), (r, λ̄) = (0,M4), M4 = [−2−1(α− 1)(1− ε2c2)]
1

α+1 > 0.

The Jacobian matrices of the vector field (3.6) at these equilibria are

(0, 0) :

( 1
α+1 0

0 −α−1α+1

)
, (0,M4) :

(
1
2 0
0 α− 1

)
.

Therefore, the equilibrium (0, 0) is a saddle, and (0,M4) is a source.

3.1.3. Dynamics on the chart {x̄ = −1}. The change of coordinates λ = rα−1λ̄,

x = −rα+1, and time-rescaling dη/dτ = rα
2−1 yield

rη = −(α+ 1)−1r + (α+ 1)−1(1− ε2c2)−1(crα+2 − rλ̄α+1),

λ̄η = (α− 1)(α+ 1)−1λ̄+ (α+ 1)−1(1− ε2c2)−1(2crα+1λ̄− 2λ̄α+2).
(3.7)

If 1− ε2c2 > 0, the system (3.7) has the equilibria on {r = 0, λ̄ ≥ 0}
(r, λ̄) = (0, 0), (r, λ̄) = (0,M5), M5 = [2−1(α− 1)(1− ε2c2)]

1
α+1 > 0.

The Jacobian matrices of the vector field (3.7) at these equilibria are

(0, 0) :

(− 1
α+1 0

0 α−1
α+1

)
, (0,M5) :

(
− 1

2 0
0 −α− 1

)
.

Therefore, the equilibrium (0, 0) is a saddle, and (0,M5) is a sink.
If 1 − ε2c2 < 0, then the equilibrium on {r = 0, λ̄ ≥ 0} is (r, λ̄) = (0, 0).

Eigenvalues of the linearized matrix are −(α + 1)−1 and (α − 1)(α + 1)−1 with
corresponding eigenvectors (1, 0) and (0, 1), respectively. Therefore, the equilibrium
(0, 0) is a saddle.

Combining the dynamics on the charts {λ̄ = 1} and {x̄ = ±1}, we can obtain
the dynamics on U2 (see Figure 4). The figure for the case 1 − ε2c2 < 0 can be
drawn in the same way as for the case 1− ε2c2 > 0.

3.2. Dynamics on the chart V 2. In this chart, it corresponds to φ → 0 and
ψ → −∞ and the direction in which x is negative corresponds to the direction in
which φ is positive. The change of coordinates

φ = −x/λ, ψ = −1/λ

give the projected dynamics of (3.2) on the chart V 2:

λτ = (1− ε2c2)−1(cλxα + λ2+α),

xτ = xα + (1− ε2c2)−1(cxα+1 + λα+1x),
(3.8)
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{λ̄ = 1}

{x̄ = 1}

{x̄ = −1}

λ

x

λ

λ

x

x

λ

λ

x

x

E+
0

U2

E+
0

Figure 4. Schematic pictures of the dynamics of the blow-up vec-
tor fields and U2 in the case that 1− ε2c2 > 0.

where τ is the new variable introduced by dτ/ds = λ(s)−α. The system (3.8) has
the equilibria

E−0 : (λ, x) = (0, 0), Ec′ : (λ, x) = (0,M1), M1 = −(1− ε2c2)c−1.

The Jacobian matrices of the vector field (3.8) at these equilibria are the same as
that of U2.

The system (3.8) can be transformed into (3.3) by the change of coordinates
(λ, x) 7→ (−λ, x). Therefore, it is sufficient to consider the blow-up of singularity
E−0 : (λ, x) = (0, 0) by the formulas

λ = rα−1, x = rα+1x̄ with λ̄ = 1.

Then, we have

rη = (α− 1)−1(1− ε2c2)−1(crα+2x̄α + r),

x̄η = 2(α− 1)−1(1− ε2c2)−1(−x̄− crα+1x̄α+1) + x̄α,
(3.9)

where η satisfies dη/dτ = rα
2−1. The equilibria of (3.9) on {r = 0} are

E
−
0 : (r, x̄) = (0, 0), E

−
α : (r, x̄) = (0,M6), M6 = [2(α− 1)−1(1− ε2c2)−1]

1
α−1 .

Note that M6 > 0 when 1 − ε2c2 > 0 and M6 < 0 when 1 − ε2c2 < 0. The

equilibrium E
−
0 is a saddle with the eigenvalues (α− 1)−1(1− ε2c2)−1 and −2(α−

1)−1(1−ε2c2)−1 whose corresponding eigenvectors are (1, 0) and (0, 1), respectively
for both 1− ε2c2 > 0 and 1− ε2c2 < 0.
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When 1 − ε2c2 > 0 holds, E
−
α is a source with the eigenvalues (α − 1)−1(1 −

ε2c2)−1 and 2(1 − ε2c2)−1 whose corresponding eigenvectors are (1, 0) and (0, 1),

respectively. Furthermore, E
−
α is a sink in the case that 1− ε2c2 < 0.

The solutions around E
−
α are approximated as

r(η) = C1e
1

(α−1)(1−ε2c2)
η
(1 + o(1)),

x̄(η) = C2e
2

1−ε2c2 η +M6(1 + o(1)),

as η → −∞, with constants C1 and C2. This equation will be used later in Subsec-
tion 4.1 to derive the asymptotic behavior for ξ → ξ− + 0.

3.3. Dynamics on the chart U1. Let us study the dynamics on the chart U1. In
this chart, it corresponds to φ→ +∞ and ψ → 0. The transformations

φ = 1/λ, ψ = x/λ

yield
λτ = −λx,

xτ = (1− ε2c2)−1(−cx+ λα+1)− x2, (3.10)

via time-rescaling dτ/ds = λ−α. This system has the equilibria

e+0 : (λ, x) = (0, 0), ec : (λ, x) = (0,M7), M7 = −c(1− ε2c2)−1.

Note that M7 > 0 when 1− ε2c2 < 0 and M7 < 0 when 1− ε2c2 > 0. The Jacobian
matrices of the vector field (3.10) at these equilibria are

e+0 :

(
0 0
0 M7

)
, ec :

(
−M7 0

0 −M7

)
.

Therefore, ec is a source when 1 − ε2c2 > 0, and should matches Ec′ . When
1− ε2c2 < 0, ec is sink and should matches Ec.

In a similar way to [10, 11], the dynamics near e+0 can be determined by the center
manifold theorem (for instance, see [3] for the details of it). The approximation of
the (graph of) center manifold can be obtained as follows:

{(λ, x) | x = λα+1/c+O(λ2α+2)}.
Further, we can see that the dynamics of (3.10) near (0, 0) is topologically equivalent
to the dynamics of the following equation:

λτ = −λα+2/c+O(λ2α+3).

These results were also obtained in [10, 11]. However, we reproduce them since
they will be used in the proof of Theorem 2.10 later.

3.4. Dynamics on the chart V 1. In this chart, it corresponds to φ → −∞ and
ψ → 0. The transformations

φ = −1/λ, ψ = −x/λ
yield

λτ = −λx,
xτ = (1− ε2c2)−1(−cx− λα+1)− x2 (3.11)

via time-rescaling dτ/ds = λ−α. We can see that the system (3.11) can be trans-
formed into the system (3.10) by the change of variables: (λ, x) 7→ (−λ, x). Thus,
with the exception of {λ = 0}, the dynamics of (3.11) is immediately obvious from
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the dynamics of (3.10), however, we summarize the results for the derivation of the
asymptotic behavior (as it is necessary for the proof of Theorem 2.8).

This system has the equilibria

e−0 : (λ, x) = (0, 0), ec′ : (λ, x) = (0,M7), M7 = −c(1− ε2c2)−1.

The Jacobian matrices of the vector field (3.11) at these equilibria are

e−0 :

(
0 0
0 M7

)
, ec′ :

(
−M7 0

0 −M7

)
.

Therefore, ec′ is a source when 1 − ε2c2 > 0, and should matches Ec. When
1 − ε2c2 < 0, ec′ is sink and should matches Ec′ . The dynamics near e−0 can
be determined by the center manifold theorem. In the same way as above, the
approximation of the (graph of) center manifold can be obtained as

{(λ, x) | x = −λα+1/c+O(λ2α+2)}. (3.12)

Further, we can see that the dynamics of (3.11) near (0, 0) is topologically equivalent
to the dynamics of the equation

λτ = λα+2/c+O(λ2α+3). (3.13)

3.5. Dynamics and connecting orbits on the Poincaré disk. Combining the
dynamics on the charts U j and V j (j = 1, 2), we obtain the dynamics on the
Poincaré disk that is equivalent to the dynamics of (1.5) (or (3.2)) in the case that
α is even as the following Proposition (see also Figure 5). We set the phase space
Φ as follows:

Φ = {(φ, ψ) : (φ, ψ) ∈ R2 ∪ {‖(φ, ψ)‖ = +∞}}.
Note that in Figure 5, the circumference corresponds to {‖(φ, ψ)‖ = +∞}.

φ

ψE+
0

E−
0

e−0 e+0

Ec

Ec′

φ

ψE+
0

E−
0

e−0 e+0

Ec

Ec′

Figure 5. Schematic pictures of the dynamics on the Poincaré
disk for (1.5) in the case that α ∈ 2N and ε > 0. [Left: Case
1 − ε2c2 > 0.] [Right: Case 1 − ε2c2 < 0.] See also Fig. 4 for the
dynamics around E+

0 for 1− ε2c2 > 0.

Proposition 3.1. Assume that α ∈ 2N and ε > 0. Then, the dynamics on the
Poincaré disk of the system (1.5) is expressed as Figure 5 in both cases 1−ε2c2 > 0
and 1− ε2c2 < 0.
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Proof. First, the dynamics on the Poincaré disk for the case 1− ε2c2 > 0 is imme-
diately shown by the results of [10, 11]. In exactly the same way as [10, 11], it is
proved that there exists connecting orbits between E−0 and E+

0 . Therefore, we can
conclude the existence of orbits that connect e−0 and E+

0 , Ec and E+
0 , and Ec′ and

e+0 .
Next, we prove it for the case where 1 − ε2c2 < 0. In (1.5), the transformation

of reversing the positive and negative values of 1 − ε2c2 is equivalent to applying
the following transformation:

φ 7→ −φ, ψ 7→ ψ, ξ 7→ −ξ. (3.14)

In fact, (1.5) becomes

φ′ = ψ,

ψ′ = −(1− ε2c2)−1(−cψ + φ−α)

by the transformation in (3.14). This equation corresponds to the reversal of the
sign of 1− ε2c2 in (1.5). Thus, the dynamics on the Poincaré disk for 1− ε2c2 < 0
is a symmetry transformation of (3.14) over that for 1− ε2c2 > 0. This completes
the proof. �

4. Proofs of main results

In this section, we prove the main theorems. If the initial data are located on
Φ\{φ = 0}, the existence of the solutions follows from the standard theory for the
ordinary differential equations. Therefore, we consider the existence of the trajec-
tories that connect equilibria and the detailed dynamics near the equilibria on the
Poincaré disk and their asymptotic behavior. The table 1 shows the correspondence
between each connecting orbit obtained by the proposition and the traveling wave
described in the theorem proved below.

Table 1. The correspondence between each connecting orbit
obtained by the proposition and the traveling wave described in
the theorem proved below.

Theorem Connecting orbits

Theorem 2.5 between E−0 and E+
0

Theorem 2.7 between Ec and E+
0

Theorem 2.8 between e−0 and E+
0 for 1− ε2c2 > 0

between E+
0 and e+0 for 1− ε2c2 < 0.

Theorem 2.10 between E
′
c and e+0 for 1− ε2c2 > 0

between e−0 and E
′
c for 1− ε2c2 < 0.

4.1. Proof of Theorem 2.5.

Proof. The proof of existence of the connecting orbits between E−0 and E+
0 in both

cases 1 − ε2c2 > 0 and 1 − ε2c2 < 0 is obtained in [10, 11], and Proposition 3.1.
Therefore, there exists a family of the functions which corresponds to a family of
the orbits of (1.5).
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Next, we prove the existence of a constant ξ∗ ∈ (ξ−, ξ+). It is sufficient to
show the connecting orbits pass through the line {ψ = 0}. This is evident from
the existence of connecting orbits in both cases 1 − ε2c2 > 0 and 1 − ε2c2 <
0. Furthermore, this means that we are giving information about the increase or
decrease of ψ.

Finally, we compute the asymptotic behavior of the trajectories near the equi-
libria E−0 and E+

0 as follows. This derivation is a refinement of the discussion in
[10, 11]. Note that the basic idea is the same as the previous ones. However, the
detailed principal part is chosen as carefully as in [12] (see Remark 2.4).

Assume that 1− ε2c2 > 0. Using (3.5), we then have

dη

dξ
=
ds

dξ

dτ

ds

dη

dτ
= φ−αλ−αrα

2−1

= r−α−1x̄−α
{
C1e

− 1
(α−1)(1−ε2c2)

η
(1 + o(1))

}−α−1
×
{
C2e

− 2
1−ε2c2 η(1 + o(1)) +M3

}−α
∼ C3e

α+1

(α−1)(1−ε2c2)
η{
C2e

− 2
1−ε2c2 η(1 + o(1)) +M3

}−α
=

C3e
α+1

(α−1)(1−ε2c2)
η{

C2e
− 2

1−ε2c2 η(1 + o(1))
}α

+ α
{
C2e

− 2
1−ε2c2 η(1 + o(1))

}α−1
M3 + · · ·+ (M3)α

∼ C4e
α+1

(α−1)(1−ε2c2)
η

as η → +∞
with constants Cj . As a note, we emphasize that the last part “∼” corresponds to
an improvement from [10, 11] (see Remark 2.4).

From this result, we can obtain

dξ

dη
= C5e

− α+1

(α−1)(1−ε2c2)
η
(1 + o(1)) as η → +∞.

This yields

ξ(η) ∼ C6e
− α+1

(α−1)(1−ε2c2)
η

+ C7, C7 ∈ R.

Setting ξ+ := limη→+∞ ξ(η), we have

ξ+ =

∫ +∞

0

dξ

dη
dη = C5

∫ +∞

0

e
− α+1

(α−1)(1−ε2c2)
η
dη < +∞.

Therefore,

ξ+ − ξ ∼ Ce−
α+1

(α−1)(1−ε2c2)
η

as η → +∞ .

Finally, we obtain

φ(ξ) =
x

λ
=
rα+1x̄

rα−1
= r2x

=
{
C1e

− 1
(α−1)(1−ε2c2)

η
(1 + o(1))

}2{
C2e

− 2
1−ε2c2 η(1 + o(1)) +M3

}
∼ C8e

− 2
(α−1)(1−ε2c2)

η{
C2e

− 2
1−ε2c2 η(1 + o(1)) +M3

}
= C9e

− 2α
(α−1)(1−ε2c2)

η
+ C8 ·M3e

− 2
(α−1)(1−ε2c2)

η

∼ −Ce−
2

(α−1)(1−ε2c2)
η

as η → +∞.
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Note that the process here is also different from the process in [10, 11], as we have
chosen a more appropriate principal term. Here, in the last relation, since

e
− 2α

(α−1)(1−ε2c2)
η
< e
− 2

(α−1)(1−ε2c2)
η

is satisfied by η > 0, we choose the term e
− 2

(α−1)(1−ε2c2)
η

as η → +∞.
From the above results, we obtain

φ(ξ) ∼ −Ce−
2

(α−1)(1−ε2c2)
η ∼ −C(ξ+ − ξ)

2
α+1 as ξ → ξ+ − 0.

Since the trajectories are lying on {φ < 0}, it holds that C > 0. Similarly, the
asymptotic behavior of ψ(ξ) as ξ → ξ+−0 for 1−ε2c2 > 0 is also derived. Therefore,
we can derive (2.1) and (2.2). Furthermore, (2.3) and (2.4) for 1 − ε2c2 < 0 are
derived in exactly the same way. This completes the proof. �

Remark 4.1. Rewriting the process of deriving the asymptotic behavior in the
proof above, we can see that

φ′(ξ) ∼ ψ(ξ) as ξ → ξ+ − 0 .

This implies that the first equation in (1.5) also holds in the sense of asymptotic
behavior. Since this relation does not hold in the results for [10, Theorem 2] and [11,
Proposition 1], we believe that this improvement may have improved the accuracy
of the asymptotic behavior.

4.2. Proof of Theorem 2.7.

Proof. The proof of existence of the connecting orbits between Ec and E+
0 in both

cases 1 − ε2c2 > 0 and 1 − ε2c2 < 0 is obtained in Proposition 3.1. That is,
in the same way as in the proof of Theorem 2.5, a family of the functions which
corresponds to a family of the orbits of (1.5) is shown.

Assume that 1− ε2c2 > 0. In this case, all that remains to be shown is to derive
(2.5). The solutions at the around ec′ on the chart V 1 (matches Ec) have the form

λτ ∼ C1e
−M7τ (1 + o(1)),

xτ ∼ C2e
−M7τ (1 + o(1)) +M7,

M7 = − c

1− ε2c2 ,

where C1 and C2 are constants. Then

dτ

dξ
=
dτ

ds

ds

dξ
= λ−αφ−α = 1 .

This yields

ξ(τ) = τ + C3, (C3 ∈ R).

We can see that ξ → −∞ as τ → −∞. This relationship shows that

τ(ξ) = ξ + C4, (C3 ∈ R) .

Therefore,

φ(ξ) = − 1

λ

∼ −
{
C1e

c
1−ε2c2 τ (1 + o(1))

}−1
∼ −C5e

− c
1−ε2c2 τ
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= −Ce−
c

1−ε2c2 ξ as ξ → −∞
with constants C5 > 0 and C > 0. The reason why C > 0 (C5 > 0) is the
trajectories are lying on {φ < 0}. Therefore, (2.5) can be derived.

Furthermore, (2.6) for 1 − ε2c2 < 0 is derived in exactly the same way. This
completes the proof. �

4.3. Proof of Theorem 2.8.

Proof. Assume that 1−ε2c2 > 0. The existence of the orbits connecting e−0 and E+
0

is as described in Proposition 3.1 above. Note that the same is true for 1− ε2c2 <
0. That is, the existence of the orbits connecting E+

0 and e+0 is as described in
Proposition 3.1 above. As in the previous proofs of the Theorems, this implies the
existence of a family of the functions which corresponds to a family of the orbits of
(1.5).

In this case, all that remains to be shown is to derive (2.7). The proof is almost
identical to the proof of Theorem 3 in [11]. However, there are some symbols and
parts that are different. We briefly reproduce the proof and describe it below for
the reader’s convenience.

If the initial value is on the center manifold, the solution at around e−0 on the

chart V 1 has the form

λ(τ) = α+1

√
1

−α+1
c τ − (α+ 1) ·A0

= O(τ−
1

α+1 ),

x(τ) =
1

(α+ 1)τ + c(α+ 1)A0
+O(λ2α+2) = O(τ−1)

as τ → −∞, with a constant A0. These results are derived (3.12) and (3.13). We
then have

dτ

dξ
=
dτ

ds

ds

dξ
= λ−αφ−α = 1.

This yields τ(ξ) = ξ + C̃ with a constant C̃.

If φ̃(ξ) is a solution of (1.3) (or (1.5)), then φ̃(ξ + θ) is also solution for any
θ ∈ R. Therefore, there exists a solution φ(ξ) such that the following holds:

φ(ξ) = −λ−1 ∼ O(τ
1

α+1 ) ∼ O(ξ
1

α+1 ) as ξ → −∞.
In addition, we can obtain

ψ(ξ) = −xλ−1 ∼ −O(ξ
1

α+1 ) ·O(ξ−1) = O(ξ−
α
α+1 ) as ξ → −∞.

Therefore, (2.7) can be derived.
Furthermore, (2.8) for 1 − ε2c2 < 0 are derived in exactly the same way. This

completes the proof. �

4.4. Proof of Theorem 2.10.

Proof. The existence of the orbits connecting Ec′ and e+0 (resp. e−0 ) in the case that
1− ε2c2 > 0 (resp. 1− ε2c2 < 0) is as described in Proposition 3.1. By focusing on
Ec′ , (2.10) and (2.11) can be proved in the same way as Theorem 2.7. Furthermore,
we assume that 1 − ε2c2 > 0. By focusing on e+0 , (2.9) can be proved in the same
way as Theorem 2.8. Similarly, by focusing on e−0 when 1 − ε2c2 < 0, we obtain
(2.12). This completes the proof. �



EJDE-2023/05 TRAVELING WAVES IN A MEMS TYPE EQUATION 19

5. Concluding remarks

The general MEMS type equation is a combination of hyperbolic and parabolic
equations as shown in (1.1). In addition, the reaction-diffusion equation with ε = 0
is often considered for convenience of analysis and comparison. In this paper, we
studied the existence, information about the shapes, and the asymptotic behavior
of traveling waves with the singularity of equation (1.1) by adding ε2utt to the left-
hand side of the equation treated in [10]. Furthermore, by reviewing the process of
deriving the asymptotic behavior obtained in [10, Theorem 2] and [11, Proposition
1], and by carefully selecting the principal terms, we were able to obtain a better
asymptotic behavior than these results (see Remark 4.1). Even if we add ε2utt,
the asymptotic behavior obtained by improving the derivation process does not
change, and the condition for the wave speed with respect to the shape, which did
not appear in [10], is obtained. In other words, the existence of this term and its
coefficients have a significant effect on the wave speed and the shapes of the trav-
eling waves. These are studied by applying the framework that combines Poincaré
compactification, classical dynamical systems theory, and geometric methods for
the desingularization of vector fields.

Since the addition of this term changes the type of the equation from parabolic
to hyperbolic, a rigorous discussion of the mathematical formulation of the solu-
tion is necessary. As previously mentioned, since the emphasis of this paper is
on discussing how the behavior of traveling waves changes from the viewpoint of
dynamical systems, we do not discuss it here and leave it for future work.
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