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EXISTENCE FOR A NONLOCAL PENROSE-FIFE TYPE
PHASE FIELD SYSTEM WITH INERTIAL TERM

SHUNSUKE KURIMA

ABSTRACT. This article presents a nonlocal Penrose-Fife type phase field sys-
tem with inertial term. We do not know whether we can prove the existence
of solutions to the problem as in Colli-Grasselli-Ito [3] or not. In this article
we introduce a time discretization scheme, then pass to the limit as the time
step h approaches 0, and obtain an error estimate for the difference between
the continuous solution and the discrete solution.

1. INTRODUCTION

Colli-Grasselli-Ito [3] derived the existence of solutions to the parabolic hyper-
bolic Penrose-Fife phase field system

(- %)t +(A(@)e —Au=f inQx(0,7T),
o+ ot — Ap + B(p) +7(p) = N(p)u in Q x (0,7),

du+u=g ondQx(0,7T), (1.1)
1 1
(—a)(o) = a ¢(0) = o, ©:(0)=vo in,

where Q C R? (d = 1,2,3) is a bounded domain with smooth boundary 992, T > 0,
A: R — R is a smooth function which may have quadratic growth, 8: R — R is a
maximal monotone function, 7 : R — R is an anti-monotone function, 0, denotes
differentiation with respect to the outward normal of 0, ug: 2 - R, g : 2 = R
and vy : Q — R are given functions. Moreover, in the case that A(¢) = ¢, they have
proved the uniqueness of solutions to (L.I). Assuming that [3(r)| < c1|r|® + ¢ for
all r € R, where ¢, ¢y > 0 are some constants, we can obtain an estimate for 8(p)
by establishing the L>(0,T; H'(2))-estimate for ¢ and by using the continuity of
the embedding H'(Q) — L%(1Q).
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The existence of solutions to the singular nonlocal phase field system with inertial

term
(Inu)y+ @ —Au=f inQx(0,7),

i+ @i +al-)p—Jxo+Ble) +m(p) =u inQx(0,T),

1.2
O,u=0 ondQ x (0,T), (12)
(Inw)(0) = Inug, ¢(0) = o, ¢(0) =vo inQ
has been studied in [ ], where J : ]Rd — R is an interaction kernel, a(z fQ
y) dy and (Jx@)(x) :== [ J( ©(y) dy for € Q. To derive the L°°(O T; H? (Q))

estimate for fo ds is a key to estabhsh an estimate for (). Indeed, it holds
that

1 1 ¢
2@ 0P = Sle@P + [ il o)e(o,s)ds
0

and
t o~
gl + [ e o) ds+ Blela. 1)
= [ utes)eute.s) ds+ Gluo@) + Blgo@)
t
- / (a@)p (2, 5) — (= 9(5))(2))pe i, 5) ds,
where ﬂ fo s. Moreover, since u > 0 in Q x (0,7"), we see that

t

t
/ u(z, 8)pr(, 8) ds < [loell e xomy) / u(z, s) ds.
0 0

Thus, deriving the L (0, T; H?(Q2))-estimate for fot u(z, s) ds from the first equation
in , using the continuity of the embedding H?(Q) < L*>(), applying the
Young inequality and the Gronwall lemma, we can establish the L (2 x (0,7))-
estimates for ¢; and o, whence we can obtain the L>°(Q x (0, T))-estimate for 5(¢)
by assuming that g is continuous.

It seems that this is the first study of nonlocal Penrose-Fife type phase field
systems with inertial term. So we verify the existence of solutions to the problem

1
(= =), +¢e—Au=f inQx(0,7),

pie T e +al)p—Jxp+Bp) +7(p) =u In Qx(0,T),
du+u=g ondQx(0,7T),
1 1 .
(_7)(0) =" L)0(0) = Yo, SDt(O) =70 I Q7
u ug
where Q C R? (d = 1,2, 3) is a bounded domain with smooth boundary 9. More-
over, we assume the following conditions:
(A1) J(—z) = J(x) for all z € R? and sup,cq [, |J(x — y)|dy < +o0.
(A2) B: R — R is a single-valued maximal monotone function such that there

(1.3)

exists a proper lower semicontinuous convex function ’5\ : R — [0,+00)
satisfying that B(O) =0and 8 = 83, where 83 is the subdifferential of B
Moreover, 3 : R — R is local Lipschitz continuous.

(A3) m:R — R is a Lipschitz continuous function.
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(A4) f e L*(Q x (0,T)), g € L*>(0,T; H'/?(99Q)), g < 0 a.e. on 9N x (0,7,
0 == —= € L*(Q), g > 0 ae. in Q, Inby € L'(Q), w0, vo € L=(N).

Definition 1.1. A pair (u, p) with

1 x
we L0, T HYQ),  — € HY0,T; (H'()") N L=(0,T; (),
© € W2(0,T; L*(Q)) N Wh™(0,T; L™ ()
is called a weak solution of ([1.3)) if (u, ) satisfies

1
<(_E)t’w>(H1(Q))*,H1(s2) + (prw)L2 o) + /Q Vu - Vw + /BQ(“ —gw
= (f,w)r2@q) ae. in (0,7) for all w € H'(Q),
i +or +a()p —Jx o+ B(p) +7(p) =u ae in Qx(0,T),
1

(=2)(0) =00, 9(0) =0, (0) = ac.inQ

Theorem 1.2. Assume that (Al)—(A4) hold. Then there erists a unique weak

solution (u, ) of (1.3).

This article is organized as follows. In Section [2| we introduce a time discretiza-
tion of and set precisely the approximate problem. In Section [3| we prove the
existence for the discrete problem. In Section[4 we establish some uniform estimates
for the approximate problem. Section [5| obtains Cauchy’s criterion for solutions of
the approximate problem and is devoted to the proofs of the existence and unique-
ness of weak solutions to and an error estimate between the solution of
and the solution of the approximate problem.

2. TIME DISCRETIZATION

To prove the existence of weak solutions to (|1.3]) we deal with the discrete prob-
lem

Ont1 —On | Ony1—¢n

7 + N — Atpy1 = fry1 in
Znt1 + Unt1 +a()pn — J x on + B(Pnt1) + T(Pnt1) = Upt1  in Q,
. - (2.1)
Zn+1 = 771“}1 L Upgr = 7%1“}1 2 in Q,
OyUnt1 + Unt1 = gnt1  on 00
forn=0,...,N —1, Wherehz%, N e N,
1
0]' = -
Uj
. kh kh
for j = 0,1,...,N, and fr := % (k—D)h (s)ds, g, = % (k_l)hg(s) ds for k =

1,...,N. Indeed, we can show the existence for (2.1)).

Theorem 2.1. Assume that (Al)-( A4) hold. Then there exists hy € (0,1] such
that for all h € (0, hg) there exists a unique solution of (2.1) satisfying

Upp1 € HA(Q), ©pp1 € L2(Q) forn=0,...,N—1.



4 S. KURIMA EJDE-2023/40

Putting
On(t) =6, + @(t —nh), (2.2)
Bu(t) = on + T — ), (2:3)
Tn(t) == v + @(t — nh) (2.4)

for t € [nh,(n+1)h], n=0,...,N — 1, and
T(t) = i1, On(t) = Oui1s Flt) = Puins 2,(0) = ons  (25)
T(t) = vny1,  Zn(t) = zpg1, FR(t) = faa (2.6)
for t € (nh,(n+1)h],n=0,...,N — 1, we can rewrite (2.1 as
On)e + (Bn)e — Aty = £, in Q x (0,7),
Zn +up + a’(')fh —J % fh + B(Eh) + F(@h) = up in Q x (07T>7
Zn = (Un)t; Un = (@n)e in Q2 x(0,T),
_ 1 (2.7)
Op=—— inQx(0,7),
up,
Oup +up =g, on dQx(0,T),
01(0) = 6o, $1(0) = o, Th(0) = vy in Q.
Here we can check directly the following identities by —:

108l Lo (0,752 (52)) = max{]|0oll L2 (e 1Phl| Lo (07522 (2)) } (2.8)
@nll Lo (0,7; (2)) = max{||oll L= (), [PnllLo(0,7;2 ) }+
Un Lo (0,755 (0)) = max{[[vol Lo (), [Pn || Lo (0,71 (2)) } (2.10)
2
16 — é\hHZLQ(O,T;(Hl(Q))*) = %H(é\h)t”%"’(O,T;(Hl(Q))*)’ (2.11)
171 — @nllLe(o.7:2(0)) = M(@n)ellLoe0,7:2 ) = MIVRllL~ 010, (2-12)
h? h?
[0n — 6h||2L2(o,T;L2(Q)) = §||(5h)tH%2(o,T;L2(Q)) = gHZhHQL?(o,T;H(Q))’ (2.13)
0. =B — h(@n) (2.14)

We can prove Theorem by passing to the limit in (2.7) as h N\, 0. Moreover,
we can obtain the following theorem which asserts an error estimate between the

solution of (|1.3) and the solution of (2.7]).

Theorem 2.2. Let hg be as in Theorem([1.3 Assume that (A1)-(A4) hold. Assume
further that f € WH(0,T; L*(Q)) and g € WHY(0,T; L2(09)). Then there exist
constants hoo € (0,hg) and M > 0 depending on the data such that

1% (@n —w)llcom:ar) + 1@n — elleqom:L2@) + [10h — @tlleqo.m;zz @)
< Mh1/2

for all h € (0, hoo), where (1 % w)(t) = ftw(s) ds for vector-valued functions w

0
summable in (0,T).
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3. EXISTENCE FOR THE DISCRETE PROBLEM
In this section we will show Theorem 211
Lemma 3.1. For allh >0, G € L*(Q), Gag € HY?(0Q), if Goq < 0 a.c. on 99,
then there exists a unique function u € H?(Q) satisfying

1
u<0ae inQ ———hAu=G ae in, Jdu+u=Gyg a.e. on .
U

Proof. We set the operator A : D(A) C L?(Q) — L*(Q) as
Au = —Au—cu for u € D(A) := {u € H*(Q) : d,u +u = Goq a.e. on IN}.

Then this operator is maximal monotone for some constant ¢ > 0. Also, we define
the operator B : D(B) C L?(Q) — L?(Q) as

-1
Bu = —hT for u € D(B) := {u € L*(Q) : u < 0 a.e. in Q}.

Then this operator is maximal monotone. Now we set the function b: D(b) C R —
R as b(r) := _th forr € D(b) :={r e R:r < 0}. Let A > 0, let By be the Yosida
approximation of B and let by be the Yosida approximation of b on R. Then, noting
—1
that by is monotone, u = Aby(u) + (1 + Ab)~1(u), bx(u) = fm > 0, and
Goa < 0 a.e. on 012, we can confirm that
Goabx(u) — C/ uby (u)

(Au, Byu)2(q) :/bi\(u)|Vu|2+/ uby(u) —
Q o0 a9 Q
> Aoa(W) 172 90) — h~H09Q] = eAllboa(u)l|F2(q) + ch Q)
> —max{c, A OQ} A Ba(u)[172(q) + 1)

for all u € D(A) and all A > 0. Therefore we can conclude that the operator A+ B
is maximal monotone (see e.g., Barbu [2] Theorem 2.7]). O

Lemma 3.2. For all G € L*(Q) and all h € (0,min{1,1/||7’|| L (w)}) there exists
a unique solution @ € L?(Q) of the equation

0+ ho + h2B(p) + h*r(p) =G a.e. in Q.
The above lemma can be proved as in [6, Lemma 2.1].
Proof of Theorem[2.1. We can rewrite (2.1)) as
1

Un+1

- hAurH»l = —Pn+1 + hfn+1 + ©n + ana

OpUn41 + Unt1 = Gn+1, (3.1)
On+1 + h@n—i—l + h2ﬂ(§0n+1) + h27r(90n+1)
= h2Up i1 + ©n + oy + ho, — B2a()pn + h2T % @,

To prove Theorem it suffices to establish the existence and uniqueness of so-
lutions to (3.1) in the case that n = 0. Let h € (0,min{1,1/||7'[|zo(r)}). Then,
owing to Lemma for all ¢ € L?(2) there exists a unique function uw € H?(12)

such that

1
*5*}1Aﬂ:*9@+hf1+900+907 0T+ = gi. (3.2)
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Also, we see from Lemma [3.2] that for all u € L?(£2) there exists a unique function
® € L*(Q) such that
P+ hg + h?B(@) + h*m() = h*u+ o + hvo + heo — h?a(-)po + h*J * @o. (3.3)
Thus we can set @ : L2(Q) — L*(Q), ¥ : L2(Q) — L*(Q) and B : L?(Q) — L?()
as
Pp=7, Yu=7p for p,uc L*(Q),
B=Yod.
Moreover, we can obtain that for all p, € L?(Q),
~ Cih -
Byp—B < —
By ¢||L2(Q) S11n_ ||7r’||Loc(R)h2H(‘0 90||L2(Q)

(cf. [7, Proof of Theorem 1.2]). Then there exists ho1 € (0, min{1, 1/||7’|| o ®)})
such that

Cih

L+ h— ||| oo ) h?
for all b € (0, ho1). Hence B : L?(Q2) — L?(f2) is a contraction mapping in L?(Q) for
all h € (0, hp1) and then it follows from the Banach fixed-point theorem that for all
h € (0, ho1) there exists a unique function ¢ € L?(2) such that ¢ = By, € L?(Q).
Thus, for all h € (0, ho1), putting u; := ®p; € H?(2) implies that there exists a
unique pair (u1, 1) € (L*(Q))? satisfying in the case that n = 0. Moreover,
we can prove that there exists hg € (0, ho1) such that for all h € (0, ho) there exists
a constant C; = Cy(h) > 0 such that |p1(z)] < C; for a.a. x € Q (cf. [7, Proof of
Theorem 1.2]). O

€(0,1)

4. UNIFORM ESTIMATES FOR THE DISCRETE PROBLEM
In this section we derive a priori estimates for ([2.7).

Lemma 4.1. Let hg be as in Theorem . Then there exist constants hy € (0, ho)
and C > 0 depending on the data such that

P2 (0.7 2050)) + 1Pn N2 0152202y + [TnlIZ2 0,710y + 10n ]l moe 0,758
+1l ln§h||Loo(0,T;L1(Q)) <C
for all h € (0, hy).

Proof. Multiplying the identity vy, 1 = 5= by he, 1 we obtain

1 1 1
§||90n+1\|%2(9) - 5“%”%2(9) + §||<Pn+1 — @nlli2) = M@nt1vns1)2() (41)
We test the second equation in (2.1 by hv,41 to infer that

1 1 1
§||’Un+1||2Lz(Q) - §||”nH%2(Q) + §|\Un+1 - UnH%mz) + thn+1”%2(Q)
+ (B(Pnt1)s Prt1 — ©n)2() (4.2)
= h(tn+1,Vn41)22(0) — P(T(Pnt1), V1) L2(0)
— h(a(-)pn — J * @n, Vnt1) L2(0)-
Here the condition (A2) leads to the inequality

(B(pnt1)s Pns1 — en)r2@) = 1B(ens) i) — 1B@a)lliry.  (4.3)



EJDE-2023/40 NONLOCAL PENROSE-FIFE TYPE PHASE FIELD SYSTEMS 7

Thus we deduce from (4.1)-(4.3), the Young inequality, (A1), and (A3) that there
exists a constant C7 > 0 such that

1 1 1
§||%0n+1||2L2(Q) - §||<Pn||2L2(Q) + §||80n+1 - <Pn||2L2(Q)

1 1 1
+ §||Un+1H%2(Q) - §an||2m(ﬂ) + §||Un+1 - Un||2L2(Q) + h||Un+1||2L2(Q)
- _ (4.4)
+1B8(ent)llzr @) = 11B(en)llL1 )
< Auns1,vn11)L2@@) + Crh + CillpnialZz) + Cillenlliz()

+ C1||Un+1\|%2(n)

for all h € (0, hg). Next we multiply the first equation in (2.1) by h(1 + up11) to
obtain that

(041 —en,1+un+1)L2(Q) +h/ |Vun+1|2+h/ |un+1|2
Q o0

= h(for1, L+ Uns1)r2() — MUng1, Vng1)L2(@) (4.5)

- h('Un-i-lv 1)L2(Q) - h/ Up+1 + h/ g7z+1(1 + U7L+1)-
oQ o

Here, noting that u,; = —ﬁ and r — 1 > Inr for all » > 0, we have that

(9n+1 - gn; 1+ un+1)L2(Q)
= |0ns1llzr @) = 10nllzr (@) + (Ong1 — Ony tny1) L2(0)
bn
= Wil = IOl + [ (G = 1)
Q Ont1 (4.6)
> 1601300~ [Onlrcoy + [ 12
Q

n+1

~ [nsalore) ~ [lire + [ (~Inbpis +1n6).
There exist constants C,, C* > 0 such that
CullIVwlZ2(q) + lwlZ200) < lwling < C*UIVWl a0 + lwlliza0) (4.7)

for all w € H(Q). Therefore we see from (4.5)-(4.7) and the Young inequality that
there exists a constant Cy > 0 such that

1
[0 sallzsie) = nllzey + [ (<1060ss +106,) + sehllunia i o

< Rt 0ni1) 2 + Coh o+ Cohl fusa 30y + CobllgnialBaony 49
+ C2h||'”n+1||2L2(Q)



8 S. KURIMA EJDE-2023/40

for all h € (0, hg). Therefore we add (4.4)) to (4.8) and sum over n =0,...,m — 1
with 1 <m < N to derive that

1 1 ~
§||%0m||i2(9) + §\|Um||2L2(Q) + [1Bem)ll 1 ()

1 =
+ 10m L) — / In6, + TC“kh Z [tnt1 17 ()

—_

< Slleollzze) + 5 ||U0HL2(Q) + ||5(<P0)||L1(Q) + 100l L1 () — /911190 (4.9)

[\

m—1 m—1

(01 + CQ)T + Cgh Z ||.fn+1||L2 () + C2h Z ||g7l+1||L2(89
n=0
m—1 m—1

+2010 ) llentlzzi) + (C1 4 Co)h Y [lvnsa 720
n=0 n=0

On the other hand,
1
1012 o —/1n9 = [0 =106, > 5 [@utmon). (@10)
Q

Thus it follows from (4.9) and ( - ) that

1 1 ~
(5 - 201h)||s0m||%z<m +(5 - (G Cz)h)llvm\\%zm) +18(em)llLr @

1
+ 3 10mllze @) + *||1n9m||L1 @ * 5l Z tnsalF )

1 1
< §H<P0||2L2(Q) + 5””0“%2(9) +18(0) @) + 190ll 21 () + | 0ol 110
m—1 m—1

+(Cr+ CO)T +Coh Y Nl fusaBaay + Cob 3 lgmsl32(00)
n=0 n=0

m—1 m—1

+2C1h Z H@j”%z(ﬂ) + (C1 + C2)h Z H”J'”%Z(Q)

Jj=0 Jj=0

and then there exist constants Cs > 0 and hy € (0, ho) such that

lemlZ2(0) + lvmlZ20y + 18(0m)llLi @

m—1
+10mllz1@) + IO llr0) + 1 Z ||Un+1||:;11(9)
n=0
m—1 m—1
< C3+Csh Z lpilIZ20) + Csh Z 011720
7=0 7=0

for all h € (0,h;) and m = 1,..., N. Therefore, owing to the discrete Gronwall
lemma (see e.g., [5, Prop. 2.2.1]), there exists a constant Cy > 0 such that

lpmlI 72y + lvmll7z (@) + 18(em)lLi@)
m—1

+ 0mllzr ) + 1Ol i) + 5D uns ) < Ca
n=0
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for all h € (0,h1) and m=1,...,N. O

Lemma 4.2. Let hy be as in Lemma . Then there exist constants hs € (0, hq)
and C > 0 depending on the data such that

108117 (0,7 £2(02)) + 1 10O II72 0,7 11102y < C
for all h € (0, ha).
Proof. Testing the first equation in (2.1)) by k6,41 leads to the identity

1 1 1
§||9n+1H%2(Q) - §H9n||2L2(Q) + 51041 = Onll72(0) + PM(=Atni1,0n41)12()

= h(fnt150n11)22(0) — MVnt1,0n11)22(0)-
(4.11)

Here, since u,41 = —%

e On+1 >0, and g,+1 < 0, we have that

h(=Auny1,0n11)12(0)

:h/vun 1V0n 1+h/ Unp 19n 17h/ 9n 1977,1
0 + + 00 + + 00 + + (412)

zh/ﬂvmﬁﬂﬁfmmn
Q

Therefore we can verify that Lemma holds by combining (.11)), (#.12), by
summing over n = 0,...,m—1 with 1 <m < N, by applying the discrete Gronwall

lemma, Lemma the Poincaré-Wirtinger inequality. O

Lemma 4.3. Let hy be as in Lemma [[.2 Then there exists a constant C > 0
depending on the data such that

[1(Or)¢ll 20,71 (2))7) < C
for all h € (0, hg).
Proof. We can obtain this lemma by the first equation in (2.7) and Lemma[4.1] O

Lemma 4.4. Let hy be as in Lemma [[.3 Then there exists a constant C > 0
depending on the data such that

m—1
hlgffév H Z%(_u"*l)HHz(Q) <cC
for all h € (0, ha).

Proof. We can prove this lemma by Lemmas [£.1] [I.2] and the elliptic regularity
theory (cf. [7, Proof of Lemma 4.5]). O

Lemma 4.5. Let ho be as in Lemma . Then there exist constants hg € (0, ha)
and C' > 0 depending on the data such that

H@h”%w(ﬂx(o,q’)) + H@thLoo(Qx(o,T)) <C

for all h € (0, hs).
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Proof. From [7, Proof of Lemma 4.6], we can confirm that there exists a constant
C1 > 0 such that

m—1

m—1
1 1
§|‘Pm($)|2 + §|Um($)|2 <h Z Un+1(2)Un41(2) + Crh Z ||‘Pn+1”%m(§2)
=0 =0 (4.13)

m—1

+ C1h Z ||vn+1H%oo(Q) +C

n=0
for all h € (0,h2) and for a.a. x € Q, m = 1,...,N. Here, noting that —u; > 0
a.e. in  for 5 =0,1,..., N, we deduce from Lemma and the continuity of the
embedding H2(Q) < L>(12) that there exists a constant Cy > 0 such that

DY s @na(2) = b Y (<t () (v (@)

m—1
< - oo -

m—1
< oo -
< (s, Doalomion )M 32 (<)
< oo
_C'Qlénn?%(NvaHL )

for all h € (0,h2) and for a.a. x € Q, m =1,...,N. Thus we see from (4.13)) and
[ET3) that

1 1
Slem@) + Slom (@)

m—1 m—1
<C ax [vm|| Lo () + C1h Z lent1lFe () + Cih Z [0n 111170 (02 + Ch
- = n=0 n=0

for a.a. x € Q and for all h € (0,hs), m =1,..., N, whence the inequality

1 1
§||S0m||2Loo(Q) + §||Um||%oc(sz)

m—1 m—1
< Gy max Jomllzei +Cih Y [ensillimi@) +C1h Y [onsal3 o +
- = n=0 n=0

holds. Then there exist constants h3 € (0, h2) and C3 > 0 such that

el @) + lomll7 (o)

m—1 m—1
<Cj (Jax vm | Lo (@) + Csh Zo ||<Pj||2Loo(Q) + Csh Z;) ij||2L°°(Q) +Cs
1= 1=

for all h € (0,h3) and m = 1,...,N. Hence by the discrete Gronwall lemma there
exists a constant Cy > 0 such that

[mlm oy + om e @y < Ca+ Ca s lom 2o
for all h € (0, h3) and m =1,..., N. Therefore it holds that

2 2
1§mnng H@m”Loo(Q) + 1%1717?%(N HUmHLoo(Q) <Cy+Cy 1%2?%(1\[ [vm ll 2= (@)
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1 C3?
2 4
<Cy+ 5 max ||omlfe o) +

2 1<m<N 2
which leads to Lemma [4.5] |

Lemma 4.6. Let hy be as in Lemma [[.5, Then there exists a constant C > 0
depending on the data such that

1, | @x0,7)) < C
for all h € (0, h3).
Proof. This lemma can be obtained by (A4) and Lemma O

Lemma 4.7. Let hs be as in Lemma [[.5, Then there exists a constant C > 0
depending on the data such that

18@n)llL@x 1)) <C
for all h € (0, hs).
Proof. We can prove this lemma by the continuity of § and Lemma 4.5 (]

Lemma 4.8. Let hy be as in Lemma [{.5. Then there exists a constant C > 0
depending on the data such that

1ZrllL2(0.1:22(0)) < C
for all h € (0, h3).
Proof. We can verify that this lemma holds by the second equation in (2.7)), Lemmas

4.7] and the conditions (A1), (A3). O

Lemma 4.9. Let hs be as in Lemma [{.5. Then there exists a constant C > 0
depending on the data such that
Heh||H1(O,T;(Hl(ﬂ))*)ﬂL”(O,T;LQ(Q)) + Hah”Hl(O,T;LQ(Q))ﬂLOO(Qx(O,T))
+|@nllwr. 0,70 ) < C
for all h € (0, hg).

Proof. Lemmas along with (2.8)-(2.10]), lead to Lemma |
5. EXISTENCE FOR (1.3)) AND ERROR ESTIMATE

In this section we will derive the existence and uniqueness of solutions to (1.3)) by
passing to the limit in (2.7) as h N\, 0 and will establish an error estimate between

the solution of (1.3) and the solution of (2.7).

Lemma 5.1. Let h3 be as in Lemma[[.5. Then there exists a constant M; > 0
depending on the data such that

11 % (@ =) ()l 0

gwam+7w+MgAna*am—ﬂ»x$mmmds
(5.1)

t
+M[Jm@—a@ﬁmwwwwm—ﬂﬁmmmm

+ Millgy, = G- 172072209
for all hy7 € (0,hs3) and all t € [0,T).
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Proof. We have that
(Oh — 0., w) 12() + (Bh — Py ) L2(0) + /Q V(1 * (@p —r)) - Vw
+/ (1% (@p —a,))w (5.2)
20
(O (=T + [ 0+ @=g

a.e. in (0,7T) for all w € H'(Q2). Taking w = uy, — @, in (5.2) and integrating over
(0,t), where ¢ € [0,T], we have

/ (On(s) — 0,(5), Tn(s) — Tr(5)) 2(c2) s
0

+ [ @5) = 2006, T5) = (5D 2 s+ IV (L (@ = 7)) 3
I @ =T o) (53)
= [ T =T (0 (@ = ) () o s

[ ([ e @=ge0 s @ —a)) ds
Here we see from the identity 8, = f%h that

/Ot(gh(s) —0,(5), an(s) — s (s)) 12 () ds
/t <§ (s) = On(s),un(s )—ﬂ7(5)>

(H ()", H ()

/ (8) _ET(8)>(H1(Q))*,H1(Q) 5 (54)
/ — (U, (s)), Un(s) —ur(s))r2(q) ds
7/0 <9h( ) = On(s), Un(s) _ﬂ7(8)>(H1(Q>)*,H1(Q) ’

t
+ gTs—é\Ts,ﬂ s)—u,(s ds,
R CECEAEEADELAT) N——

where a(r) := —1/r for r € D(a) := {r € R | r < 0} and the monotonicity of «
was used. Integrating by parts with respect to time yields that

A@Mﬁ—@@ﬁMﬁ—m@hmws
=Amw@—mmMn@ﬁmW@m@w
= (L% (@ — ) (0), (1% (@ — 1) (6)) 120y
—A@Mﬁﬂﬂ%ﬂﬂm—mmwwmw



EJDE-2023/40 NONLOCAL PENROSE-FIFE TYPE PHASE FIELD SYSTEMS 13

Also, it holds that

/0 (1% (Fo = F)($), 0 (5) — T (5)) 2(cn) ds

/0 (L% (fr = F2))(5), (L (@n —r))'(5)) 12(0) ds

(5.6)
= (1 (P = F)O), (Ux (@~ ) (1) 2
~ [ Fule) = 79 (1 (@ = ) () 2 ds
and
[ ([ 0@ =g ~ () ds
= [ (] 0@ 300 @ -y ) ds -

- / (L% (@ — 3 )1 * (@, — 1) (1)
o0

[ ([ @560 @ 56 as.

Therefore, since Tp — Uy = Up — U + Uy — Uy + U, — Uy, We can prove Lemma,
by (5.3)-(5.7), the Schwarz inequality, the Young inequality, (2.11)), (2.13), Lemmas
EIE3ES O

Lemma 5.2. Let hs be as in Lemma[{.5. Then there exists a constant My > 0
depending on the data such that

15w () = B+ (B)IIZ2 () + 150() = B (D720

t
< My(h+ 1)+ My / 131(5) — B (3)] 20y ds
t
M, / 15(5) — B (3)]12c0) 5 + Mal| (L% (@ — Tr)) (D) 2110

for all h,7 € (0, h3) and all t € [0,T).

Proof. We see from ([2.14)) and Lemma that there exists a constant C; > 0 such
that

[ 2,6~ £,
<3 / IB05) = BNy ds 4387 [ 100
(5.9)
+3r° / 1(@0)e(5) 30 ds

<3/ 1B4(5) — B (5)|[22(cy) ds + C1h? + G2
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for all h,7 € (0,h3) and all ¢t € [0,7]. Here, owing to (2.12) and Lemma it
holds that there exists a constant Cy > 0 such that

t
3 ; 1B1(s) = B, ()72 ds
t
=3 | @1 () = Pnls) + @r(s) — B, (5) + Pu(s) = Pr(s) 72 ds

t
<9 0|W@XS)—'¢%(@H%%Q)dS4‘9J€ 18:(5) B (8)2ads  (5.10)
+9 [ 180(5) = Bo(5) e

t
S@W+@¥H%N@®—@@ﬁmﬂs

for all h, 7 € (0, hs) and all ¢ € [0,T]. We derive from the identity 75 (s) = (@1)s(s),
(2.13) and Lemma [4.8] that there exists a constant C3 > 0 such that

18n(t) = 7 ()72
= ||/ v (s) — v, (s dsHL2

, (5.11)
y /0 (B0 (5) = Bn(5) + B () = T (5) + B0 (5) — B (5)) | 2o

t
s@ﬁ+@#+@/ﬁ@@—a@mmws
0
for all h, 7 € (0,h3) and all ¢t € [0, T]. Thus, since

U = 0r +on = or Ha()(Ix (g, —¢ ) = (I1x(p, —¢ )
+ 1 (B(pn) = B8(7;)) + 1x (7)) — 7(;))
=1 (up, —u,),

we deduce from (Al), Lemma the local Lipschitz continuity of 3, (A3), and
(5.9)-(5.11) that there exists a constant Cy > 0 such that

[ (8) = 0= (D)1 72(q)

t
gm#+ﬁ+@£”@@—@@ﬁmﬂs (5.12)

t
+C4/O [0n(s) = Ur (5)I122() ds + Call (1% (@ — @) ()7 ()

3) and all ¢ € [0,T]. On the other hand, it follows from the identity

for all h,7 € (0, h
(s), the Schwarz inequality, the Young inequality, (2.13)), Lemmas

Un(s) = (Ph)s
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and [£.9] that there exists a constant Cs > 0 such that
1, . . b PN .
l@n(t) - G-z = /O (Vn(s) = V7 (s), @n(s) — @7 (s))L2(e) ds
t
= [ @) =) 80() — B (3D 120ey 5
0

4 / (8 (5) — Tr (), Bn(s) — B (5))12(cn ds
0 (5.13)

+ / (B (5) — B (), Bn(3) — Pr(5))12(er ds

1 [t N
< Coh+Cyr 4 & / 15(5) = B (3)]12 g s

3 [ 1686 = 3l
for all h, 7 € (0, h3) and all ¢ € [0,T]. Therefore we can show Lemma [5.2] by -

and (E13).

Lemma 5.3. Let hy be as in Lemma @ Then there exists a constant M > 0
depending on the data such that

11 (@n —r)|leqo, s () + 1Pn — D7 lleo. 22 @) + 10h — rlleqo,m;02 ()
< M(hY2 +7Y2) + M|Fy = Follzzomizz i) + Mgy = 3. 220,322 (02)

for all h,7 € (0, hs).

Proof. Combining and leads to the inequality

1 _ IR ~
S @ = T)) ()5 0y + g, 1on () = Br()ll72(0

+ g 00 = 7Ol

< (My + 1)(iH—T)—I—Ml/ 11 % (@n —ur)) ()| F1. () ds

/ 161(5) — B () Bagey ds + (M + 3 / [51(5) — B2(5) |2 ds

+ M|y = FollZ20m2 0 + Maillg, — gT||L2(O,T;L2(BQ))'
Thus by the Gronwall lemma we can obtain Lemma (Il

Proof of Theorem[1.4 From Lemmas [4.1}4.3] .. (.3 the Aubin Lions lemma,
for the compact embedding L?(2) < (Hl(Q)) and properties (2.11))-(2.14)), there

exist some functions u, 6, ¢, £ such that
we L*0,T; H()), 0 € HY(0,T; (H'(Q))") N L>(0,T; L*(Q)),
¢ € W22(0,T; L*()) N W (0, T; L=(9)), & € L=(2 x (0,T))

and

*

b, — 6 weakly* in H'(0,T; (H'(Q))") N L>(0,T; L*()), (5.14)
6, — 0 strongly in C([0,T]; (H'(Q2))"), (5.15)
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a(Tp) =0, — 0  weakly” in L>°(0,T; L*(Q2)), (5.16)
U, — u  weakly in L?(0,T; H*(Q2)), (5.17)

Zn — @y weakly in L2(0,T; L*(Q)), (5.18)

Op — ¢ strongly in C([0,T]; L*(Q)), (5.19)

v, — @ weakly™ in L>(Q x (0,T)), (5.20)

Pn — ¢ weakly® in Wh°(0,T; L>=(9)), (5.21)
@n — ¢ strongly in C([0,T]; L*(Q)), (5.22)

D, — ¢ weakly” in L (Q2 x (0,7)), (5.23)

¥, — ¢ weakly” in L>(Q x (0,T)), (5.24)
B(®),) = & weakly™ in L>°(Q x (0,T)) (5.25)

as h = h; \, 0, where a(r) := —1 for r € D(a) := {r € R | r < 0}. We see from

ETD. Lemmas [ i3 @19, and GI7) thar
[ (@) m o) d

0

T —
:/O (0n(t), n (1)) L2(0) dt

T T
=/ (On(t) = On(t), un(t)) (@)= 11 () dt+/ (On (1), Tn(t)) (a1 (), H1 () dE
0 0
T T
= [ 100w @y dt = [ 00, u(0) 0 d
0 0
as h = hj N\, 0. Thus, noting that o : D(or) C R — R is maximal monotone, we
can obtain that
1
0 =au) = - ae in Q x (0,7) (5.26)
(see, e.g., [I, Lemma 1.3, p. 42]). On the other hand, it follows from ([2.12)), Lemma

and that

1@n — @l 0,1:22(92) < 18n — Prllzeeo,m:02() + 1@n — @llLe(0,1;22())
< Q2R Th | L @x0.1)) T 18k — @lleqor)r@)  (5:27)
— 0

as h = h; N\, 0. Then combining (5.25) and (5.27) yields that

T T
| @m0 o0 d
as h = h; \, 0, and hence it holds that
E=P(p) ae. inQx(0,7). (5.28)

Therefore by (5.14), (5.15), (5.17)-(5.28)), (A1), and (A3), and by observing that
fn — f strongly in L%(0,T;L?(Q?)) and g, — g strongly in L2(0,T; L?(0Q)) as
h ™\ 0 (see e.g., [ Section 5]), we can derive the existence of weak solutions to
. Moreover, we can show the uniqueness of weak solutions to in a similar
way to the proofs of Lemmas and O
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Proof of Theorem[2.3, Since we have from f € L?(0,T; L*(Q)) nWh(0,T; L3())
and g € L2(0,T; L?(0Q)) N WH1(0,T; L2(0€2)) that there exists a constant C; > 0
such that

1Fn = flle20.1:r2(0)) < Cih'/?,
19 — gllz2(0,1:22(00)) < Cih'/?
for all h > 0 (see e.g., [4] Section 5]), we can prove Theorem by Lemma O
Remark 5.4. Even if in [3] we consider the approximation
(aruns + par(un))e + (om)e — Aunr = f - in Q x (0, 7),
(ar)ee + (ear)e +a(-)onr — T+ onm + Bu(pnr) + mlpar)
= —(par(upr))™t in Q2 x (0,7), (5.29)
Opup +upyr =g on 92 x (0,7),
(uar)(0) = —(par(u0)) ™Y, om(0) = wo,  (par)e(0) =wo in Q,
we do not know whether we can establish a priori estimates for or not. Here

MeN, puy = ﬁ7 the function pp; : R — R is defined by
e fr<—(M+1),
pum(r) =< -2 if —(M+1)<r< -5,
M+1 if — g <,

and the function Sj; : R — R is defined by
~M if B(r) < —M,
Bu(r) = ¢ B(r) if —M <B(r) <M,
M if M < B(r).
Although we can obtain that

e 0P = 5lan@ P + [ (ewa.s)eu(e.s)ds

and

10 + [ eada ) ds+ Buslons(z.)

- / (ot (unr (,9))) ™ (—(oan e, 8)) ds + -+

where BM(T) = [, Br(s)ds, we do not know whether the L> (€2 x (0,T'))-estimate
for {fot(pM(uM(x,s)))*l ds}M can be derived or not, and then we do not know
whether the L (2 x (0,T))-estimates for {(¢ar)}ar, {oamr}ar and {B(oar)}ar can
be obtained or not. Even if we replace —(pas(upr)) ™ with ups in (5.29), since the
inequality —ujas > 0 does not hold, we see that

¢

/(*UM(%S))(*(wM)t(ffvs))ds$ I *(sOM)tIILoc(smo,T))/ (—un(z,s))ds,
0 0

whence we do not know whether the L>®(Q x (0,T))-estimates for {(¢ar)t}ar,
{em}r and {B(erp)}am can be established or not. In this paper, we can prove
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the existence of solutions to (1.3) by introducing the time discrete problem (2.1))
and obtain an error estimate between the solution of (|1.3)) and the solution of (2.7)).
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