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ABSTRACT. We consider the elliptic problem

—Aqu+u = ax(@)|ulT2u + by (@) [u 2,
forz € RV, 1 < ¢ <2< p<2*=2N/(N—2), ax(z) is a sign-changing
weight function, by () satisfies some additional conditions, v € H} (RY) and
A : RY — RY is a magnetic potential. Exploring the Bahri-Li argument

and some preliminary results we will discuss the existence of a four nontrivial
solutions to the problem in question.

1. INTRODUCTION

In this work we are interested in studying the existence of a fourth solution for
the concave-convex elliptic problem

—Au+u = ay(x)|u]"?u+ b, (2)|uP 2 in RY,
u € Hy(RY),

where N >3, —Ay = (—iV+ A2 1<qg<2<p<2*= %, ax(z) is a family of
functions that can change signs, b, (z) is continuous and satisfies some additional
conditions, u : RY — C with u € HL(RY) (such space will be defined later),
A > 0 and g > 0 are real parameters, and A : RY — RY is a magnetic potential
in LIQOC(RN ,R™). For the relevance of this equation to the magnetic Laplacian in
Physics, the reader is referred to Alves and Figueiredo [I] and Arioli and Szulkin

3.
In [I2] the authors showed the existence of three solutions for this problem and
proved their regularity. In this paper we show the existence of a fourth solution.
There are many works on problems similar problem to , but with A = 0.
Ambrosetti, Brezis, and Cerami [2] considered the problem

(1.1)

—Au+u= "t +uP"t inQ,
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uw>0 in Q,
=0 on 0,

where Q is a bounded regular domain of RY (N > 3), with smooth boundary and
1 <qg<2<p<2* Combining the method of sub and super-solutions with the
variational method, the authors proved the existence of Ay > 0 such that there are
two solutions when A € (0, \g), one solution when A\ = )y, and no solution when
A > Ao

Wu [26] studied the concave-convex problem

—Au+u=A(z)ud +uP"! inQ,
uw>0 in Q,
u=0 on 09,

with f € C(Q) a sign changing function and 1 < ¢ < 2 < p < 2*. It was proved
that the problem has at least two positive solutions for A small enough. For p, g as
above, many studies have been devoted to the existence and multiplicity of solutions
to concave-convex elliptic problems in bounded domains; see for example Brown
[8], Brown and Wu [6], Brown and Zhang [7], Hsu [18], Hsu and Lin [I7], and their
references.

For an unbounded domains, we can cite Chen [I0], Huang, Wu and Wu [19], who
studied a similar problems in RY. Wu [25] studied the problem

~Au+u= fr(z)ul™t + guPt in RY,
>0 inRY,
u € HY(RY),

with1 < ¢ <2 <p<2*% g,>0,and f\ being able to change sign. Wu [25] showed
the existence of at least four solutions to the problem when A and p small enough.
This result was extend in [12], investigating if it would be possible to obtain similar
consequences when we use the magnetic Laplacian in place of the usual Laplacian.
In this work we will show the existence of a fourth solution for this problem.

The first results for non-linear Schrédinger equations with A # 0 can be attrib-
uted to Esteban and Lions [14]. They obtained the existence of stationary solutions
for the equation

—Aau+ Vu = |[ulP?u,u # 0,u € LA(RY),

with V' =1 and p € (2,00) using a minimization method with constant magnetic
field. This was done for the general case.

Chabrowski and Szulkin [J] worked with this operator in the critical case, that
is p = 2*, and with the electric potential V' being able to change signs. Already
Cingolani, Jeanjean and Secchi [IT] considered the existence of multi-peak solutions
in the subcritical case.

Alves and Figueiredo [I] considered the problem

> “2u, uw#0,QcRY,

with > 0 and 2 < g < 2*. They related number of solutions with the topology of
Q.

The authors in [I2] studied non-zero A case with a weight function that changes
signs in the concave-convex case, just like the problem stated in this work. They

—Aqu = plu|T?u+ |u



EJDE-2023/47 SCHRODINGER EQUATION WITH MAGNETIC POTENTIAL 3

proved the existence of three solutions for the problem. Now we would like to show
the existence of a fourth solution. There the authors used category theory, the
Nehari manifold, and the fibering map.

In what follows, we will present a set of preliminary results. Observe that

1 1 1
T () = 5/RN(|VAU|2+|U|2)da;—g/RN a,\(x)\u|qu—5/RN by () |ul? de, (1.2)

is the functional associated with problem (1.1)) and is of class C' in H(RY) as
can shown in [22]. Also, the critical points of J ,(u) are weak solutions of problem
(T.1). We will use the following hypotheses: We assume a(z) € LI (RN), ¢ = et
and ay = +max{ta(x),0} # 0. Let
ax(z) = Aay(z) + a_(x).
and assume that
(A1) a(z) € LY (RN), ¢ = 525, and there exists ¢ > 0 and r,_ > 0, such that
a_(x) > —éexp(—r,_|z|) for all z € RV,
We assume that b, (x) = bi(z) + pba(z), where

(A2) bi(z) > 0 in continuous in RY, with by (x) — 1 as |x| — oo and there exists
Ty, > 0, such that

1>by(x) > 1—coexp(—rp, |z|) for some ¢g < 1 and all z € RV,

(A3) ba(z) > 0 is continuous in RV, by(z) — 0 as |z| — oo and exists rp, > 0,
with rp, < min{r,_,7s,, ¢} such that

ba(z) > doexp(—rp,|z]) for some dy < 1 and all z € RY.
The above hypotheses were used in [12]. We define

To=(2—qp o Z22YT (2

lla+lq pP—q
where 1o
Vaul? 4+ u*d
S,=  inf (Jax [Vaul - %) Lo (1.3)
weHAENOD ([ fulpdr) "

In [12], under assumptions (A1)—(A3), it was proved that has at least one

solution, provided that

N2 (14 pllballo)* 70 < (5)7 T (1.4)
holds for each A > 0 and p > 0. Then, assuming that the potential is asymptotic
to a constant at infinity, they prove the existence of at least two solutions vt and
u” with Jy ,(ut) <0< Iy, (u™).

In the previous result, the existence is valid for all A and u satisfying inequality
. So, if we additionally set values of A and p conveniently small we obtain
the multiplicity result, that is, there exist at least three solutions. Actually they
showed the existence of A\g > 0 and po > 0 with

X2 (L pollballoe)*~ < (5)" o,

such that for all A € (0,)) and p € (0, o), problem (L.1) has at least three
solutions.



4 F. O. DE PAIVA, S. M. DE SOUZA LIMA, O. H. MIYAGAKI EJDE-2023/47

In this work, we observe that for the problem in question, the numbers Ay and g
as previously mentioned are independent of the value of a_. However, considering
some additional hypotheses and taking values of ||a_||, sufficiently small we obtain
another solution. Before stating this result we present the following hypotheses:

(A4) bi(z) < 1in RY in a positive measure set;

(A5) Thy > 2.

Theorem 1.1. Suppose that the potential A(x) converges to some constant d € NV
as |z| = oo. Assuming (A1)~(A5), there are positive values Ao < o, fio < po, and
vo such that for X € (0,X), p € (0,i0), and |la_|ly < vo, problem has at
least four solutions.

For the first three solutions of this problem, the Nehari method was used together
with category theory. We will use variational methods to prove the above theorem.
We will work under a few more assumptions to estimate different energy levels
and will use the Bahri-Li min-max argument to show that for very small values of
[la—]l4, the problem has at least four distinct solutions.

2. INITIAL CONSIDERATIONS

According to Tang [23], we denote by H4(RY) the Hilbert space obtained by
the closing of C§°(RY,C) with the inner product

(u,v)4 = Re/(VAuVAv + uvdz),
R

where V qu := (Diu, Dou,...,Dyu) and D; := —i0; — A;(x), with j =1,2,... N,
and with A(xz) = (A1(z),..., An(2)). The norm induced by this product is

lul% = /R(WAUF + u?dz).

Esteban and Lions [14, Section II] proved that that for all u € H4(RY) the dia-
magnetic inequality holds, i.e.
u

IV]ul(z)] = | Re (vu%lﬂ = [Re ((Vu—iAu) )| < [V au(a)|.

So, if u € HY(RY) we have that |u| belongs to the usual Sobolev space H}(RY).

2.1. Preliminary results. To obtain the existence, we introduced the Nehari
manifold
My, = {u € Hy(RY)\ {0} : (J} ,,(u),u) = 0},

where (-, ) denotes the usual duality between H4(R") and its dual H}(RN)*. The
Nehari manifold is linked to the functions F, : t — Jy ,(tu), (t > 0), called fibering
maps. Note that the fabering map it was defined and depends on u, A, and pu; so
that proper notation should be F, » ,, but to simplify the notation, we write F,.
If u e HY(RY), we have

2t . tP »
Fu(t) = Sllulia = — | ax@)lulde —— | bu(@)[ul” dz, (2.1)
q JrN P Jrwy

Fl(t) = t]|ul|i — 1! / ax(z)|u|? de — P! / bu(z)|ul? de, (2.2)
RN RN

FU() =l ~ (q - er® [

- ax(x)|ul?dx — (p— l)tp_Q/ bu(z)|ulP dz. (2.3)

RN
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The following remark relates the Nehari manifold and the Fibering map.

Remark 2.1. Let F, be the application defined above and u € H}(RY). Then:
(i) u € My, if, and only if, F} (1) = 0;
(ii) more generally tu € M) ,, and only if, F)(t) = 0.

From the previous remark we conclude that the elements in M) ,, correspond to
the critical points of the Fibering map. Thus, as F,(t) € C?*(R™,R), we can divide
the Nehari manifold into three parts

M;fu ={ue My, : F{,(1)> 0},
My, :{ueMM~F” (1) < 0},
MAM—{UGM/\M (1) =0}

The lemma below shows that under some conditions, MY A, 18 empty, as shown in
[0, Lemma 2.2].

Lemma 2.2. Let p >0 and A\ > 0 such that
X 2(1+ pllbal|) 27 < o (2.4)
Then My , = 0.

As shown in [12], under certain conditions on A and p, we have a minimizer
in M j\' u and another in M u The minimum levels of energy will be denoted
respectively by

m;u: 1nf Tap(u),
uEMA“

my , = inf Jy,(u).
'U,EM;H

To establish the existence of the first two solutions and compare with the energy
level of the fourth solution, we will need the following result that was shown in [12].

Lemma 2.3. For each u € HY(RM)\ {0} and pu > 0 we have:

IffRN ax(z)|ul?dr <0, there is a singlet™ (u) > tmax(u) such thatt™ (u)u €
Also, F,(t) is increasing in (0, (u)), decreasing in (t~ (u), +00) and
F, (’t)% —00 as t — +oo.

(ii) If fon ax(@)|ul?dz > 0 and X is such that AP~2(1 + pf|b2s)?~7 < Yo, so
there is 0 < t+(u) < tmax(u) < t~(u) such that t*(u)u € M)jj”. Also, F,(t)
is decreasing in (0,tT(u)), increasing in (tT(u),t (u)) and decreasing in
(t~(u),+00). Furthermore, F,(t) = —oco as t = +0o0.

Our next lemma shows that these points are well defined, and i prove can be
found in [I7, Lemma 2.1].

Lemma 2.4. The functional J , is coercive and bounded from below in My ,,.

For the next results we need some estimates on my o . To do this, from we
have

pP—q 1/(p—2)P — 4 -
lullh < T3 [, ax@lul? de < 006" TS g | e ull.
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Therefore,
1/(p—2)P —q _ 1/(2—q)
lulla < (0062 2= 5, ar )l (2.5)

for all u € M;M. Also, if A = 0, then (2.4) is satisfied, so that by Lemma (i),
M;M =0, and we have M), = My, for all 4 > 0. By has been seen, we will show
the following results on the values of mi u

Lemma 2.5. (1) If XP72(1 4 plbo]loc)®™7 < (£)P~2Yy, then my > 0;
(ii) For A >0 and p > 0 with NP=*(1 + p|bs)|oc)?~9 < Yo, then my , < 0. In
particular, if \P72(1 + pl|ba]loc)?™7 < ($)P72Yy, then

+

my = inf Jy ,(u).
AL M, )\,u( )

The proof of the above lemma is similar to one in [25] Theorem 3.1]; we omit it.
By Lemma we can conclude that for every u € H(RY)\ {0}
It (w)u) = max Jy . (tu), (2.6)

whenever AP ~2(1 + pul|ba|00)?7 < (%)p_z’fo, with A > 0 and p > 0.

3. EXISTENCE OF mo

In this section we define the energy level of the limit problem and make some
estimates for energy levels of the solutions in the Nehari manifold. Then, we will
have tools to show that the fourth solution has a different level than other solutions.
For this, consider the semilinear elliptic problem

—Aju+u=|u?u inRY,

3.1
u e HyRY). 3.1)
We define Joo(u) = $|ul/} — %Hqu, as the functional associated with problem

(3.1). Then J is a C? functional in H}(RY). The Nehari manifold associated
with (3.1 is

My = {u € HyRN)\ {0} : J_(v)u = 0}.
In this problem we can observe that if u € Nuo, then [lull = |lul[5. Now consider
the minimization problem

Moo = Jl\/Illofc Joo(1). (3.2)

In [12] it was shown that there exists @ € H} (RY) such that ms, = infyn_ Joo(u) =
Joo(@). From these considerations we will show the following result that gives us a
description of a sequence (PS) of J) ,,.

Lemma 3.1. Let {u,} C My, be a (PS)s sequence in HY(RYN) of J ., this is, a
sequence satisfying Jx u(un) = B+ 0,(1) and J} ,(un) = 0,(1) in Hy' asn — oo,
where

m:\‘:u + Moo < <my , + Moo,
then there is a subsequence {u,} and ug € HY(RN), with a non zero ug, such that
Up = ug + 0, (1) strong in HY(RYN) and Jy ,(ug) = B. Moreover, ug is a solution

of .
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Proof. From (A1)—(A3), we obtain by a standard argument that {u,} is a bounded
sequence in HY(RY). Then there is a subsequence {u,} and ug € H4(RY) such
that u, — ug weakly in H}(RY) as n — oco. Taking v,, = u, — ug, we have v, — 0
weak in H}(RY) as n — oo. Denoting by B(0,1) the ball centered on the origin of
radius 1, we have in B(0,1) the strong convergence

/ |7 .
B(0,1) B(0,1)

By the Dominated Convergence Theorem we obtain
/ ax||un|? — |uo|?| = 0, asn — oco.
B(0,1)
Then, by Holder and the integrability of ay it follows that
| [ ex(@)(ual? = fuol?)|

< on(1) + / 0 (2) [un | — Juo]1]
B<(0,1)

A\ 1/a"
<o+ ([ o ET) T (unll o)

< on(1) + eC.

As e > 0 it is arbitrary, we have

/ ax (&)(Jun|? — [t0]7) = 0, (1).

On the other hand, by (A2) and (A3) and the Brezis-Lieb lemma (see [24]), we can
conclude that p [ ba(x)|vn|? = 0, (1), [(1—b1(z))|val? = 0, (1) and [ b, (2)(Ju,|P —
|vp [P — |uglP) = 0, (1), which together with the above inequality gives us
Inpn(Un) = Joo(vn) + I (o) + 0, (1).

In a similar way we obtain that Ji (vs)v, = J3 |, (un)usn — J3 ,(u0)uo + 0, (1). By
hypothesis J} ,(u,) — 0strongin HL(RM)= and u,, — ug weak in H{(RY) asn —
oo and so we have J}  (ug) = 0. Now, define § = limsup,,_,, sup,cp~ fB(y,l) [un|P.
So we have two cases:

(i) > 0, and

(i) & = 0.
Suppose that (i) happens. Then there will be a sequence {y,} C RY such that
fB(yml) [un|P > § and for all n € N. Define ,,(z) = v, (z +y,). We have that {7, }
is bounded and v,, — v weak and almost everywhere. Making a change of variables
we obtain

Then

giving us v # 0. But, v, — 0 weakly; then

1)
/ |vn|P 2/ o [P > = > 0. (3.4)
RN B(yn,1) 2
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We see that
1 1
Joo (V) = 3 /(|VAvn|2 +v2)dx — » / v |Pdz.
Likewise,
t2 , tP »
Fvn(t) = Joo(tvn) = 5“1%”,4 - E”Un” .

For each n € N, we can get t,, such that t,v, € M. So we build a sequence
{t,} C RY with ¢, — t; as n — oo, such that t,v, € M, that is, such that
JL o (tnon)tnvn = 0. We see also that

Jéo(vn)vn = ”vn”i& = [lvnll” = 0n(1)
and
F) () = Tl (ton)on = tlloa [ — 77 on|[P = 0n(1). (3.5)
With this, we have
(tn =t Donlh = ta(1 = 272 vall% = 0n(1). (3.6)

From (3.3)) we know that ||v, % # 0 (that is, v, does not converge to zero). Also
p . . —

note that t277 = “:Tﬁ‘i > 2. With that and by (3.6) we obtain that (1—t£~2) — 0,

giving us that ¢, — 1. Now, see that v, — 0 weak in H}(RY) as n — oo. With

this and by the fact ¢,, — 1, we can conclude that

Inp(Un) = Joo (tnvn) + JIx u(uo) + 0n(1) > Mmoo + Jx u(uo)-

Note that by hypotheses Jy ,(un) = 8+ 0,(1) with f < me + m;\ry#. From there
we obtain

B+ on(1) = Jxpuun) = Joo(tnvn) + Jau(uo) + on(1) = Mmoo + Jx,pu(uo),
giving us
Moo + JIxu(to) < B+ 0n(1) < Mmoo + m:\",u + on(1);
therefore
Iapu(ug) < m;# + o,(1). (3.7)
We have already seen that J /’\ u(u”) converges strongly to zero, therefore we obtain
J} (o) = 0. Thus ug € My .. Still, by Lemmal2.2] MY, = @ and by Lemma
we conclude that m* > 0 and m™ < 0. Then
I pu(ug) > inf Jy . (u) = inf Jy ,(u) =mT,
M)\’}L M;‘p
which contradicts what we have concluded in (3.7)). We have proved that (ii) occurs.
In this case, {v,} such that [ |v,|P — 0 if n — oco.
As we already have J/ (vn)v, = 0,(1) with J. (va)vn = [lon]% — |lvnl? and
J |vn|P — 0, we conclude that |v,,||> = 0 giving us u, — ug strong in H}(RY). See
also that ug # 0. In fact, note that if ug = 0 so v, = v, = u, and fB(O,l) [un |P > g,
which we have already seen to be an absurd. O

To address the existence of a second solution to (1.1]), certain considerations need
to be made. Note that equation

— Aqu+u = ay(@)|u|T2u + by, (2)|uPu (3.8)
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is such that ax(z) — 0 and b, (z) — 1 as || — co. Adding the hypothesis of A — d
with d constant as |z| — oo, problem ([3.8)) converges to the problem

— Agu+u = |uP"2u., (3.9

where —Ay = (—iV + d)?. Now, by a result of Ding and Liu [13, Lemma 2.5], u is
a least energy solutions of Problem (3.9)) if and only if v(z) := |u(x)| € H! it is a
least energy solution to the problem

—Av+v=v""1 v>0. (3.10)

Furthermore, the equations and share the same least energy. Specifi-
cally, we have

Joo (1) = Ioo(v) = Moo,
where J, and I, represent the corresponding functionals associated with the afore-
mentioned problems. According to Berestick, Lions [5] or Kwong [21], equation
has a unique solution zy symmetric, positive, and radial. By [I5, Theorem
2], for all € > 0, exists A, By and C, positive such that

Acexp(—(1+ e)|z|) < zo(x) < Byexp(—|z|), (3.11)
|Vzo(x)] < Ceexp(—(1 —¢€)|x]). (3.12)
According to Kurata [20, Lemma 4], defining wy = zoe " we have that wg is

the unique, symmetrical, positive and radial solution of (3.9). So we will have
Joo(wo) = moo. We see also that zg = |wg|, which together with (3.11)) gives us the
inequalities

Acexp(—=(1 4 €)|z]) < [wo(z)| < Bo exp(—|z), (3.13)

[Vwg(z)| < Ceexp(—(1 — €)|z|). (3.14)

Next, To prove the existence of a second solution, we make some estimates on

the minimum energy levels in the Nehari Manifold. Not to overload the notation,

we write ut = u;tu. Considering J(ut) = m*, m~ = infueM;u I u(u), and

Moo = Infyenr., Joo(t) = Joo(wp), we will make the following estimate for such
energy levels.

Proposition 3.2. For all A > 0 and p > 0 satisfying N?72(1 + p||ba]|00)?™9 < Yo,
we have m™ < m* +m™.

The proof of the above proposition is similar to that of [I2, Proposition 6.1]; we
omit it.
4. THIRD SOLUTION

To obtain the third solution of problem (I.1)), we need some additional results.
For A =0 and p = 0 we define the sets

My, o = {u € Hy(RY)\ {0} : (J7, 4, (u), u) = 0}

/.
/.

where

1 1
Jag,bo = |V,4u|2 + |u|2) dr — g/ao(xﬂu\qu — ]; /b0($)|u|pdx

(
(

N~ N~

1 1
|V au)? + |u|?) dz — g/a,(x)\uﬁdx - E/bl(m)\uP’dx.
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Lemma 4.1. With the above notation we have

ue]l\?f Jag,bo (W) = uelrjgw Joo(u) = m™.

ag,bg

Proof. Let wy, be as defined above. Because A = 0, we have a(z) = Aay(x) +

a_(x) = a_(x) < 0 from where [,y a_[t™ (wi)wi|?dz < 0, hence by Lemma i)
1

there is only one ¢t~ (wy) > (ﬁ)')*2 such that ¢~ (wg)wy € M, for all k > 0;

that is, J; , (¢~ (wr)wy) = 0, giving us

||t_(wk)wk\\?4:/ a_|t_(wk)wk|qu+/ bt (we)wePda. (A1)
RN RN

As wy is a solution of problem (3.10) and remembering that the functional associ-
ated with (3.10) is I(u) = L|jul% — %||u||£7 and I'(u) = ||lul|} — [|u||? we have
I'(wo)wo = Jlwo |3 — llwol% = 0.

Therefore,
1 5 1 »
Moo = I(wo) = S lwolla — };Ilwollp

1 1 p—2
= §||w0||§x - ];||w0||,24 = WHU}OHA
Being wq solution of problem (3.10)) follows that wy(z) = wo(z + ke). With this
and I’ (wg)wy = 0, we have I'(wg)wg, = 0. So that

2
lwel|% = /RN |wy,|9dz = ]fpzmoo for all k > 0. (4.2)

It is known that w,, is bounded in L and w,, — 0 a.e., by Theorem [I6, Theorem
13.44] that w, — 0 weakly in L. By the condition (A1), a_ € (L") = L" we
obtain
/ a_|wg|%dx — 0 as k — oo. (4.3)
RN

In addition, by (A2) and (A3) we have
/ (1—b1)|wg|%dz = / (lfbl)|wk|qu+/ (1—=b1)|wg|%dx — 0, (4.4)
RN B(0,R) B*(0,R)

as |wg] = oo. By (4.1), (4.3), and (4.4) we have that ¢~ (wg) — 1 as k — oo.

Likewise
Hm Jo, b, (67 (wr)ws) = Im Joo (87 (W) wg) = Meo.
k—o0 k—ro00

Thus

Moo = Inf Joo(u) = lim Joo(t™ (wr)wg) > inf  Jyug ., (0). (4.5)
u€ M e k—r 00 ueM

We also have u € Mg, p,, by Lemma (i), Jagbo(4) = SUD;>q Jag b, (tu), and
furthermore, there is a single t> > 0 such that t*°u € M. So

1 1°°)1 o)
Taono(tu) = Lea - [ atutrae =L ] s
q RN p RN
1 to°)P
o Ly
2 P RN

= Joo (t™u) > Moo
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therefore
i ) > . .
ueiﬁi,bo Jag.bo (T°U) > Moo (4.6)
By (4.5) and (4.6, we have
(el oo 0= g 90 = .

To obtain the fourth solution of the problem, we need a lemma that establishes
suitable values of A and p.

Lemma 4.2. Exist \g > 0 and ug > 0 with

_ _ -2
N2+ ool )27 < (2)777To,

such that for all A € (0,Ag) and all pn € (0, o), we have
/ T (Va2 +u)dz £ 0
RN |2

for allu € M;,bﬂ with Jy ,(u) < m;;,b“ +m.

a

The above lemma can be obtained arguing as in [I12, Lemma 7.6]; we omit its
proof.

5. FOURTH SOLUTION

In this section we will work to estimate of the energy levels of the functional
associated with the main problem, to prove the existence of a solution whose energy
level satisfies the conditions of Proposition ii); that is, to find a distinct solution
from the three solutions in the previous sections. For a > 0, we define

1 1
Jo.abo(u) = 5 /N |V aul® + v’da — , /N abolulPdz,
R R

Mo, = {u € Hy(RY)\ {0} : (Jg ap, (u), u) = 0}
We now define the following subset of the unitary ball
B={uec HyRY)\{0}:u>0and |Julja =1}.
Let us recall that for every u € H(RY)\ {0} there exists a unique ¢~ (u) > 0 and
to(u) > 0 such that t~(u) € M, , and to(u) € Moy,. To apply the minimax
argument of Bahri-Li we present the following result.
Lemma 5.1. For each u € B we will have
(i) There is a unique t§ = t§(u) > 0 such that tfu € Mo ap, and
-2 —2/(p—2)

SUD Jo.aby (111) = Joap, (t50) = pT( / ab0|u|pdz) :

t>0 P RN
(ii) For p € (0,1),

— (1 - p)”;%2 2—q _a_ 2
Jax b, (™ (w)u) > 5—Jo,bo (to(u)u) — ——(pSp) =2 (Alay[|4) ===
’ (1 + pllba/b1 o) 72 2q
and
(L+p)7e

Tury (E (w) < .

¢t lla-

2 —q _q
9 Jo,bo (to(u)u) + 27q(/75p)‘1’2 (Alay
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Proof. (i) For each u € B, we consider

1 1
Ku(t) = Jo.ap, (tu) = =% — ftp/ abo|u|Pdz,
’ 2" 2" Jen
so K, (t) = —oc as t — oo, and

K;(t):t—tp_l/ abo|u|Pdz.
RN

Thus, K/ (t§) = 0, and t§u € My qp, as

_1
ty =t (u) = (/ abo|u\pdx) .
RN
Moreover, K[/(t) =1— (p — 1)tP~2 [on abo|ulPdz. So, for t§(u) we have

that is, ¢§ is a maximum point of K,,. Then, there exists a unique t§ = tJ(u) > 0
such that t§u € Mo, qp, and also by definition K, (t) = J(tu) we obtain

-2 P

sup Jo,ab, (tw) = Jo,ab, (tGu) = pT(/ ab0|u\pdx) o
t>0 P RN

(i) We consider a = (1+p|b2/b1]lc)/(1—p). Then, for each u € B and p € (0,1),

we have

/ axltgultdz < AS;V2 ||y tgull
RN

q*)ﬁ + %((p)%HtguHA>2/q (5.1)

24
)77+ el

2 —q -9

< 5 (05 Alas
2 — q q

= T(Pk%)"” (Alay

Then, from part (i) and by (5.1, we have

sup Ja, b, (tu)
>0

> JGA bu (tgu)

1—p, o 2—q _a_ 2
> 5Ll = 508 ™ (lay )7
1
_ (1 + pl[b2/b1]|0) / bo |t ulP da
p RN
- 2 —q _a_ -2
= (1= p)Jo,ab, (tgu) — Tq(ﬂsp)“‘2 (Alat]lg=)==7
p—2)(1—p 73 2—gq _a_ 2
- =201 =r) = 28, (A ay )7
2p((1 + pllb2/b1lloo) frn bolulPda) 7= q
1—p 72 2—gq _a_ 2
= ( ) 7= Jo,aby (to(w)u) — ——(pSp) 72 (Alat[[¢+) 27

(1 + pllb2/brlloc) 72 2q
By Lemma [2.3] and by Theorem we have

sup Ja, b, (tu) = Jax b, (™ (w)u).
>0
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Thus,
P
_ 1—p)r—2 2—q g 2
Ja;,bu(t (wu) = (1+(||b /; I )LJO,abo(tO(u)u)_Tq(pSp)qEQ (Alla q*)%q'
1]]102/01||0c) P2

Furthermore, by Holder, Sobolev, and Young’s inequalities,

[ anltuttde| < [ axleuftds < Moy + -
RN RN

2 — q _a_
< 5 (pS) 77 (Mlay

a)Sy 2 ltully

¢t lla-

2 qp
)7+ L)
Also

(1+p) o, 2—¢ -
320+ 5 (08T (Aa

(1+p)7
2

Jambu (tu) <

¢ T lla_

1
)7 — */ bo|tulPdx
b Jry

2 — q _a_ =2
Jopo (to(w)u) + — = (pSp) =2 (Allat[lg- + lla-llg-)>=7

2q

IN

Then
b
1+p)r—2 2—q _a_
LD o tow) + 222 65,)7% (s

As we wanted to prove. (Il

Tan sy (™ (W) < )T

g T lla—

Note that as m, , >0 forall X € (0, X0) and p € (0, uo), we can define

iy () = S0 Ty, (b0) = T, (4 (1)) > 0.
t=>

where t~ (u)u € M_

axb,- We can see that if A,y and la—]l4+ are sufficiently small,

we can use the minimax Bahri-Li’s argument [4] for our functional J,, p,. Let

Lay b, = {7 € C(BN(0,k),B) : vlop~0,.k) = wi/||well 4}

be for values of [ large enough. We define

n = inf sup I, T
ax,b, €T as by IGRI?V a,\,bu(7< ))7

nop, = inf  sup Iy, (v(x))
7€l0,bg xRN

By Lemma ii), for 0 < p < 1, we have

(1—p)7= 2—q _a_ 2
Nax b, = ——10,60 — —5— (PSp) 72 (Allay [|lg~) =7, (5.2)
T @t pllbe /i) 2
< = 20,5 )7t 2
Nay,b, > (1 +p)? n0,by + 7(/’ p)q ()\||a+ ¢+ ||a, q*) a. (5.3)

2q
We will use the following estimates of the energy levels.
Lemma 5.2. m* < ngp, < 2m™.

Proof. From the results by Bahri and Li [4] we have that , with a) = 0 and
by = bo, admits at least one solution ug with Jo p, (1) = nop, < 2m*. In addition,
by (A4), problem , with ay = 0 and by = by, does not have a minimum energy
solution; this implies the lower estimates. ([l
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Theorem 5.3. Let Ao and po be as in Lemma /-3 Then there will be positive
values Ao < Ao, pio < po and Vo < vy such that for A € (0,Xo), p € (0, o) and
la—|lg+ < vo, we have

+

oo —_ oo
mambu +m < Tay b, < mahb” +m .

In addition, (L.1) admits a solution va, p, with

Ja/\,bu ('Ua,\,b“) = Nay,b,-

Proof. By Lemma ii), for 0 < p < 1 we have

— (1—p)ﬁ %) 2_q —a_ -2
My b > S M= (pSp) i (Mlay[lq=) 2=,

T (L pllba /bl ) 72 2q

_ P 2—(] _q_ 2
Masb S (L p)72m™ 4+ = 2 (08p) 72 (Mlallgr + la—lg-) 77

For each € > 0 there are positive values N < Ao, 1 < po and vy such that
A€ (0,M), 1 €(0,41), and ||a_| g+ < v1, we have

m™ — € < Ngy p, <M +e

Then

2m™ — € <ngyp, +m> <2m> + €.

Using and for a11~5 > 0 there will be positive values XQ < Ao, 2 < o, and
vo, such that for A € (0, A2), p € (0, fi2) and ||a_ ||+ < v2, we have

Nop, —0 < Nay b, < N0by T d.

Fixing small values of 0 < € < (2m™ — ngp,)/2, and being m™ < ngp, < 2m>,
and choosing § > 0 so that for A < A\g = min{A1, Ao}, p < ip = min{gy, go} and
la—|lg < vo = min{vy, v}, we will have

+

oo o0 oo — oo
N +m™ <m>™ <ngyp, < 2m>® —e < My b, +m™>.

Thus, by Proposition ii), we obtain that problem (1.1)) has a solution v, p,
with

Ja)\,b“(UaA,bu) :na,\,b“~ |:|

Proof of Theorem[I.1. With the result of Theorem we can complete the proof
of Theorem For A € (0, Xo), p € (0, fip) and ||a_||4~ < vp, also using the results
presented in the introduction about the existence of the first three solutions and
Theorem we obtain that the equation admits at least four solutions. [
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