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SCHRODINGER EQUATIONS WITH MAGNETIC POTENTIAL
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HIROSHI MIYAGAKI

In memory of Prof. Alan C. Lazer with admiration

Abstract. We consider the elliptic problem

−∆Au + u = aλ(x)|u|q−2u + bµ(x)|u|p−2u,

for x ∈ RN , 1 < q < 2 < p < 2∗ = 2N/(N − 2), aλ(x) is a sign-changing

weight function, bµ(x) satisfies some additional conditions, u ∈ H1
A(RN ) and

A : RN → RN is a magnetic potential. Exploring the Bahri-Li argument

and some preliminary results we will discuss the existence of a four nontrivial
solutions to the problem in question.

1. Introduction

In this work we are interested in studying the existence of a fourth solution for
the concave-convex elliptic problem

−∆Au+ u = aλ(x)|u|q−2u+ bµ(x)|u|p−2u in RN ,

u ∈ H1
A(RN ),

(1.1)

where N ≥ 3, −∆A = (−i∇+A)2, 1 < q < 2 < p < 2∗ = 2N
N−2 , aλ(x) is a family of

functions that can change signs, bµ(x) is continuous and satisfies some additional
conditions, u : RN → C with u ∈ H1

A(RN ) (such space will be defined later),
λ > 0 and µ > 0 are real parameters, and A : RN → RN is a magnetic potential
in L2

loc(RN ,RN ). For the relevance of this equation to the magnetic Laplacian in
Physics, the reader is referred to Alves and Figueiredo [1] and Arioli and Szulkin
[3].

In [12] the authors showed the existence of three solutions for this problem and
proved their regularity. In this paper we show the existence of a fourth solution.

There are many works on problems similar problem to (1.1), but with A = 0.
Ambrosetti, Brezis, and Cerami [2] considered the problem

−∆u+ u = λuq−1 + up−1 in Ω,
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u > 0 in Ω,

u = 0 on ∂Ω,

where Ω is a bounded regular domain of RN (N ≥ 3), with smooth boundary and
1 < q < 2 < p ≤ 2∗. Combining the method of sub and super-solutions with the
variational method, the authors proved the existence of λ0 > 0 such that there are
two solutions when λ ∈ (0, λ0), one solution when λ = λ0, and no solution when
λ > λ0.

Wu [26] studied the concave-convex problem

−∆u+ u = λf(x)uq−1 + up−1 in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

with f ∈ C(Ω) a sign changing function and 1 < q < 2 < p < 2∗. It was proved
that the problem has at least two positive solutions for λ small enough. For p, q as
above, many studies have been devoted to the existence and multiplicity of solutions
to concave-convex elliptic problems in bounded domains; see for example Brown
[8], Brown and Wu [6], Brown and Zhang [7], Hsu [18], Hsu and Lin [17], and their
references.

For an unbounded domains, we can cite Chen [10], Huang, Wu and Wu [19], who
studied a similar problems in RN . Wu [25] studied the problem

−∆u+ u = fλ(x)uq−1 + gµu
p−1 in RN ,

u ≥ 0 in RN ,

u ∈ H1(RN ),

with 1 < q < 2 < p < 2∗, gµ ≥ 0, and fλ being able to change sign. Wu [25] showed
the existence of at least four solutions to the problem when λ and µ small enough.
This result was extend in [12], investigating if it would be possible to obtain similar
consequences when we use the magnetic Laplacian in place of the usual Laplacian.
In this work we will show the existence of a fourth solution for this problem.

The first results for non-linear Schrödinger equations with A 6= 0 can be attrib-
uted to Esteban and Lions [14]. They obtained the existence of stationary solutions
for the equation

−∆Au+ V u = |u|p−2u, u 6= 0, u ∈ L2(RN ),

with V = 1 and p ∈ (2,∞) using a minimization method with constant magnetic
field. This was done for the general case.

Chabrowski and Szulkin [9] worked with this operator in the critical case, that
is p = 2∗, and with the electric potential V being able to change signs. Already
Cingolani, Jeanjean and Secchi [11] considered the existence of multi-peak solutions
in the subcritical case.

Alves and Figueiredo [1] considered the problem

−∆Au = µ|u|q−2u+ |u|2
∗−2u, u 6= 0,Ω ⊂ RN ,

with µ > 0 and 2 ≤ q < 2∗. They related number of solutions with the topology of
Ω.

The authors in [12] studied non-zero A case with a weight function that changes
signs in the concave-convex case, just like the problem stated in this work. They
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proved the existence of three solutions for the problem. Now we would like to show
the existence of a fourth solution. There the authors used category theory, the
Nehari manifold, and the fibering map.

In what follows, we will present a set of preliminary results. Observe that

Jλ,µ(u) =
1

2

∫
RN

(|∇Au|2 +|u|2) dx− 1

q

∫
RN

aλ(x)|u|q dx− 1

p

∫
RN

bµ(x)|u|p dx, (1.2)

is the functional associated with problem (1.1) and is of class C1 in H1
A(RN ) as

can shown in [22]. Also, the critical points of Jλ,µ(u) are weak solutions of problem

(1.1). We will use the following hypotheses: We assume a(x) ∈ Lq′(RN ), q′ = p
p−q ,

and a± = ±max{±a(x), 0} 6= 0. Let

aλ(x) = λa+(x) + a−(x).

and assume that

(A1) a(x) ∈ Lq′(RN ), q′ = p
p−q , and there exists ĉ > 0 and ra− > 0, such that

a−(x) > −ĉ exp(−ra− |x|) for all x ∈ RN .

We assume that bµ(x) = b1(x) + µb2(x), where

(A2) b1(x) > 0 in continuous in RN , with b1(x)→ 1 as |x| → ∞ and there exists
rb1 > 0, such that

1 ≥ b1(x) ≥ 1− c0 exp(−rb1 |x|) for some c0 < 1 and all x ∈ RN .

(A3) b2(x) > 0 is continuous in RN , b2(x) → 0 as |x| → ∞ and exists rb2 > 0,
with rb2 < min{ra− , rb1 , q} such that

b2(x) ≥ d0 exp(−rb2 |x|) for some d0 < 1 and all x ∈ RN .

The above hypotheses were used in [12]. We define

Υ0 = (2− q)2−q
( p− 2

‖a+‖q′

)p−2( Sp
p− q

)p−q
,

where

Sp = inf
u∈H1

A(RN\{0})

( ∫
RN |∇Au|

2 + u2dx
)1/2( ∫

RN |u|pdx
)2/p > 0. (1.3)

In [12], under assumptions (A1)–(A3), it was proved that (1.1) has at least one
solution, provided that

λp−2(1 + µ‖b2‖∞)2−q <
(q

2

)p−2
Υ0 (1.4)

holds for each λ > 0 and µ > 0. Then, assuming that the potential is asymptotic
to a constant at infinity, they prove the existence of at least two solutions u+ and
u− with Jλ,µ(u+) < 0 < Jλ,µ(u−).

In the previous result, the existence is valid for all λ and µ satisfying inequality
(1.4). So, if we additionally set values of λ and µ conveniently small we obtain
the multiplicity result, that is, there exist at least three solutions. Actually they
showed the existence of λ0 > 0 and µ0 > 0 with

λp−2
0 (1 + µ0‖b2‖∞)2−q <

(q
2

)p−2
Υ0,

such that for all λ ∈ (0, λ0) and µ ∈ (0, µ0), problem (1.1) has at least three
solutions.
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In this work, we observe that for the problem in question, the numbers λ0 and µ0

as previously mentioned are independent of the value of a−. However, considering
some additional hypotheses and taking values of ‖a−‖q′ sufficiently small we obtain
another solution. Before stating this result we present the following hypotheses:

(A4) b1(x) < 1 in RN in a positive measure set;
(A5) rb1 > 2.

Theorem 1.1. Suppose that the potential A(x) converges to some constant d ∈ NN
as |x| → ∞. Assuming (A1)–(A5), there are positive values λ̃0 ≤ λ0, µ̃0 ≤ µ0, and

ν0 such that for λ ∈ (0, λ̃0), µ ∈ (0, µ̃0), and ‖a−‖q′ < ν0, problem (1.1) has at
least four solutions.

For the first three solutions of this problem, the Nehari method was used together
with category theory. We will use variational methods to prove the above theorem.
We will work under a few more assumptions to estimate different energy levels
and will use the Bahri-Li min-max argument to show that for very small values of
‖a−‖q′ , the problem has at least four distinct solutions.

2. Initial considerations

According to Tang [23], we denote by HA(RN ) the Hilbert space obtained by
the closing of C∞0 (RN ,C) with the inner product

〈u, v〉A = Re

∫
R

(∇Au∇Av + uvdx),

where ∇Au := (D1u,D2u, . . . ,DNu) and Dj := −i∂j−Aj(x), with j = 1, 2, . . . , N ,
and with A(x) = (A1(x), . . . , AN (x)). The norm induced by this product is

‖u‖2A :=

∫
R

(|∇Au|2 + u2dx).

Esteban and Lions [14, Section II] proved that that for all u ∈ H1
A(RN ) the dia-

magnetic inequality holds, i.e.

|∇|u|(x)| =
∣∣Re

(
∇u u
|u|
)∣∣ =

∣∣Re
(
(∇u− iAu)

u

|u|
)∣∣ ≤ |∇Au(x)|.

So, if u ∈ H1
A(RN ) we have that |u| belongs to the usual Sobolev space H1

0 (RN ).

2.1. Preliminary results. To obtain the existence, we introduced the Nehari
manifold

Mλ,µ = {u ∈ H1
A(RN ) \ {0} : 〈J ′λ,µ(u), u〉 = 0},

where 〈·, ·〉 denotes the usual duality between H1
A(RN ) and its dual H1

A(RN )∗. The
Nehari manifold is linked to the functions Fu : t→ Jλ,µ(tu), (t > 0), called fibering
maps. Note that the fabering map it was defined and depends on u, λ, and µ; so
that proper notation should be Fu,λ,µ, but to simplify the notation, we write Fu.
If u ∈ H1

A(RN ), we have

Fu(t) =
t2

2
‖u‖2A −

tq

q

∫
RN

aλ(x)|u|q dx− tp

p

∫
RN

bµ(x)|u|p dx, (2.1)

F ′u(t) = t‖u‖2A − tq−1

∫
RN

aλ(x)|u|q dx− tp−1

∫
RN

bµ(x)|u|p dx, (2.2)

F ′′u (t) = ‖u‖2A − (q − 1)tq−2

∫
RN

aλ(x)|u|q dx− (p− 1)tp−2

∫
RN

bµ(x)|u|p dx. (2.3)
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The following remark relates the Nehari manifold and the Fibering map.

Remark 2.1. Let Fu be the application defined above and u ∈ H1
A(RN ). Then:

(i) u ∈Mλ,µ if, and only if, F ′u(1) = 0;
(ii) more generally tu ∈Mλ,µ, and only if, F ′u(t) = 0.

From the previous remark we conclude that the elements in Mλ,µ, correspond to
the critical points of the Fibering map. Thus, as Fu(t) ∈ C2(R+,R), we can divide
the Nehari manifold into three parts

M+
λ,µ = {u ∈Mλ,µ : F ′′λ,µ(1) > 0},

M−λ,µ = {u ∈Mλ,µ : F ′′λ,µ(1) < 0},
M0
λ,µ = {u ∈Mλ,µ : F ′′λ,µ(1) = 0}.

The lemma below shows that under some conditions, M0
λ,µ is empty, as shown in

[6, Lemma 2.2].

Lemma 2.2. Let µ ≥ 0 and λ > 0 such that

λp−2(1 + µ‖b2‖∞)2−q < Υ0. (2.4)

Then M0
λ,µ = ∅.

As shown in [12], under certain conditions on λ and µ, we have a minimizer
in M+

λ,µ and another in M−λ,µ. The minimum levels of energy will be denoted
respectively by

m+
λ,µ = inf

u∈M+
λ,µ

Jλ,µ(u),

m−λ,µ = inf
u∈M−λ,µ

Jλ,µ(u).

To establish the existence of the first two solutions and compare with the energy
level of the fourth solution, we will need the following result that was shown in [12].

Lemma 2.3. For each u ∈ H1
A(RN ) \ {0} and µ > 0 we have:

(i) If
∫
RN aλ(x)|u|q dx ≤ 0, there is a single t−(u) > tmax(u) such that t−(u)u ∈

M−λ,µ. Also, Fu(t) is increasing in (0, t−(u)), decreasing in (t−(u),+∞) and

Fu(t)→ −∞ as t→ +∞.
(ii) If

∫
RN aλ(x)|u|q dx > 0 and λ is such that λp−2(1 + µ‖b2‖∞)2−q < Υ0, so

there is 0 < t+(u) < tmax(u) < t−(u) such that t±(u)u ∈M±λ,µ. Also, Fu(t)

is decreasing in (0, t+(u)), increasing in (t+(u), t−(u)) and decreasing in
(t−(u),+∞). Furthermore, Fu(t)→ −∞ as t→ +∞.

Our next lemma shows that these points are well defined, and i prove can be
found in [17, Lemma 2.1].

Lemma 2.4. The functional Jλ,µ is coercive and bounded from below in Mλ,µ.

For the next results we need some estimates on m±λ,µ. To do this, from (2.4) we
have

‖u‖2A <
p− q
p− 2

∫
RN

aλ(x)|u|q dx ≤ Υ
1/(p−2)
0

p− q
p− 2

S−q/2p ‖a+‖Lq′‖u‖
q
A.
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Therefore,

‖u‖A ≤
(

Υ
1/(p−2)
0

p− q
p− 2

S−q/2p ‖a+‖Lq′
)1/(2−q)

‖u‖qA, (2.5)

for all u ∈ M+
λ,µ. Also, if λ = 0, then (2.4) is satisfied, so that by Lemma 2.3(i),

M+
λ,µ = ∅, and we have Mλ,µ = M−λ,µ for all µ ≥ 0. By has been seen, we will show

the following results on the values of m±λ,µ.

Lemma 2.5. (i) If λp−2(1 + µ‖b2‖∞)2−q < ( q2 )p−2Υ0, then m
−
λ,µ > 0;

(ii) For λ > 0 and µ ≥ 0 with λp−2(1 + µ‖b2‖∞)2−q < Υ0, then m
+
λ,µ < 0. In

particular, if λp−2(1 + µ‖b2‖∞)2−q < ( q2 )p−2Υ0, then

m+
λ,µ = inf

Mλ,µ

Jλ,µ(u).

The proof of the above lemma is similar to one in [25, Theorem 3.1]; we omit it.
By Lemma 2.5, we can conclude that for every u ∈ H1

A(RN ) \ {0}

Jλ,µ(t−(u)u) = max
t≤0

Jλ,µ(tu), (2.6)

whenever λp−2(1 + µ‖b2‖∞)2−q <
(
q
2

)p−2
Υ0, with λ ≥ 0 and µ > 0.

3. Existence of m∞

In this section we define the energy level of the limit problem and make some
estimates for energy levels of the solutions in the Nehari manifold. Then, we will
have tools to show that the fourth solution has a different level than other solutions.
For this, consider the semilinear elliptic problem

−∆Au+ u = |u|p−2u in RN ,

u ∈ H1
A(RN ).

(3.1)

We define J∞(u) = 1
2‖u‖

2
A − 1

p‖u‖
p
p, as the functional associated with problem

(3.1). Then J∞ is a C2 functional in H1
A(RN ). The Nehari manifold associated

with (3.1) is

M∞ = {u ∈ H1
A(RN ) \ {0} : J ′∞(u)u = 0}.

In this problem we can observe that if u ∈ N∞, then ‖u‖2A = ‖u‖pp. Now consider
the minimization problem

m∞ = inf
M∞

J∞(u). (3.2)

In [12] it was shown that there exists ū ∈ H1
A(RN ) such that m∞ = infN∞ J∞(u) =

J∞(ū). From these considerations we will show the following result that gives us a
description of a sequence (PS) of Jλ,µ.

Lemma 3.1. Let {un} ⊂M−λ,µ be a (PS)β sequence in H1
A(RN ) of Jλ,µ, this is, a

sequence satisfying Jλ,µ(un) = β + on(1) and J ′λ,µ(un) = on(1) in H−1
A as n→∞,

where

m+
λ,µ +m∞ < β < m−λ,µ +m∞,

then there is a subsequence {un} and u0 ∈ H1
A(RN ), with a non zero u0, such that

un = u0 + on(1) strong in H1
A(RN ) and Jλ,µ(u0) = β. Moreover, u0 is a solution

of (1.1).
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Proof. From (A1)–(A3), we obtain by a standard argument that {un} is a bounded
sequence in H1

A(RN ). Then there is a subsequence {un} and u0 ∈ H1
A(RN ) such

that un ⇀ u0 weakly in H1
A(RN ) as n→∞. Taking vn = un−u0, we have vn ⇀ 0

weak in H1
A(RN ) as n→∞. Denoting by B(0, 1) the ball centered on the origin of

radius 1, we have in B(0, 1) the strong convergence∫
B(0,1)

|un|q →
∫
B(0,1)

|u0|q.

By the Dominated Convergence Theorem we obtain∫
B(0,1)

aλ‖un|q − |u0|q| → 0, as n→∞.

Then, by Hölder and the integrability of aλ it follows that∣∣ ∫ aλ(x)(|un|q − |u0|q)
∣∣

≤ on(1) +

∫
Bc(0,1)

aλ(x)‖un|q − |u0|q|

≤ on(1) +
(∫

Bc(0,1)

aλ(x)q
∗
)1/q∗

(‖un‖qp + ‖u0‖qp)

≤ on(1) + εC.

As ε > 0 it is arbitrary, we have∫
aλ(x)(|un|q − |u0|q) = on(1).

On the other hand, by (A2) and (A3) and the Brezis-Lieb lemma (see [24]), we can
conclude that µ

∫
b2(x)|vn|p = on(1),

∫
(1− b1(x))|vn|p = on(1) and

∫
bµ(x)(|un|p−

|vn|p − |u0|p) = on(1), which together with the above inequality gives us

Jλ,µ(un) = J∞(vn) + Jλ,µ(u0) + on(1).

In a similar way we obtain that J ′∞(vn)vn = J ′λ,µ(un)un − J ′λ,µ(u0)u0 + on(1). By

hypothesis J ′λ,µ(un)→ 0 strong inH1
A(RN )−1 and un ⇀ u0 weak inH1

A(RN ) as n→
∞ and so we have J ′λ,µ(u0) = 0. Now, define δ = lim supn→∞ supy∈RN

∫
B(y,1)

|vn|p.
So we have two cases:

(i) δ > 0, and
(ii) δ = 0.

Suppose that (i) happens. Then there will be a sequence {yn} ⊂ RN such that∫
B(yn,1)

|vn|p ≥ δ
2 and for all n ∈ N. Define ṽn(x) = vn(x+ yn). We have that {ṽn}

is bounded and ṽn ⇀ v weak and almost everywhere. Making a change of variables
we obtain ∫

B(0,1)

|ṽn|p ≥
δ

4
.

Then ∫
B(0,1)

|v|p ≥ δ

4
, (3.3)

giving us v 6= 0. But, vn ⇀ 0 weakly; then∫
RN
|vn|p ≥

∫
B(yn,1)

|vn|p ≥
δ

2
> 0. (3.4)
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We see that

J∞(vn) =
1

2

∫
(|∇Avn|2 + v2

n)dx− 1

p

∫
|vn|pdx.

Likewise,

Fvn(t) = J∞(tvn) =
t2

2
‖vn‖2A −

tp

p
‖vn‖p.

For each n ∈ N, we can get tn such that tnvn ∈ M∞. So we build a sequence
{tn} ⊂ RN with tn → t0 as n → ∞, such that tnvn ∈ M∞, that is, such that
J ′∞(tnvn)tnvn = 0. We see also that

J ′∞(vn)vn = ‖vn‖2A − ‖vn‖p = on(1)

and

F ′vn(t) = J ′∞(tvn)vn = t‖vn‖2A − tp−1‖vn‖p = on(1). (3.5)

With this, we have

(tn − tp−1
n )‖vn‖2A = tn(1− tp−2

n )‖vn‖2A = on(1). (3.6)

From (3.3) we know that ‖vn‖2A 6→ 0 (that is, vn does not converge to zero). Also

note that t2−pn =
∫
|vn|p

‖vn‖2A
≥ δ

2c . With that and by (3.6) we obtain that (1−tp−2
n )→ 0,

giving us that tn → 1. Now, see that vn ⇀ 0 weak in H1
A(RN ) as n → ∞. With

this and by the fact tn → 1, we can conclude that

Jλ,µ(un) = J∞(tnvn) + Jλ,µ(u0) + on(1) ≥ m∞ + Jλ,µ(u0).

Note that by hypotheses Jλ,µ(un) = β + on(1) with β < m∞ + m+
λ,µ. From there

we obtain

β + on(1) = Jλ,µ(un) = J∞(tnvn) + Jλ,µ(u0) + on(1) ≥ m∞ + Jλ,µ(u0),

giving us

m∞ + Jλ,µ(u0) ≤ β + on(1) < m∞ +m+
λ,µ + on(1);

therefore

Jλ,µ(u0) < m+
λ,µ + on(1). (3.7)

We have already seen that J ′λ,µ(un) converges strongly to zero, therefore we obtain

J ′λ,µ(u0) = 0. Thus u0 ∈Mλ,µ. Still, by Lemma 2.2, M0
λ,µ = ∅ and by Lemma 2.5,

we conclude that m+ > 0 and m− < 0. Then

Jλ,µ(u0) ≥ inf
Mλ,µ

Jλ,µ(u) = inf
M+
λ,µ

Jλ,µ(u) = m+,

which contradicts what we have concluded in (3.7). We have proved that (ii) occurs.
In this case, {vn} such that

∫
|vn|p → 0 if n→∞.

As we already have J ′∞(vn)vn = on(1) with J ′∞(vn)vn = ‖vn‖2A − ‖vn‖pp and∫
|vn|p → 0, we conclude that ‖vn‖2 → 0 giving us un → u0 strong in H1

A(RN ). See

also that u0 6= 0. In fact, note that if u0 = 0 so ṽn = vn = un and
∫
B(0,1)

|un|p ≥ δ
4 ,

which we have already seen to be an absurd. �

To address the existence of a second solution to (1.1), certain considerations need
to be made. Note that equation

−∆Au+ u = aλ(x)|u|q−2u+ bµ(x)|u|p−2u (3.8)
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is such that aλ(x)→ 0 and bµ(x)→ 1 as |x| → ∞. Adding the hypothesis of A→ d
with d constant as |x| → ∞, problem (3.8) converges to the problem

−∆du+ u = |u|p−2u., (3.9)

where −∆d = (−i∇+ d)2. Now, by a result of Ding and Liu [13, Lemma 2.5], u is
a least energy solutions of Problem (3.9) if and only if v(x) := |u(x)| ∈ H1 it is a
least energy solution to the problem

−∆v + v = vp−1; v > 0. (3.10)

Furthermore, the equations (3.9) and (3.10) share the same least energy. Specifi-
cally, we have

J∞(u) = I∞(v) = m∞,

where J∞ and I∞ represent the corresponding functionals associated with the afore-
mentioned problems. According to Berestick, Lions [5] or Kwong [21], equation
(3.10) has a unique solution z0 symmetric, positive, and radial. By [15, Theorem
2], for all ε > 0, exists Aε, B0 and Cε positive such that

Aε exp(−(1 + ε)|x|) ≤ z0(x) ≤ B0 exp(−|x|), (3.11)

|∇z0(x)| ≤ Cε exp(−(1− ε)|x|). (3.12)

According to Kurata [20, Lemma 4], defining w0 = z0e
−idx, we have that w0 is

the unique, symmetrical, positive and radial solution of (3.9). So we will have
J∞(w0) = m∞. We see also that z0 = |w0|, which together with (3.11) gives us the
inequalities

Aε exp(−(1 + ε)|x|) ≤ |w0(x)| ≤ B0 exp(−|x|), (3.13)

|∇w0(x)| ≤ Cε exp(−(1− ε)|x|). (3.14)

Next, To prove the existence of a second solution, we make some estimates on
the minimum energy levels in the Nehari Manifold. Not to overload the notation,
we write u+ := u+

λ,µ. Considering J(u+) = m+, m− = infu∈M−λ,µ
Jλ,µ(u), and

m∞ = infu∈M∞ J∞(u) = J∞(w0), we will make the following estimate for such
energy levels.

Proposition 3.2. For all λ > 0 and µ > 0 satisfying λp−2(1 + µ‖b2‖∞)2−q < Υ0,
we have m− < m+ +m∞.

The proof of the above proposition is similar to that of [12, Proposition 6.1]; we
omit it.

4. Third solution

To obtain the third solution of problem (1.1), we need some additional results.
For λ = 0 and µ = 0 we define the sets

M−a0,b0 = {u ∈ H1
A(RN ) \ {0} : 〈J ′a0,b0(u), u〉 = 0}

where

Ja0,b0 =
1

2

∫
RN

(|∇Au|2 + |u|2) dx− 1

q

∫
a0(x)|u|qdx− 1

p

∫
b0(x)|u|pdx

=
1

2

∫
RN

(|∇Au|2 + |u|2) dx− 1

q

∫
a−(x)|u|qdx− 1

p

∫
b1(x)|u|pdx.
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Lemma 4.1. With the above notation we have

inf
u∈M−a0,b0

Ja0,b0(u) = inf
u∈M∞

J∞(u) = m∞.

Proof. Let wk be as defined above. Because λ = 0, we have a(x) = λa+(x) +
a−(x) = a−(x) < 0 from where

∫
RN a−|t

−(wk)wk|qdx ≤ 0, hence by Lemma 2.3(i)

there is only one t−(wk) >
(

2−q
p−q
) 1
p−2 such that t−(wk)wk ∈ M−a0,b0 for all k > 0;

that is, J ′a0,b0(t−(wk)wk) = 0, giving us

‖t−(wk)wk‖2A =

∫
RN

a−|t−(wk)wk|qdx+

∫
RN

b−|t−(wk)wk|pdx. (4.1)

As w0 is a solution of problem (3.10) and remembering that the functional associ-
ated with (3.10) is I(u) = 1

2‖u‖
2
A − 1

p‖u‖
p
p, and I ′(u) = ‖u‖2A − ‖u‖pp we have

I ′(w0)w0 = ‖w0‖2A − ‖w0‖pp = 0.

Therefore,

m∞ = I(w0) =
1

2
‖w0‖2A −

1

p
‖w0‖pp

=
1

2
‖w0‖2A −

1

p
‖w0‖2A =

p− 2

2p
‖w0‖.A

Being w0 solution of problem (3.10) follows that wk(x) = w0(x + ke). With this
and I ′(w0)w0 = 0, we have I ′(wk)wk = 0. So that

‖wk‖2A =

∫
RN
|wk|qdx =

2p

p− 2
m∞ for all k ≥ 0. (4.2)

It is known that wn is bounded in Lr
′

and wn → 0 a.e., by Theorem [16, Theorem

13.44] that wn ⇀ 0 weakly in Lr
′
. By the condition (A1), a− ∈ (Lr

′
)′ = Lr we

obtain ∫
RN

a−|wk|qdx→ 0 as k →∞. (4.3)

In addition, by (A2) and (A3) we have∫
RN

(1− b1)|wk|qdx =

∫
B(0,R)

(1− b1)|wk|qdx+

∫
Bc(0,R)

(1− b1)|wk|qdx→ 0, (4.4)

as |wk| → ∞. By (4.1), (4.3), and (4.4) we have that t−(wk) → 1 as k → ∞.
Likewise

lim
k→∞

Ja0,b0(t−(wk)wk) = lim
k→∞

J∞(t−(wk)wk) = m∞.

Thus
m∞ = inf

u∈M∞
J∞(u) = lim

k→∞
J∞(t−(wk)wk) ≥ inf

u∈M−a0,b0

Ja0,b0(u). (4.5)

We also have u ∈ Ma0,b0 , by Lemma 2.3(i), Ja0,b0(u) = supt≥0 Ja0,b0(tu), and
furthermore, there is a single t∞ > 0 such that t∞u ∈M∞. So

Ja0,b0(t∞u) =
1

2
‖t∞u‖2A −

(t∞)q

q

∫
RN

a−|u|qdx−
(t∞)p

p

∫
RN

b1|u|pdx

≥ 1

2
‖t∞u‖2A −

(t∞)p

p

∫
RN
|u|pdx

= J∞(t∞u) ≥ m∞;
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therefore

inf
u∈Ma0,b0

Ja0,b0(t∞u) ≥ m∞. (4.6)

By (4.5) and (4.6), we have

inf
u∈Ma0,b0

Ja0,b0(u) = inf
u∈M∞

J∞(u) = m∞. �

To obtain the fourth solution of the problem, we need a lemma that establishes
suitable values of λ and µ.

Lemma 4.2. Exist λ0 > 0 and µ0 > 0 with

λp−2
0 (1 + µ0‖b1‖∞)2−q <

(q
2

)p−2
Υ0,

such that for all λ ∈ (0, λ0) and all µ ∈ (0, µ0), we have∫
RN

x

|x|
(|∇u|2 + u2)dx 6= 0

for all u ∈M−aλ,bµ with Jλ,µ(u) < m+
aλ,bµ

+m∞.

The above lemma can be obtained arguing as in [12, Lemma 7.6]; we omit its
proof.

5. Fourth solution

In this section we will work to estimate of the energy levels of the functional
associated with the main problem, to prove the existence of a solution whose energy
level satisfies the conditions of Proposition 3.1(ii); that is, to find a distinct solution
from the three solutions in the previous sections. For α > 0, we define

J0,αb0(u) =
1

2

∫
RN
|∇Au|2 + u2dx− 1

p

∫
RN

αb0|u|pdx,

M0,αb0 = {u ∈ H1
A(RN ) \ {0} : 〈J ′0,αb0(u), u〉 = 0}.

We now define the following subset of the unitary ball

B = {u ∈ H1
A(RN ) \ {0} : u ≥ 0 and ‖u‖A = 1}.

Let us recall that for every u ∈ H1
A(RN ) \ {0} there exists a unique t−(u) > 0 and

t0(u) > 0 such that t−(u) ∈ M−aλ,bµ and t0(u) ∈ M0,b0 . To apply the minimax

argument of Bahri-Li we present the following result.

Lemma 5.1. For each u ∈ B we will have

(i) There is a unique tα0 = tα0 (u) > 0 such that tα0u ∈M0,αb0 and

sup
t≥0

J0,αb0(tu) = J0,αb0(tα0u) =
p− 2

2p

(∫
RN

αb0|u|pdx
)−2/(p−2)

.

(ii) For ρ ∈ (0, 1),

Jaλ,bµ(t−(u)u) ≥ (1− ρ)
p
p−2

(1 + µ‖b2/b1‖∞)
2
p−2

J0,b0(t0(u)u)− 2− q
2q

(ρSp)
q
q−2 (λ‖a+‖q∗)

2
2−q

and

Jaλ,bµ(t−(u)u) ≤ (1 + ρ)
p
p−2

2
J0,b0(t0(u)u) +

2− q
2q

(ρSp)
q
q−2 (λ‖a+‖q∗ + ‖a−‖q∗)

2
2−q .
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Proof. (i) For each u ∈ B, we consider

Ku(t) = J0,αb0(tu) =
1

2
t2 − 1

2
tp
∫
RN

αb0|u|pdx,

so Ku(t)→ −∞ as t→∞, and

K ′u(t) = t− tp−1

∫
RN

αb0|u|pdx.

Thus, K ′u(tα0 ) = 0, and tα0u ∈M0,αb0 as

tα0 = tα0 (u) =
(∫

RN
αb0|u|pdx

) 1
2−p

> 0.

Moreover, K ′′u(t) = 1− (p− 1)tp−2
∫
RN αb0|u|

pdx. So, for tα0 (u) we have

K ′′u(tα0 ) = 2− p < 0,

that is, tα0 is a maximum point of Ku. Then, there exists a unique tα0 = tα0 (u) > 0
such that tα0u ∈M0,αb0 and also by definition Ku(t) = J(tu) we obtain

sup
t≥0

J0,αb0(tu) = J0,αb0(tα0u) =
p− 2

2p

(∫
RN

αb0|u|pdx
) −2

2−p
.

(ii) We consider α = (1+µ‖b2/b1‖∞)/(1−ρ). Then, for each u ∈ B and ρ ∈ (0, 1),
we have∫

RN
aλ|tα0u|qdx ≤ λS−q/2p ‖a+‖q∗‖tα0u‖

q
A

≤ 2− q
2

(
(ρSp)

−q
2 λ‖a+‖q∗

) 2
2−q

+
q

2

(
(ρ)

q
2 ‖tα0u‖A

)2/q

=
2− q

2
(ρSp)

q
q−2 (λ‖a+‖q∗)

2
2−q +

qρ

2
‖tα0u‖2A.

(5.1)

Then, from part (i) and by (5.1), we have

sup
t≥0

Jaλ,bµ(tu)

≥ Jaλ,bµ(tα0u)

≥ 1− ρ
2
‖tα0u‖2A −

2− q
2q

(ρSp)
q
q−2 (λ‖a+‖q∗)

2
2−q

− (1 + µ‖b2/b1‖∞)

p

∫
RN

b0|tα0u|pdx

= (1− ρ)J0,αb0(tα0u)− 2− q
2q

(ρSp)
q
q−2 (λ‖a+‖q∗)

2
2−q

=
(p− 2)(1− ρ)

p
p−2

2p((1 + µ‖b2/b1‖∞)
∫
RN b0|u|pdx)

2
p−2

− 2− q
2q

(ρSp)
q
q−2 (λ‖a+‖q∗)

2
2−q

=
(1− ρ)

p
p−2

(1 + µ‖b2/b1‖∞)
2
p−2

J0,αb0(t0(u)u)− 2− q
2q

(ρSp)
q
q−2 (λ‖a+‖q∗)

2
2−q .

By Lemma 2.3 and by Theorem 2.5, we have

sup
t≥0

Jaλ,bµ(tu) = Jaλ,bµ(t−(u)u).
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Thus,

Jaλ,bµ(t−(u)u) ≥ (1− ρ)
p
p−2

(1 + µ‖b2/b1‖∞)
2
p−2

J0,αb0(t0(u)u)−2− q
2q

(ρSp)
q
q−2 (λ‖a+‖q∗)

2
2−q .

Furthermore, by Hölder, Sobolev, and Young’s inequalities,∣∣ ∫
RN

aλ|tu|qdx
∣∣ ≤ ∫

RN
aλ|tu|qdx ≤ (λ‖a+‖q∗ + ‖a−‖q∗)S−q/2p ‖tu‖qA

≤ 2− q
2

(ρSp)
q
q−2 (λ‖a+‖q∗ + ‖a−‖q∗)

2
2−q +

qρ

2
‖tu‖2A.

Also

Jaλ,bµ(tu) ≤ (1 + ρ)

2
t2 +

2− q
2q

(ρSp)
q
q−2 (λ‖a+‖q∗ + ‖a−‖q∗)

2
2−q − 1

p

∫
RN

b0|tu|pdx

≤ (1 + ρ)
p
p−2

2
J0,b0(t0(u)u) +

2− q
2q

(ρSp)
q
q−2 (λ‖a+‖q∗ + ‖a−‖q∗)

2
2−q .

Then

Jaλ,bµ(t−(u)u) ≤ (1 + ρ)
p
p−2

2
J0,b0(t0(u)u) +

2− q
2q

(ρSp)
q
q−2 (λ‖a+‖q∗ + ‖a−‖q∗)

2
2−q .

As we wanted to prove. �

Note that as m−aλ,bµ > 0 for all λ ∈ (0, λ0) and µ ∈ (0, µ0), we can define

Iaλ,bµ(u) = sup
t≥0

Jaλ,bµ(tu) = Jaλ,bµ(t−(u)u) > 0,

where t−(u)u ∈ M−aλ,bµ . We can see that if λ, µ and ‖a−‖q∗ are sufficiently small,

we can use the minimax Bahri-Li’s argument [4] for our functional Jaλ,bµ . Let

Γaλ,bµ = {γ ∈ C(BN (0, k),B) : γ|∂BN (0,k) = wk/‖wk‖A}

be for values of l large enough. We define

naλ,bµ = inf
γ∈Γaλ,bµ

sup
x∈RN

Iaλ,bµ(γ(x)),

n0,b0 = inf
γ∈Γ0,b0

sup
x∈RN

I0,b0(γ(x))

By Lemma 5.1(ii), for 0 < ρ < 1, we have

naλ,bµ ≥
(1− ρ)

p
p−2

(1 + µ‖b2/b1‖∞)
2
p−2

n0,b0 −
2− q

2q
(ρSp)

q
q−2 (λ‖a+‖q∗)

2
2−q , (5.2)

naλ,bµ ≤ (1 + ρ)
p
p−2n0,b0 +

2− q
2q

(ρSp)
q
q−2 (λ‖a+‖q∗ + ‖a−‖q∗)

2
2−q . (5.3)

We will use the following estimates of the energy levels.

Lemma 5.2. m∞ < n0,b0 < 2m∞.

Proof. From the results by Bahri and Li [4] we have that (1.1), with aλ = 0 and
bλ = b0, admits at least one solution u0 with J0,b0(u0) = n0,b0 < 2m∞. In addition,
by (A4), problem (1.1), with aλ = 0 and bλ = b0, does not have a minimum energy
solution; this implies the lower estimates. �
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Theorem 5.3. Let λ0 and µ0 be as in Lemma 4.2. Then there will be positive
values λ̃0 ≤ λ0, µ̃0 ≤ µ0 and ν̃0 ≤ ν0 such that for λ ∈ (0, λ̃0), µ ∈ (0, µ̃0) and
‖a−‖q∗ < ν0, we have

m+
aλ,bµ

+m∞ < naλ,bµ < m−aλ,bµ +m∞.

In addition, (1.1) admits a solution vaλ,bµ with

Jaλ,bµ(vaλ,bµ) = naλ,bµ .

Proof. By Lemma 5.1(ii), for 0 < ρ < 1 we have

m−aλ,bµ ≥
(1− ρ)

p
p−2

(1 + µ‖b2/b1‖∞)
2
p−2

m∞ − 2− q
2q

(ρSp)
q
q−2 (λ‖a+‖q∗)

2
2−q ,

m−aλ,bµ ≤ (1 + ρ)
p
p−2m∞ +

2− q
2q

(ρSp)
q
q−2 (λ‖a+‖q∗ + ‖a−‖q∗)

2
2−q .

For each ε > 0 there are positive values λ̃1 ≤ λ0, µ̃1 ≤ µ0 and ν1 such that
λ ∈ (0, λ̃1), µ ∈ (0, µ̃1), and ‖a−‖q∗ < ν1, we have

m∞ − ε < naλ,bµ < m∞ + ε.

Then

2m∞ − ε < naλ,bµ +m∞ < 2m∞ + ε.

Using 5.2 and 5.3, for all δ > 0 there will be positive values λ̃2 ≤ λ0, µ̃2 ≤ µ0, and
ν2, such that for λ ∈ (0, λ̃2), µ ∈ (0, µ̃2) and ‖a−‖q∗ < ν2, we have

n0,b0 − δ < naλ,bµ < n0,b0 + δ.

Fixing small values of 0 < ε < (2m∞ − n0,b0)/2, and being m∞ < n0,b0 < 2m∞,

and choosing δ > 0 so that for λ < λ̃0 = min{λ̃1, λ̃2}, µ < µ̃0 = min{µ̃1, µ̃2} and
‖a−‖q∗ < ν0 = min{ν1, ν2}, we will have

m+
aλ,bµ

+m∞ < m∞ < naλ,bµ < 2m∞ − ε < m−aλ,bµ +m∞.

Thus, by Proposition 3.1(ii), we obtain that problem (1.1) has a solution vaλ,bµ
with

Jaλ,bµ(vaλ,bµ) = naλ,bµ . �

Proof of Theorem 1.1. With the result of Theorem 5.3 we can complete the proof
of Theorem 1.1. For λ ∈ (0, λ̃0), µ ∈ (0, µ̃0) and ‖a−‖q∗ < ν0, also using the results
presented in the introduction about the existence of the first three solutions and
Theorem 5.3, we obtain that the equation (1.1) admits at least four solutions. �
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