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EXPONENTIAL STABILITY FOR POROUS THERMOELASTIC

SYSTEMS WITH GURTIN-PIPKIN FLUX

JIANGHAO HAO, JING YANG

Abstract. In this article, we study the stability of a porous thermoelastic

system with Gurtin-Pipkin flux. Under suitable assumptions for the derivative
of the heat flux relaxation kernel, we establish the existence and uniqueness of

solution by applying the semigroup theory, and prove the exponential stability

of system without considering the wave velocity by the means of estimates of
the resolvent operator norm.

1. Introduction

In this work, we consider the porous thermoelastic transmission system with
Gurtin-Pipkin flux,

ρutt − µuxx − bϕx − γuxxt = 0 in (0, 1)× R+,

Jϕtt − δϕxx + bux + ξϕ+ βθx = 0 in (0, 1)× R+,

cθt + qx + βϕxt = 0 in (0, 1)× R+,

(1.1)

where R+ = [0,∞) and

q = −
∫ t

−∞
g(t− s)θx(x, s) ds. (1.2)

This system of equations was firstly derived by Gurtin and Pipkin [1]. The initial
and boundary conditions for system (1.1) are as follows,

u(x, 0) = u0(x), ut(x, 0) = u1(x) in (0, 1),

ϕ(x, 0) = ϕ0(x), ϕt(x, 0) = ϕ1(x) in (0, 1),

θ(x, t) = θ0(x,−t) in (0, 1)× (−∞, 0],

u(0, t) = u(1, t) = ϕx(0, t) = ϕx(1, t) = 0 in R+,

θ(0, t) = θ(1, t) = 0 in R.

(1.3)

Here, u is transversal displacement, ϕ is the volume fraction, θ temperature, and q
is the heat flux. We assume the coefficients ρ, J, c, µ, b, δ, γ, ξ are positive constants
such that µξ ≥ b2. The heat conductivity relaxation kernel g > 0 and the parameter
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β denotes a non-zero coupling coefficient. Note that the coupling coefficient does
not play an important role in the analysis.

The system we are studying highlights the heat flux q, which can be used in some
materials to describe how memory effects can dominate. As far as we know, q comes
in many forms and is used in a variety of systems, such as thermoelastic systems,
Timoshenko systems, Bresse systems and so on. When heat flux q is expressed
by Fourier’s law or Cattaneo’s law, a large number of scholars have studied the
existence and asymptotic behavior of solutions for related systems.

When the heat flux q is in terms of Fourier’s law, we have

q = −kθx. (1.4)

Casas and Quintanilla [2] studied the thermoelastic system

ρutt − µuxx − bϕx + βθx = 0 in (0, π)× R+,

Jϕtt − αϕxx + bux + ξϕ−mθ + τϕt = 0 in (0, π)× R+,

cθt − kθxx + βutx +mϕt = 0 in (0, π)× R+.

(1.5)

Using the semigroup method, they demonstrated that the system was exponen-
tially stable under a combination of porous dissipation and thermal effect. Apalara
[3] considered the porous thermoelastic system with memory terms, mainly, the
memory term was used to replace the porous dissipation term in (1.5). He used the
energy method to obtain stable results of various forms of solution through different
memory effects. Al-Mahdi et al. [4] considered the new kernel g′(t) ≤ −γ(t)G(g(t))
and established new general decay results in the case of infinite memory. Magaña
and Quintanilla [5] introduced a strong damping mechanism,

ρutt − µuxx − bϕx + βθx − γuxxt = 0 in (0, π)× R+,

Jϕtt − δϕxx + bux + ξϕ−mθ = 0 in (0, π)× R+,

cθt − kθxx + βutx +mϕt = 0 in (0, π)× R+.

(1.6)

They used the same method as in [2] to prove that the system decays slowly in the
presence thermal effect. In addition, they introduced microtemperature and found
out the exponential decay of this system. Also, we can see [6]. Pamplona et al. [7]
obtained the conclusion of (1.6) using higher-order energy methods. Djebabla et
al. [8] studied porous thermoelastic system with time delay, they used the energy
method combined with multiplicative technique and showed the polynomial decay
estimate. We can also refer to [9, 10] to study more thermoelastic systems.

In Timoshenko systems, Rivera and Racke [11] considered the system

ϕtt − k(ϕx + ψ)x = 0 in (0, L)× R+,

ρ2ψtt − bψxx + k(ϕx + ψ) + γθx = 0 in (0, L)× R+,

ρ3θt − κθxx + γψtx = 0 in (0, L)× R+.

(1.7)



EJDE-2023/44 STABILITY FOR POROUS THERMOELASTIC SYSTEMS 3

They demonstrated exponential stability through the damping effect of heat con-
duction. For the angle of rotation system with memory term

ρ1ϕtt − k(ϕx + ψ)x + βθx = 0 in (0, L)× R+,

ρ2ψtt − αψxx + k(ϕx + ψ)− βθ +

∫ t

0

g(t− s)ψxx(s) ds = 0 in (0, L)× R+,

ρ3θt − κθxx + β(ϕxt + ψt) = 0 in (0, L)× R+.

(1.8)
When β = 1, Messaoudi and Fareh [12] established the general decay result by
constructing energy functional for equal wave velocities, that is,

X =
k

ρ1
− α

ρ2
= 0. (1.9)

Later, they used the same method to consider the case of X 6= 0 in [13] and also
obtained the general decay result. When β > 0 and β 6= 1, Almeida Júnior et
al. [14] studied (1.8) at g = 0. Considering the case of X 6= 0, they found that
related semigroups had different polynomial decay rates under different boundary
conditions. The semigroup decays optimally at the rate of 1/

√
t for fully Dirich-

let boundary conditions and at the rate of 1/ 4
√
t for Dirichlet-Neumann-Dirichlet

boundary conditions. In the presence of memory term, Apalara [15] extended the
above system for any β > 0, and obtained a general stability result independent
of wave velocity by using the energy method under Neumann-Dirichlet-Dirichlet
boundary conditions. General forms of Bresse system can also be coupled to ther-
mal effect,

ρ1ϕtt = k(ϕx + ψ + lω)x + lk0(ωx − lϕ) = 0 in (0, π)× R+,

ρ2ψtt = bψxx − k(ϕx + ψ + lω)− γθx in (0, π)× R+,

ρ1ωtt = k0(ωx − lϕ)x − lk(ϕx + ψ + lω) in (0, π)× R+,

ρ3θt = qx − γψtx in (0, π)× R+.

(1.10)

Fatori and Rivera [16] showed the Bresse-Fourier system was exponentially stable
if and only if k = k0 and (1.9) holds. For a discussion of the type III thermoelastic
Bresse system readers may refer to [17] which considered the effect of memory item.

When the heat flux q is in terms of Cattaneo’s law, q satisfies

τ0qt + q + κθx = 0. (1.11)

Fareh and Messaoudi [18] investigated the porous thermoelastic system with un-
necessary positive definite energy

ρutt − µuxx − bϕx = 0 in (0, 1)× R+,

Jϕtt − αϕxx + bux + ξϕ+ βθx = 0 in (0, 1)× R+,

cθt + qx + βϕtx + δθ = 0 in (0, 1)× R+,

τ0qt + q + κθx = 0 in (0, 1)× R+.

(1.12)

Under Dirichlet-Neumann-Dirichlet boundary conditions, they assumed that µξ =
b2 and introduced the stability number

X = β2 −
(cαµ
ρ
− ακ

ρ0

)
−
(J
α
− ρ

µ

)
. (1.13)
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When X = 0, they got exponential stability of this system, and when X 6= 0, this
system was polynomially stable. Fernàndez-Sare and Racke [19] considered the
Timoshenko system

ρ1ϕtt − k(ϕx + ψ)x = 0 in (0, L)× R+,

ρ2ψtt − αψxx + k(ϕx + ψ) + γθx = 0 in (0, L)× R+,

ρ3θt + κqx + γψtx = 0 in (0, L)× R+,

τ0qt + q + κθx = 0 in (0, L)× R+.

(1.14)

They showed that the solution of the above system was not exponentially stable,
even if the condition (1.9) be satisfied. Santos et al. [20] considered (1.14), they
introduced a new stability number

X =
(
τ − κρ1

ρ3

)
−
(
ρ2 −

αρ1
κ

)
−
(τδ2ρ1
κρ3

)
, (1.15)

and established an exponential stability for X = 0. Also, they discussed the case
of X 6= 0, obtained the optimal polynomial decay. For the related Timoshenko
system with frictional damping, we can also refer to [21]. The new Bresse system
established by coupling with (1.11) through (1.10) was studied by Keddi et al. [22],
they used the same method as [18] to get the exponential decay result of system.

For heat flux q of Gurtin-Pipkin type, we refer the readers to [23]. Here, we
briefly describe a few systems. Pata and Vuk [24] considered the linear thermoelastic
system

utt − uxx + θx = 0 in (0, l)× R+,

θt −
∫ t

−∞
g(t− s)θxx(x, s) ds+ utx = 0 in (0, l)× R+.

(1.16)

They used the semigroup method to achieve that the solution of system had an
exponential decay result. And in the latest literature, Fareh [25] studied the porous
thermoelastic system with porous damping

ρutt = µuxx + bϕx − βθx in (0, π)× R+,

Jϕtt = αϕxx − bux − ξϕ+ δθ − τϕt in (0, π)× R+,

cθt =

∫ t

−∞
g(t− s)θxx(x, s) ds− βuxt − δϕt in (0, π)× R+,

(1.17)

and showed that the exponential decay of solution in the presence of the more
general convolution integral form and the porous dissipation coefficient τ . Dell’Oro
and Pata [26] considered the coupled Timoshenko system

ρ1ϕtt − k(ϕx + ψ)x = 0 in (0, l)× R+,

ρ2ψtt − bψxx + k(ϕx + ψ) + δθx = 0 in (0, l)× R+,

ρ3θt −
1

β

∫ ∞
0

g(s)θxx(t− s) ds+ δψtx = 0 in (0, l)× R+.

(1.18)

When (1.2) was applied in (1.10), Dell’Oro [27] studied the asymptotic stability of
the system. They defined the stability number

Xg =
( ρ1
ρ3k
− 1

g(0)k1

)(ρ1
k
− ρ2

b

)
− 1

g(0)k1

ρ1γ
2

ρ3bk
. (1.19)
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and showed that this system was exponentially stable if and only if Xg = 0 and
k = k0.

In this article, we study the asymptotic behavior of a porous thermoelastic sys-
tem with Gurtin-Pipkin flux under strong damping which improves the conclusions
of [7, 28]. Thus, we know that in some materials, memory items can dominate. The
rest of this article is structured as follows: In section 2, we give some preliminaries
and reset the system (1.1)-(1.3) to an abstract Cauchy problem. In section 3, we
give the well-posedness of the system. In in section 4, we give the main conclusion
that the solution of the system is exponentially stable.

2. Preliminaries

In this section, we give the definitions and assumptions for proving the conclusion
of this article. Here (·, ·) and ‖ · ‖ denote the usual scalar product and the norm
in L2(0, 1), respectively. ‖ · ‖−1 denotes the norm of the space H−1(0, 1) which is
the conjugate space of H1

0 (0, 1) and 〈·, ·〉 denotes the conjugate pairs. We set the
spaces

L2
∗(0, 1) =

{
ψ ∈ L2(0, 1) :

∫ 1

0

ψ(x) dx = 0
}
,

H1
∗ (0, 1) = H1(0, 1) ∩ L2

∗(0, 1),

M = L2
k((0,∞);H1

0 (0, 1))

= {ζ(x, s) ∈ L2
(
(0,∞);H1

0 (0, 1)
)

:

∫ ∞
0

k(s)

∫ 1

0

ζ2x(x, s) dx ds < +∞}.

The space M is endowed with the inner product and norm:

〈ζ, ξ〉M =

∫ ∞
0

k(s)
(
ζx(s), ξx(s)

)
ds, ‖ζ‖2M =

∫ ∞
0

k(s)‖ζx(s)‖2 ds.

Meanwhile, we define the space

K = {ζ|ζs ∈M : lim
s→0
‖ζx(s)‖ = 0}.

Now, we define the state space

H = H1
0 (0, 1)× L2(0, 1)×H1

∗ (0, 1)× L2
∗(0, 1)× L2(0, 1)×M

endowed with the inner product

〈Z,Z∗〉H = µ

∫ 1

0

uxu
∗
x dx+ ξ

∫ 1

0

ww∗ dx+ b

∫ 1

0

wu∗x dx+ b

∫ 1

0

w∗ux dx

+ ρ

∫ 1

0

vv∗ dx+ J

∫ 1

0

zz∗ dx+ c

∫ 1

0

θθ∗ dx

+ δ

∫ 1

0

wxw
∗
x dx+

∫ ∞
0

∫ 1

0

k(s)ζx(s)ζ∗x(s) dx ds,

(2.1)

for any Z = (u, v, w, z, θ, ζ)T ∈ H, Z∗ = (u∗, v∗, w∗, z∗, θ∗, ζ∗)T ∈ H.
As in [24, 25], we introduce some new variables

θt(x, s) = θ(x, t− s), s ≥ 0,

ηt(x, s) =

∫ s

0

θt(x, τ) dτ, s ≥ 0,
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which denote the past history and the summed past history of θ up to t, respectively.
We denote

η0(x, s) =

∫ s

0

θ0(x, τ) dτ, s ≥ 0.

We can easily show that

ηtt(x, s) = θ(x, t)− ηts(x, s). (2.2)

Further, we assume that g(∞) = 0 and ηt(x, 0) = lims→0 η
t(x, s) = 0, then

−
∫ t

−∞
g(t− s)θxx(x, s) ds =

∫ ∞
0

g′(s)ηtxx(x, s) ds. (2.3)

Setting k(s) = −g′(s), combining (2.2) and (2.3), system (1.1)-(1.3) can be written
as

ρutt − µuxx − bϕx − γuxxt = 0 in (0, 1)× R+,

Jϕtt − δϕxx + bux + ξϕ+ βθx = 0 in (0, 1)× R+,

cθt −
∫ ∞
0

k(s)ηtxx(x, s) ds+ βϕxt = 0 in (0, 1)× R+,

ηtt(x, s) = θ(x, t)− ηts(x, s) in (0, 1)× R+ × R+,

(2.4)

supplemented with the initial and boundary conditions

u(x, 0) = u0(x), ut(x, 0) = u1(x), ϕ(x, 0) = ϕ0(x) in (0, 1),

ϕt(x, 0) = ϕ1(x), θ(x, 0) = θ0(x) in (0, 1),

η0(x, s) = η0(x, s) in (0, 1)× R+,

u(0, t) = u(1, t) = ϕx(0, t) = ϕx(1, t) = 0 in R+,

θ(0, t) = θ(1, t) = ηt(0, s) = ηt(1, s) = 0 in R+ × R+.

(2.5)

Remark 2.1 ([29]). From (2.4)2 and the boundary conditions, we easily verify that

d2

dt2

∫ 1

0

ϕ(x, t) dx+
ξ

J

∫ 1

0

ϕ(x, t) dx = 0.

By solving this ordinary differential equation and using the initial data of ϕ, we
obtain∫ 1

0

ϕ(x, t) dx =
(∫ 1

0

ϕ0(x) dx
)

cos
(√ ξ

J
t
)

+

√
J

ξ

(∫ 1

0

ϕ1(x) dx
)

sin
(√ ξ

J
t
)
.

We introduce

ϕ̄(x, t) = ϕ(x, t)−
(∫ 1

0

ϕ0(x) dx
)

cos
(√ ξ

J
t
)
−

√
J

ξ

(∫ 1

0

ϕ1(x) dx
)

sin
(√ ξ

J
t
)
,

then

ϕ̄x(x, t) = ϕx(x, t) in (0, 1)× R+,

ϕ̄xx(x, t) = ϕxx(x, t) in (0, 1)× R+,

and

ϕ̄x(0, t) = ϕx(0, t) = 0 in R+,

ϕ̄x(1, t) = ϕx(1, t) = 0 in R+.



EJDE-2023/44 STABILITY FOR POROUS THERMOELASTIC SYSTEMS 7

Furthermore, we find that (u, ϕ̄, θ, η) satisfies the same boundary conditions as
(2.5)4, (2.5)5 and ∫ 1

0

ϕ̄(x, t) dx = 0.

Hence, the Poincaré inequality is applicable for ϕ̄ provided that ϕ̄ ∈ H1(0, 1). For
the rest of the paper, we will use ϕ̄ instead of ϕ. For convenience, we still denote
ϕ in the followings.

The relevant Poincaré inequality is∫ 1

0

ψ2 dx ≤ Cp
∫ 1

0

ψ2
x dx, ∀ψ ∈ H1

∗ (0, 1).

To prove our results more easily, we make some hypotheses:

(H1) The relaxation function k : R+ → R+ is non-increasing of class C1(R+) ∩
L1(R+) such that

k(s) ≥ 0, k′(s) ≤ 0, s ≥ 0,

(H2) k is summable on R+, we have∫ ∞
0

k(s) ds = k0 > 0,

∫ ∞
0

sk(s) ds = k1 > 0,

(H3) There exists a positive constant ν such that

k′(s) ≤ −νk(s), s ≥ 0.

Let U = (u, v, ϕ, w, θ, ηt)T , where v = ut and w = ϕt, then system (2.4)-(2.5) is
equivalent to the abstract Cauchy problem

d

dt
U(t) = AU(t),

U(0) = (u0, u1, ϕ0, ϕ1, θ0, η0)T ,
(2.6)

where the operator A is defined as

A


u
v
ϕ
w
θ
ηt

 =



v
µ
ρuxx + b

ρϕx + γ
ρvxx

w
δ
Jϕxx −

b
J ux −

ξ
Jϕ−

β
J θx

1
c

∫∞
0
k(s)ηtxx(s) ds− β

cwx
θ − ηts

 , (2.7)

with domain

D(A) =
{
U ∈ H : u ∈ H2(0, 1) ∩H1

0 (0, 1), v ∈ H1
0 (0, 1), ϕ ∈ H2(0, 1) ∩H1

∗ (0, 1)

w ∈ H1
∗ (0, 1), θ ∈ H1

0 (0, 1),

∫ ∞
0

k(s)ηt(s) ds ∈ H2(0, 1), ηt ∈ K, ηt(0) = 0
}
.

We introduce the related energy functional

E(t) =
1

2

∫ 1

0

(
µ|ux|2 + ξ|ϕ|2 + 2buxϕ+ ρ|v|2 + J |w|2 + c|θ|2 + δ|ϕx|2

)
dx

+
1

2
‖ηt‖2M.

(2.8)
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Note that from the assumption µξ ≥ b2,∫ 1

0

(
µ|ux|2 + ξ|ϕ|2 + 2buxϕ

)
dx =

µ

2
‖ux +

b

µ
ϕ‖2 +

ξ

2
‖ϕ+

b

ξ
ux‖2

+
1

2
(µ− b2

ξ
)‖ux‖2 +

1

2
(ξ − b2

µ
)‖ϕ‖2 ≥ 0.

(2.9)

3. Well-posedness

In this section, we give the existence and the uniqueness of solution for sys-
tem (2.6). We use the semigroup method to prove this conclusion, which involves
the Lax-Milgram theorem, the Lumer-Phillips theorem and Hille-Yosida theorem.
Among them, the content of the Lumer-Phillips theorem is as follows.

Lemma 3.1 ([30]). A densely defined linear operator A : D(A) ⊂ H → H generates
a C0-semigroup of contractions on H if and only if A is m-dissipative, i.e., it
satisfies

(i) <e(〈AU,U〉H) ≤ 0, U ∈ D(A);
(ii) ∃λ > 0, λI −A is surjective.

In the reflexive Banach space H, we know that operator A is densely defined
from (ii) of Lemma 3.1.

Theorem 3.2. Assume (H1)–(H3) and that for each U(0) = (u0, u1, ϕ0, ϕ1, θ0, η0)T

in H, system (2.6) has a unique solution U ∈ C(R+;H). Moreover, if U(0) =
(u0, u1, ϕ0, ϕ1, θ0, η0)T ∈ D(A) then the solution U satisfies

U ∈ C
(
R+;D(A)

)
∩ C1

(
R+;H

)
.

Proof. We first prove that the operator A generates a C0-semigroup of contractions
on H. Firstly, for all U = (u, v, ϕ, w, θ, ηt)T ∈ D(A), we have

<e〈AU,U〉H

= µ

∫ 1

0

vxux dx+ ξ

∫ 1

0

wϕdx+ b

∫ 1

0

wux dx+ b

∫ 1

0

ϕvx dx

+

∫ 1

0

(µuxx + bϕx + γvxx)v dx+

∫ 1

0

(
δϕxx − bux − ξϕ− βϑx

)
w dx

+

∫ 1

0

(∫ ∞
0

k(s)ηtxx(s) ds− βwx
)
θ dx

+ δ

∫ 1

0

wxϕx dx+

∫ 1

0

∫ ∞
0

k(s)
(
θx − ηtxs

)
ηtx(s) ds dx

= −γ‖vx‖2 −
1

2

∫ ∞
0

k(s)
d

ds
‖ηtx(s)‖2 ds

(3.1)

Integrating by parts the second term on the right-hand side, we have

1

2

∫ ∞
0

k(s)
d

ds
‖ηtx(s)‖2 ds =

1

2
k(s)‖ηtx(s)‖2

∣∣∣∞
0
− 1

2

∫ ∞
0

k′(s)‖ηtx(s)‖2 ds. (3.2)

From the definition of ηt(x, s), we have ηtx(s)|s=0 = 0. Hence, (3.2) can be rewritten

1

2

∫ ∞
0

k(s)
d

ds
‖ηtx(s)‖2 ds =

1

2
lim
s→∞

k(s)‖ηtx(s)‖2 − 1

2

∫ ∞
0

k′(s)‖ηtx(s)‖2 ds.
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From (H1) and the boundedness on the left, we know that the second term on the
right is equal to zero. Therefore, we obtain

<e〈AU,U〉H ≤ −γ‖vx‖2 +
1

2

∫ ∞
0

k′(s)‖ηtx(s)‖2 ds ≤ 0. (3.3)

Thus A is dissipative.
Secondly, we show that I−A is surjective. For any F = (f1, f2, f3, f4, f5, f6) ∈ H,

we seek U = (u, v, ϕ, w, θ, ηt)T ∈ D(A) satisfying

(I −A)U = F, (3.4)

equivalently, we obtain

u− v = f1, (3.5)

ρv − µuxx − bϕx − γvxx = ρf2, (3.6)

ϕ− w = f3, (3.7)

Jw − δϕxx + bux + ξϕ+ βθx = Jf4, (3.8)

cθ −
∫ ∞
0

k(s)ηtxx(x, s) ds+ βwx = cf5, (3.9)

ηt − θ + ηts(x, s) = f6. (3.10)

From (3.10), we can find an exact solution

ηt(s) = (1− e−s)θ +

∫ s

0

eτ−sf6(τ) dτ. (3.11)

Substituting (3.5), (3.7), (3.11) into (3.6), (3.8), (3.9), we have the system

ρu− (µ+ γ)uxx − bϕx = ρ(f1 + f2)− γf1xx ∈ H−1(0, 1),

(J + ξ)ϕ− δϕxx + bux + βθx = J(f3 + f4) ∈ L2(0, 1),

cθ −
∫ ∞
0

k(s)(1− e−s) dsθxx + βϕx

=

∫ ∞
0

k(s)
(∫ s

0

eτ−sf6xx(τ) dτ
)
ds+ βf3x + cf5 ∈ H−1(0, 1),

(3.12)

where ∫ ∞
0

k(s)(1− e−s) ds > 0.

Indeed, let ψ ∈ H1
0 (0, 1) such that ‖ψx‖ ≤ 1, and by applying some formulas, we

have

|〈γf1xx, ψ〉| = |〈γf1x, ψx〉| ≤ γ‖f1x‖ <∞,
and ∣∣〈 ∫ ∞

0

k(s)
(∫ s

0

eτ−sf6xx(τ) dτ
)
ds, ψ

〉∣∣
=
∣∣〈 ∫ ∞

0

k(s)
(∫ s

0

eτ−sf6x(τ) dτ
)
ds, ψx

〉∣∣
≤
∫ ∞
0

k(s)e−s
(∫ s

0

eτ‖f6x(τ)‖ dτ
)
ds

≤
∫ ∞
0

eτ‖f6x(τ)‖
∫ ∞
τ

k(s)e−s ds dτ
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≤
∫ ∞
0

k(τ)eτ‖f6x(τ)‖
∫ ∞
τ

e−s ds dτ

=

∫ ∞
0

k(τ)‖f6x(τ)‖ dτ <∞.

The first, second, and third equations of (3.12) are multiplied by u1 ∈ H1
0 (0, 1),

ϕ1 ∈ H1
∗ (0, 1), and θ1 ∈ H1

0 (0, 1) respectively, integrate over (0, 1) and add them,
we have the variational formulation

B
(
(u, ϕ, θ), (u1, ϕ1, θ1)

)
= L(u1, ϕ1, θ1), (3.13)

where B :
[
H1

0 (0, 1)×H1
∗ (0, 1)×H1

0 (0, 1)
]2 → R is a bounded bilinear form defined

by

B ((u, ϕ, θ), (u1, ϕ1, θ1))

= ρ

∫ 1

0

uu1 dx+ (µ+ γ)

∫ 1

0

uxu1x dx− b
∫ 1

0

ϕxu1 dx+ (J + ξ)

∫ 1

0

ϕϕ1 dx

+ δ

∫ 1

0

ϕxϕ1x dx+ b

∫ 1

0

uxϕ1 dx+ β

∫ 1

0

θxϕ1 dx+ c

∫ 1

0

θθ1 dx

+

∫ ∞
0

k(s)(1− e−s) ds
∫ 1

0

θxθ1x dx+ β

∫ 1

0

ϕxθ1 dx,

and L : H1
0 (0, 1)×H1

∗ (0, 1)×H1
0 (0, 1)→ R is the linear functional

L (u1, ϕ1, θ1) = ρ

∫ 1

0

(f1 + f2)u1 dx+ γ

∫ 1

0

f1xu1x dx+ J

∫ 1

0

(f3 + f4)ϕ1 dx

+ β

∫ 1

0

f3xθ1 dx+ c

∫ 1

0

f5θ1 dx

+

∫ 1

0

θ1

∫ ∞
0

k(s)
(∫ s

0

eτ−sf6xx(τ) dτ
)
ds.

Utilizing Poincaré inequality, we obtain

B ((u, ϕ, θ), (u, ϕ, θ))

= ρ

∫ 1

0

u2 dx+ (µ+ γ)

∫ 1

0

u2x dx+ 2b

∫ 1

0

uxϕdx+ (J + ξ)

∫ 1

0

ϕ2 dx

+ δ

∫ 1

0

ϕ2
x dx+ c

∫ 1

0

θ2 dx+

∫ ∞
0

k(s)(1− e−s) ds
∫ 1

0

θ2x dx

≥ α‖(u, ϕ, θ)‖2,

for some constant α > 0. Thus, B(·, ·) is coercive. According to the Lax-Milgram
theorem, (3.13) has a unique solution

(u, ϕ, θ) ∈ H1
0 (0, 1)×H1

∗ (0, 1)×H1
0 (0, 1).

If we take (u1, ϕ1, θ1) = (u1, 0, 0) in (3.13), we have

(µ+ γ)

∫ 1

0

uxu1x dx = b

∫ 1

0

(ϕx − u)u1 dx+ ρ

∫ 1

0

(f1 + f2)u1 dx+ γ

∫ 1

0

f1xu1x dx,

which means that u ∈ H2(0, 1) ∩H1
0 (0, 1).
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Similarly, if we take (u1, ϕ1, θ1) = (0, ϕ1, 0) in (3.13), we have

δ

∫ 1

0

ϕxϕ1x = J

∫ 1

0

(f3 +f4−ϕ)ϕ1 dx−ξ
∫ 1

0

ϕϕ1 dx−b
∫ 1

0

uxϕ1 dx−β
∫ 1

0

θxϕ1 dx

which means that ϕ ∈ H2(0, 1) ∩H1
0 (0, 1).

Moveover, from (3.5), (3.7) and (3.9), we observe that

v ∈ H1
0 (0, 1), w ∈ H1

∗ (0, 1),

∫ ∞
0

k(s)ηt(s) ds ∈ H2(0, 1).

Inserting (??) in (3.10), we obtain

ηts(s) = e−sθ + f6(s)−
∫ s

0

ey−sf6(y)dy,

thus, we have ηt ∈ K and ηt(0) = 0. Hence, there exists a unique solution U ∈
D(A). Consequently, A is a maximal monotone operator, i.e., the operator A
generates a C0-semigroup of contractions on H. Finally, the conclusion of Theorem
3.2 can be obtained by applying the Hille-Yosida theorem. �

4. Stability

In this section, we give the stability result of system (2.6) by means of estimates
of the resolvent operator norm.

Lemma 4.1 ([27]). Let A be the infinitesimal generator of a contraction semigroup
S(t) acting on space H. Then, the following statements are equivalent:

(i) S(t) is exponentially stable;
(ii) There exists ε > 0, such that

inf
λ∈R
‖(iλ−A)U‖H ≥ ε‖U‖H, ∀U ∈ D(A);

(iii) The imaginary axis iR is contained in the resolvent set ρ(A) of the operator
A and

sup
λ∈R
‖(iλ−A)−1‖L(H) <∞.

Theorem 4.2. Assume that (H1)–(H3) are satisfied and U(0) ∈ D(A). Then the
energy of system (2.6) is exponentially stable.

Proof. We prove (ii) by a contradiction argument. Suppose that the claim is false,
then there exist two sequences {λn} ⊂ R and {Un} ⊂ D(A), with

‖Un‖H = 1, (4.1)

such that
‖iλnUn −AUn‖H → 0. (4.2)

Equivalently, we have

iλnun − vn → 0 in H1
0 (0, 1), (4.3)

iρλnvn − µD2un − bDϕn − γD2vn → 0 in L2(0, 1), (4.4)

iλnϕn − wn → 0 in H1
∗ (0, 1), (4.5)

iJλnwn − δD2ϕn + bDun + ξϕn + βDθn → 0 in L2
∗(0, 1), (4.6)

icλnθn −
∫ ∞
0

k(s)D2ηtn(s) ds+ βDwn → 0 in L2(0, 1), (4.7)
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iλnη
t
n − θn +Dsη

t
n(s)→ 0 in M, (4.8)

in which we denote D = ∂
∂x and Ds = ∂

∂s . We just have to show that each
component of Un goes to 0 in the norm of H. We will prove it in two cases.

Case 1. Assuming λn 6→ 0, that is sequence λn satisfies

inf
n∈N
|λn| > 0.

Now, taking the inner product of both sides of (4.2) with Un, and then taking the
real part, we obtain

<e〈(iλn −A)Un, Un〉H = γ‖Dvn‖2 −
1

2

∫ ∞
0

k′(s)‖Dηtn(s)‖2 ds→ 0, (4.9)

from (H1), (H3) and Poincaré inequality, we obtain

‖vn‖ → 0, (4.10)

‖ηtn‖2M ≤ −
1

2ν

∫ ∞
0

k′(s)‖Dηtn(s)‖2 ds→ 0. (4.11)

Moreover, from (4.3), we find that un → 0 in L2(0, 1). The injection L2 ↪→ H−1 is
continuous, hence (4.7) holds in H−1 instead of L2. Regarding the second item of
(4.7), we have∥∥∫ ∞

0

k(s)D2ηtn(s) ds
∥∥
−1 ≤

∥∥∫ ∞
0

k(s)Dηtn(s) ds
∥∥

=
(∫ 1

0

(∫ ∞
0

√
k(s)

√
k(s)Dηtn(s) ds

)2
dx
)1/2

≤
(∫ ∞

0

k(s) ds

∫ ∞
0

k(s)‖Dηtn(s)‖2 ds
)1/2

=
√
k0‖ηtn‖M → 0,

this means ‖icλnθn + βDwn‖−1 → 0. Since

‖Dwn‖−1 = sup
‖Dψ‖≤1

|〈Dwn, ψ〉| ≤ ‖wn‖ <∞,

it follows that λnθn is bounded in H−1 and

‖icλnθn‖−1 ≤ C1,

for a positive constant C1 independent of n ∈ N.

Introducing θ̂n such that

D2θ̂n = −θn,

θ̂n(0) = θ̂n(1) = 0

and rewriting (4.8), we have

iλnη
t
n − θn +Dsη

t
n(s) = ζn, (4.12)

with ζn → 0 in M, we can find an exact solution

ηtn(s) =
1

iλn
(1− e−iλns)θn +

∫ s

0

e−iλn(s−r)ζn(r)dr.
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Setting

an =

∫ ∞
0

k(s)(1− e−iλns) ds,

bn = iλn

∫ ∞
0

k(s)

∫ s

0

e−iλn(s−r)〈Dζn(r), Dθ̂n〉M dr ds,

we obtain

an‖θn‖2 + bn = iλn〈ηtn, θ̂n〉M. (4.13)

By calculations, we find that

iλn〈ηtn, θ̂n〉M ≤ C|λn|‖θn‖−1
∫ ∞
0

k(s)‖Dηtn(s)‖ ds ≤ C‖ηtn‖M → 0.

On the one hand, integrating both sides of (H3) over (s, s+ r), we have

k(s+ r) ≤ e−νrk(s), ∀r ≥ 0 and s > 0;

therefore,

|bn| ≤ |λn|‖θn‖−1
∫ ∞
0

√
k(s)

∫ s

0

e−
ν(s−r)

2

√
k(r)‖Dζn(r)‖ dr ds

≤ C
∫ ∞
0

√
k(s)e−νr/2

∫ s

0

eνr/2
√
k(r)‖Dζn(r)‖dr ds

≤ C
∫ ∞
0

eνr/2
√
k(r)‖Dζn(r)‖

∫ ∞
r

e−νr/2
√
k(s) ds dr

≤ C
∫ ∞
0

eνr/2k(r)‖Dζn(r)‖
∫ ∞
r

e−νr/2 ds dr

≤ C
∫ ∞
0

k(r)‖Dζn(r)‖dr

≤ C‖ζn‖M → 0.

On the other hand,

an →
∫ ∞
0

k(s) ds > 0.

Back to (4.13), we obtain

‖θn‖ → 0. (4.14)

Next, we will prove that ‖wn‖ → 0. Setting

Wn =

∫ x

0

wn(y)dy ∈ H1
0 (0, 1).

Integrating both sides of (4.6) over (0, x), we have

sup
n∈N
|λn|‖Wn‖ <∞.

Now, taking the inner product of both sides of (4.7) with Wn, namely

icλn(θn,Wn)−
∫ ∞
0

k(s)〈D2ηtn(s),Wn〉 ds+ β(Dwn,Wn)→ 0. (4.15)

Using the Cauchy-Schwartz inequality and (4.14), we obtain an estimate of the first
term of (4.15),

|icλn(θn,Wn)| ≤ c|λn|‖Wn‖‖θn‖ → 0.
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By calculations, the second term of (4.15) satisfies∣∣ ∫ ∞
0

k(s)〈D2ηtn(s),Wn〉 ds
∣∣ ≤ ‖wn‖ ∫ ∞

0

k(s)‖Dηtn(s)‖2 ds→ 0.

Therefore, |β(Dwn,Wn)| = β‖wn‖2 → 0; this means that

‖wn‖ → 0. (4.16)

From (4.5), we can easily check that

‖ϕn‖ → 0. (4.17)

Moreover, using Cauchy-Schwartz inequality, we obtain

2b

∫ 1

0

Dunϕn dx→ 0. (4.18)

Taking the inner product of both sides of (4.4) and (4.6) with un and ϕn, respec-
tively, we find that

‖Dun‖ → 0, (4.19)

‖Dϕn‖ → 0. (4.20)

According to (4.10)-(4.11), (4.14), (4.16)-(4.20), we obtain that ‖Un‖H → 0 which
contradicts (4.1).

Case 2. Assuming λn → 0, from (4.2), we have

‖vn‖ → 0, ‖wn‖ → 0, (4.21)

and

µD2un + bDϕn + γD2vn → 0 in L2(0, 1), (4.22)

δD2ϕn − bDun − ξϕn − βDθn → 0 in H1
∗ (0, 1), (4.23)

θn −Dsη
t
n(s)→ 0 in M. (4.24)

Taking the inner product of both sides of (4.24) with sθ̂n, we have

〈θn, sθ̂n〉M − 〈Dsη
t
n(s), sθ̂n〉M → 0.

Since

|〈Dsη
t
n(s), sθ̂n〉M| =

∣∣ ∫ ∞
0

sk(s)
d

ds

∫ 1

0

DηtnDθ̂n dx ds
∣∣

=
∣∣ ∫ ∞

0

sk(s)
d

ds

∫ 1

0

ηtnθn dx ds
∣∣

=
∣∣ ∫ ∞

0

k(s)

∫ 1

0

ηtnθn dx ds+

∫ ∞
0

sk′(s)

∫ 1

0

ηtnθn dx ds
∣∣

≤ ‖θn‖
[ ∫ ∞

0

k(s)‖ηtn(s)‖ ds+

∫ ∞
0

sk′(s)‖ηtn(s)‖ ds
]

≤
∫ ∞
0

k(s)‖ηtn(s)‖ ds+

∫ ∞
0

sk′(s)‖ηtn(s)‖ ds,

(4.25)

and

−
∫ ∞
0

s2k′(s) ds = 2

∫ ∞
0

sk(s) ds = C2 <∞.
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Applying Hölder and Poincaré inequalities, we obtain∫ ∞
0

k(s)‖ηtn(s)‖ ds =

∫ ∞
0

√
k(s)

√
k(s)‖ηtn(s)‖ ds

≤

√∫ ∞
0

k(s) ds

√∫ ∞
0

k(s)‖ηtn(s)‖2 ds

≤ Cp
√
k0

√∫ ∞
0

k(s)‖Dηtn(s)‖2 ds

≤ C‖ηtn‖M → 0,

and ∫ ∞
0

sk′(s)‖ηtn(s)‖ ds =

∫ ∞
0

s
√
−k′(s)

√
−k′(s)‖ηtn(s)‖ ds

≤
(
−
∫ ∞
0

s2k′(s) ds

∫ ∞
0

−k′(s)‖ηtn(s)‖2 ds
)1/2

≤
(−C2

CP

∫ ∞
0

−k′(s)‖Dηtn(s)‖2 ds
)1/2

→ 0.

Therefore, |〈Dsη
t
n(s), sθ̂n〉M| → 0. In addition,

〈θn, sθ̂n〉M =

∫ ∞
0

sk(s)(Dθn, Dθ̂n) ds = k1‖θn‖2 → 0,

this means

‖θn‖ → 0. (4.26)

Taking the inner product of both sides of (4.22) and (4.23) with un and ϕn, we
have

µ‖Dun‖2 + b(ϕn, Dun)→ 0, (4.27)

δ‖Dϕn‖2 + b(Dun, ϕn) + ξ‖ϕn‖2 → 0. (4.28)

Summing (4.27) and (4.28), we have

µ‖Dun‖2 + 2b<e(Dun, ϕn) + ξ‖ϕn‖2 + δ‖Dϕn‖2 → 0.

From (2.9), we infer that

‖Dϕn‖ → 0. (4.29)

Using Poincaré inequality, we have

‖ϕn‖ → 0. (4.30)

Back to (4.28), we obtain

‖Dun‖ → 0. (4.31)

Also, we obtain that

‖Un‖H → 0,

which contradicts (4.1). The proof of Theorem 4.2 is complete. �
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shenko system with second sound, Journal of Differential Equations, 253(9) (2012), 2715-2733.

[21] S. A. Messaoudi, M. Pokojovy, B. Said-Houari; Nonlinear damped Timoshenko system with

second sound-Global existence and exponential stability, Mathematical Methods in the Ap-

plied Sciences, 32(5) (2009), 505-534.
[22] A. A. Keddi, T. A. Apalara, S. A. Messaoudi; Exponential and polynomial decay in a

thermoelastic-Bresse system with second sound, Applied Mathematics and Optimization,
77(2) (2018), 315-341.



EJDE-2023/44 STABILITY FOR POROUS THERMOELASTIC SYSTEMS 17

[23] C. M. Dafermos; Asymptotic stability in viscoelasticity, Archive for Rational Mechanics and

Analysis, 37(4) (1970), 297-308.

[24] V. Pata, E. Vuk; On the exponential stability of linear thermoelasticity, Continuum Mechanics
and Thermodynamics, 12(2) (2000), 121-130.

[25] A. Fareh; Exponential stability of a porous thermoelastic system with Gurtin-Pipkin ther-

mal law, Revista de la Real Academia de Ciencias Exactas, F́ısicas y Naturales. Serie A.
Matematicas, 116(1) (2022), 1-19.

[26] F. Dell’Oro, V. Pata; On the stability of Timoshenko systems with Gurtin-Pipkin thermal

law, Journal of Differential Equations, 257(2) (2014), 523-548.
[27] F. Dell’Oro; Asymptotic stability of thermoelastic systems of Bresse type, Journal of Differ-

ential Equations, 258(11) (2015), 3902-3927.

[28] B. Said-Houaria, S. A. Messaoudi; Decay property of regularity-loss type of solutions in elastic
solids with voids, Applicable Analysis, 92(12) (2013), 2487-2507.

[29] A. Guesmia; Well-posedness and energy decay for Timoshenko systems with discrete time
delay under frictional damping and/or infinite memory in the displacement, Afrika Matem-

atika, 28(7-8) (2017), 1253-1284.

[30] A. Pazy; Semigroups of linear operators and applications to partial differential equations,
Springer-Verlag, New York (1983).

Jianghao Hao (corresponding author)

School of Mathematical Sciences, Shanxi University, Taiyuan, Shanxi 030006, China

Email address: hjhao@sxu.edu.cn

Jing Yang

School of Mathematical Sciences, Shanxi University, Taiyuan, Shanxi 030006, China
Email address: 1054599583@qq.com


	1. Introduction
	2. Preliminaries
	3. Well-posedness
	4. Stability
	Acknowledgements

	References

