# GLOBAL WELL-POSEDNESS FOR CAUCHY PROBLEMS OF ZAKHAROV-KUZNETSOV EQUATIONS ON CYLINDRICAL SPACES 

SATOSHI OSAWA, HIDEO TAKAOKA


#### Abstract

We study the global well-posedness of the Zakharov-Kuznetsov equation on cylindrical spaces. Our goal is to establish the existence of global-in-time solutions below the energy class. To prove the results, we adapt the I-method to extend the local solutions globally in time. The main tool in our argument is multilinear estimates in the content of Bourgain's spaces. Using modified energies induced by the I-method, we obtain polynomial bounds on the $H^{s}$ growth of global solutions.


## 1. Introduction

In this article, we study the Cauchy problem for the Zakharov-Kuznetsov equation on a cylinder,

$$
\begin{gather*}
\partial_{t} u+\partial_{x} \Delta u+u \partial_{x} u=0, \quad(x, y) \in \mathbb{R} \times \mathbb{T}, t \in \mathbb{R} \\
u(x, y, 0)=u_{0}(x, y), \quad(x, y) \in \mathbb{R} \times \mathbb{T} \tag{1.1}
\end{gather*}
$$

where $u=u(x, y, t)$ is a real-valued function, $\mathbb{T}=\mathbb{R} /(2 \pi \mathbb{Z})$, and $\Delta=\partial_{x}^{2}+\partial_{y}^{2}$ is the Laplacian. This equation was introduced by Zakharov and Kuznetsov [26], as a model for the propagation of ionic-acoustic waves in magnetized plasma (see also [14] for the derivation of the equation). This equation is one of the two-dimensional extensions of the Korteweg-de Vries (KdV) equation

$$
\partial_{t} u+\partial_{x x x} u+u \partial_{x} u=0
$$

The KdV equation is one of the famous nonlinear dispersive equation, which describes the behavior of shallow water waves. Another two dimensional generalizations of the KdV equation is the Kadomtsev-Petviashvili (KP) equations

$$
\partial_{x}\left(\partial_{t} u+\partial_{x x x} u+u \partial_{x} u\right) \pm \partial_{y y} u=0
$$

where the KP-I equation corresponds to minus sign, while the KP-II equation to plus sign.

[^0]The Zakharov-Kuznetsov equation (1.1) has at least two conserved quantities:

$$
\begin{gathered}
E[u](t)=\frac{1}{2} \int_{\mathbb{R} \times \mathbb{T}}\left(|\nabla u(x, y, t)|^{2}-\frac{1}{3} u(x, y, t)^{3}\right) d x d y \\
M[u](t)=\int_{\mathbb{R} \times \mathbb{T}} u(x, y, t)^{2} d x d y
\end{gathered}
$$

The conservation laws identify $H^{1}(\mathbb{R} \times \mathbb{T})$ as the energy space.
The main purpose of this article is to consider a global well-posedness result of problem (1.1) with rough initial data below the energy space.

For the Zakharov-Kuznetsov in the $\mathbb{R}^{2}$ setting, Faminskii [7 proved the local wellposedness in the energy space $H^{1}\left(\mathbb{R}^{2}\right)$. After this, Linares and Pastor [16] showed the local well-posedness for $s>3 / 4$, by proving a sharp maximal function estimates. Grünrock and Herr [10] proved local well-posedness in $H^{s}\left(\mathbb{R}^{2}\right)$ for $s>1 / 2$, by using the Fourier restriction norm method and Strichartz estimates. The Fourier restriction norm method utilizing the $X^{s, b}$ spaces was introduced by Bourgain [2, 3] (also by Kenig, Ponce and Vega [11), to prove the local well-posedness for nonlinear Schrödinger and KdV equations in low regularity Sobolev spaces. At the same time, Molinet and Pilod [19] showed the local well-posedness in $H^{s}\left(\mathbb{R}^{2}\right)$ for $s>$ $1 / 2$ using bilinear Strichartz estimates. Observing proofs of global well-posedness, Shan [24] obtained that the solution exists globally in time to data in $H^{s}\left(\mathbb{R}^{2}\right)$ for $s>5 / 7$. Shan used the I-method based on $H^{1}$ conservation laws. The Imethod was introduced for global well-posedness of the KdV equation by Colliander, Keel, Staffilani, Takaoka and Tao [5]. Recently, Kinoshita [12] showed the local well-posedness for $s>-1 / 4$, using Loomis-Whitney inequality and an orthogonal decomposition technique. In [12], the local ill-posedness results for $s<-1 / 4$ was also obtained. This means that the data-to-solution map from the unit ball in $H^{s}\left(\mathbb{R}^{2}\right)$ to $C\left([0, T] ; H^{s}\right)$ fails to be smooth for any $T>0$. As a corollary from the result of local well-posedness combining with the $L^{2}$ conservation law, the global well-posedness in $L^{2}\left(\mathbb{R}^{2}\right)$ follows.

In the $\mathbb{R} \times \mathbb{T}$ setting, Molinet and Pilod in the same paper as above [19] showed the global well-posedness in $H^{s}(\mathbb{R} \times \mathbb{T})$ for $s \geq 1$. The strategy is similar to the case of $\mathbb{R}^{2}$ setting, however it is more difficult to make sure the proof because of the lack of the smoothing effects. In [21], we showed the local well-posedness for $s>9 / 10$ by refining the bilinear estimates. The main motivation here comes from the corresponding question of global well-posedness for $s<1$.

In the $\mathbb{T}^{2}$ setting, the local well-posedness result in $H^{s}\left(\mathbb{T}^{2}\right)$ has been obtained by Linares, Panthee, Robert and Tzvetkov [15]. They showed that the initial value problem is locally well-posed in $H^{s}\left(\mathbb{T}^{2}\right)$ for $s>5 / 3$. The proof used short-time Strichartz estimates. In [23], Schippa improved the local well-posedness to $s>3 / 2$ by using short-time bilinear Strichartz estimates. Moreover, Kinoshita and Schippa [13] obtained the local well-posedness for $s>1$. They estimated the nonlinear interaction term by short-time trilinear estimates.

Observing related results on the Zakharov-Kuznetsov equation. Yamazaki [25] showed the stability and instability results for line solitary waves of the ZakharovKuznetsov equations in $\mathbb{R} \times \mathbb{T}_{L}$, where $\mathbb{T}_{L}$ is the torus of length $2 \pi L$. The solitary waves are constructed by hyperbolic functions. The long-time behavior stability of solitary waves were also studied in [4] and in [22].

We aim to prove that the initial value problem of the Zakharov-Kuznetsov equation in $H^{s}(\mathbb{R} \times \mathbb{T})$ is globally well-posed for some $s<1$. This proof is based on bilinear estimates developed in [19] and I-method [5].

The main result of the paper is the following theorem.
Theorem 1.1. The initial value problem of (1.1) is globally well-posed in $H^{s}(\mathbb{R} \times \mathbb{T})$ for $s>29 / 31$. In other words, for any $u_{0} \in H^{s}(\mathbb{R} \times \mathbb{T})$, for all $T>0$, there exists a unique solution $u$ of (1.1) such that

$$
u \in C\left([0, T]: H^{s}((\mathbb{R} \times \mathbb{T})) \cap X_{T}^{s, 1 / 2+}\right.
$$

Moreover, for all $0<T^{\prime}<T$, there exists a neighborhood $\mathcal{U}$ of $u_{0}$ in $H^{s}(\mathbb{R} \times \mathbb{T})$ such that the data-to-solution map

$$
\mathcal{U} \ni v_{0} \mapsto v(t) \in C\left(\left[0, T^{\prime}\right]: H^{s}((\mathbb{R} \times \mathbb{T})) \cap X_{T^{\prime}}^{s, 1 / 2+}\right.
$$

is smooth, where $v(t)$ is a unique solution of (1.1) to the initial data $v_{0}$. Here function space $X_{T}^{s, b}$ is defined in Section 2 .
Remark 1.2. By time reversibility, we need to consider only the existence for positive time.

This article is organized as follows. In Section 2, we recall some harmonic analysis tools including Littlewood-Paley decompositions of functions. We also reviews some preliminary results for linear estimates in the Bourgain spaces $X^{s, b}$ [2, 3, 11]. In Section 3, we follow the I-method scheme [5]. We give several lemmas of bilinear estimates in conjunction with rescaling argument in [6] and give the local well-posedness results for rescaled data. In Section 4 we define modified energy functional $E[I u]$ in term of the $H^{s}$-norm of the solution for $s<1$. Section 5 is devoted to the proof of main theorem. One of the key steps in the construction of global solutions is to control the increment of the modified energy. We estimate the growth of the modified energy and provide a priori estimates for the solutions.

## 2. Notation and function spaces

In this section, we will introduce some function spaces that will be used throughout the paper. We denote the absolute value of $(\xi, q)$ as $|(\xi, q)|^{2}=3 \xi^{2}+q^{2}$. For positive real quantities $a$ and $b$, the notation $a \lesssim b$ means that there is a constant $c$ such that $a \leq c b$. When $a \lesssim b$ and $b \lesssim a$, we write $a \sim b$. Moreover, $b+$ means that there exists $\delta>0$ such that $b+\delta$.

Denote $\mathbb{T}_{\lambda}=\lambda \mathbb{T}=\mathbb{R} /(2 \pi \lambda \mathbb{Z})$ for $\lambda>0$. Let $f(x, y)$ be a function defined on $\mathbb{R} \times \mathbb{T}_{\lambda}$. The Fourier transform of $f$ with respect to the variables $(x, y)$ is denote by

$$
\mathcal{F}_{x y}^{\lambda} f(\xi, q)=\int_{\mathbb{R}} \int_{0}^{2 \pi \lambda} e^{-i(x \xi+y q)} f(x, y) d y d x
$$

where $(\xi, q) \in \mathbb{R} \times \mathbb{Z} / \lambda$. Let inverse Fourier inverse transform be denote by

$$
\mathcal{F}_{\xi q}^{-1, \lambda} f(x, y)=\frac{1}{(2 \pi)^{2} \lambda} \sum_{q \in \mathbb{Z} / \lambda} \int_{\mathbb{R}} e^{i(\xi x+q y)} f(\xi, q) d \xi
$$

for $(x, y) \in \mathbb{R} \times \mathbb{T}_{\lambda}$. For simplicity, we abbreviate $\mathcal{F}_{x y}^{\lambda}$ and $\mathcal{F}_{\xi q}^{-1, \lambda}$ by $\mathcal{F}^{\lambda}$ and $\mathcal{F}^{-1, \lambda}$, respectively, when no confusion is likely.

Let $u(x, y, t)$ be a function of $\mathbb{R} \times \mathbb{T}_{\lambda} \times \mathbb{R}$, and let $\widehat{u}^{\lambda}(\xi, q, \tau)$ be Fourier transform of $u(x, y, t)$ in a similar manner as well

$$
\widehat{u}^{\lambda}(\xi, q, \tau)=\int_{\mathbb{R}^{2}} \int_{0}^{2 \pi \lambda} e^{-i(t \tau+i x \xi+y q)} u(x, y, t) d y d x d t
$$

Similarly, we define the inverse Fourier transform

$$
\check{u}^{\lambda}(x, y, t)=\frac{1}{(2 \pi)^{3} \lambda} \sum_{q \in \mathbb{Z} / \lambda} \int_{\mathbb{R}^{2}} e^{i(t \tau+\xi x+q y)} u(\xi, q, \tau) d \xi d \tau
$$

We denote $\sigma(\xi, q)=\xi^{3}+\xi q^{2}$. Let $\eta \in C_{0}^{\infty}(\mathbb{R})$ satisfy $0 \leq \eta \leq 1, \eta_{[-1,1]}=1$, and $\operatorname{supp} \eta \subset[-2,2]$. For a dyadic number $N=2^{k}$ with $k \in \mathbb{N}$, we denote

$$
\begin{gathered}
\phi(\xi)=\eta(\xi)-\eta(2 \xi), \quad \phi_{N}(\xi, q)=\phi\left(N^{-1}|(\xi, q)|\right), \\
\psi_{N}(\xi, q, \tau)=\phi\left(N^{-1}(\tau-\sigma(\xi, q))\right),
\end{gathered}
$$

where $(\xi, q, \tau) \in \mathbb{R} \times \mathbb{Z} / \lambda \times \mathbb{R}$. Here, we prepare notation of interval as $I_{N}=\operatorname{supp} \phi_{N}$ for a dyadic number $N$. We define the Littlewood-Paley decomposition as

$$
P_{N} u=\mathcal{F}^{-1, \lambda}\left(\phi_{N} \mathcal{F}^{\lambda} u\right), \quad Q_{L} u=\left(\psi_{L} \widehat{u}^{\lambda}\right)^{-\lambda}
$$

For $a, b \in \mathbb{R}$, we denote $a \wedge b=\min \{a, b\}$ and $a \vee b=\max \{a, b\}$. For $s \in \mathbb{R}$, we define the Sobolev spaces $H_{\lambda}^{s}=H_{\lambda}^{s}\left(\mathbb{R} \times \mathbb{T}_{\lambda}\right)$ equipped with the norm

$$
\begin{equation*}
\|f\|_{H_{\lambda}^{s}}=\left(\frac{1}{2 \pi \lambda} \sum_{q \in \mathbb{Z} / \lambda} \int_{\mathbb{R}}\langle |(\xi, q)| \rangle^{2 s}\left|\mathcal{F}^{\lambda} f(\xi, q)\right|^{2} d \xi\right)^{1 / 2} \tag{2.1}
\end{equation*}
$$

where $\langle x\rangle=1+|x|$. We also use $L_{\lambda}^{2}=H_{\lambda}^{0}$.
We use the restriction operator $R_{K}$ with respect to the $x$ variable as

$$
R_{K} f(x)=\int_{\mathbb{R}} \phi\left(\xi K^{-1}\right) \mathcal{F}_{x} f(\xi) e^{i x \xi} d \xi
$$

for dyadic number $K$, where $\mathcal{F}_{x}$ is the Fourier transform with respect to the $x$ variable.

We note that the following properties hold [6]:

$$
\int_{\mathbb{R}} \int_{0}^{2 \pi \lambda} f(x, y) \overline{g(x, y)} d x d y=\frac{1}{\lambda} \sum_{q \in \mathbb{Z} / \lambda} \int_{\mathbb{R}} \mathcal{F}^{\lambda} f(\xi, q) \overline{\mathcal{F}^{\lambda} g(\xi, q)} d \xi
$$

and

$$
\begin{align*}
\mathcal{F}^{\lambda}(f g)(\xi, q) & =\left(\mathcal{F}^{\lambda} f *^{\lambda} \mathcal{F}^{\lambda} g\right)(\xi, q) \\
& =\frac{1}{\lambda} \sum_{q_{1} \in \mathbb{Z} / \lambda} \int_{\mathbb{R}} \mathcal{F}^{\lambda} f\left(\xi-\xi_{1}, q-q_{1}\right) \mathcal{F}^{\lambda} g\left(\xi_{1}, q_{1}\right) d \xi_{1} \tag{2.2}
\end{align*}
$$

Next, we describe the Bourgain space via the Fourier transform. Following [11], we introduce a class of function spaces related to Bourgain space $X_{\lambda}^{s, b}$. Define the Bourgain space $X_{\lambda}^{s, b}$ as follows.

Definition 2.1. For $s, b \in \mathbb{R}$ and $T>0$,

$$
\begin{gather*}
\|u\|_{X_{\lambda}^{s, b}}=\left(\frac{1}{\lambda} \sum_{q \in \mathbb{Z} / \lambda} \int_{\mathbb{R}^{2}}\langle\tau-\sigma(\xi, q)\rangle^{2 b}\langle |(\xi, q)| \rangle^{2 s}|\widehat{u}(\xi, q, \tau)|^{2} d \xi d \tau\right)^{1 / 2},  \tag{2.3}\\
\|u\|_{X_{T, \lambda}^{s, b}}=\inf \left\{\|\bar{u}\|_{X_{\lambda}^{s, b}}\left|\bar{u}: \mathbb{R} \times \mathbb{T}_{\lambda} \rightarrow \mathbb{C}, \bar{u}\right|_{\mathbb{R} \times \mathbb{T}_{\lambda} \times[0, T]}=u\right\}
\end{gather*}
$$

When a norm of $u$ introduced in 2.3 is bounded, we denote $u \in X_{\lambda}^{s, b}$. We also use the same notation $L_{\lambda}^{2}=X_{\lambda}^{0,0}$ for functions on $\mathbb{R} \times \mathbb{T}_{\lambda} \times \mathbb{R}$ as defined before for one on $\mathbb{R} \times \mathbb{T}_{\lambda}$, if there is no confusion.

The space $X_{\lambda, T}^{s, b}$ will be used for proof of the local well-posedness result, that is under restriction of time on $[0, T]$.

If $\lambda=1$, we denote $\mathcal{F}^{\lambda}, \mathcal{F}^{-1, \lambda}, \cdot_{\cdot}^{\lambda}, \iota^{\bullet \lambda}, H_{\lambda}^{s}, X_{\lambda}^{s, b}, X_{T, \lambda}^{s, b}$ by $\mathcal{F}, \mathcal{F}^{-1}, \widehat{\bullet}, \check{\smile}, H^{s}, X^{s, b}$, $X_{T}^{s, b}$, respectively.
Remark 2.2. The space $X_{\lambda}^{s, b}$ will be characterized by the formula

$$
\|f\|_{X_{\lambda}^{s, b}}=\left\|e^{t \partial_{x} \Delta} f\right\|_{H_{t}^{b} H_{\lambda}^{s}}
$$

where $e^{-t \partial_{x} \Delta}$ is the operator associated linear Zakharov-Kuznetsov equation on $\mathbb{R} \times \mathbb{T}_{\lambda}$, described by

$$
\mathcal{F}^{\lambda}\left(e^{-t \partial_{x} \Delta} f\right)(\xi, q)=e^{i t \sigma(\xi, q)} \mathcal{F}^{\lambda} f(\xi, q)
$$

We summarize some inequalities which were stated in [8, 11, 19, 21,
Lemma 2.3. Let $s \in \mathbb{R}$ and $b>1 / 2$. Then

$$
\left\|\eta(t) e^{-t \partial_{x} \Delta} f\right\|_{X_{\lambda}^{s, b}} \lesssim\|f\|_{H_{\lambda}^{s}}
$$

for all $f \in H_{\lambda}^{s}$.
Lemma 2.4. Let $s \in \mathbb{R}$ and $b>1 / 2$. Then

$$
\left\|\eta(t) \int_{0}^{t} e^{-\left(t-t^{\prime}\right) \partial_{x} \Delta} f\left(t^{\prime}\right) d t^{\prime}\right\|_{X_{\lambda}^{s, b}} \lesssim\|f\|_{X_{\lambda}^{s, b-1}}
$$

for all $f \in X_{\lambda}^{s, b-1}$.
Lemma 2.5. For any $T>0, s \in \mathbb{R}$ and for all $-1 / 2<b^{\prime} \leq b<1 / 2$,

$$
\|f\|_{X_{T, \lambda}^{s, b^{\prime}}} \lesssim T^{b-b^{\prime}}\|f\|_{X_{T, \lambda}^{s, b}},
$$

for all $f \in X_{\lambda}^{s, b}$.
The polynomial $\sigma(\xi, q)$ which appeared in 2.3 plays an important role in characterizing of solution. Now, we define the resonance function

$$
\begin{align*}
\mathcal{H}\left(\xi_{1}, \xi_{2}, q_{1}, q_{2}\right) & =\sigma\left(\xi_{1}+\xi_{2}, q_{1}+q_{2}\right)-\sigma\left(\xi_{1}, q_{1}\right)-\sigma\left(\xi_{2}, q_{2}\right) \\
& =3 \xi_{1} \xi_{2}\left(\xi_{1}+\xi_{2}\right)+\xi_{2} q_{1}^{2}+\xi_{1} q_{2}^{2}+2\left(\xi_{1}+\xi_{2}\right) q_{1} q_{2} \tag{2.4}
\end{align*}
$$

which plays an important role in the control of the frequency instability range between nonlinear interactions.

## 3. Rescaled solutions

Throughout this paper, we assume that $\lambda>1$. Recall $\mathbb{T}_{\lambda}=\lambda \mathbb{T}=\mathbb{R} /(2 \pi \lambda \mathbb{Z})$. By rescaling

$$
\begin{equation*}
u^{\lambda}(x, y, t)=\frac{1}{\lambda^{2}} u\left(\frac{x}{\lambda}, \frac{y}{\lambda}, \frac{t}{\lambda^{3}}\right) \tag{3.1}
\end{equation*}
$$

we consider the Cauchy problem for the Zakharov-Kuznetsov equation on $\mathbb{R} \times \mathbb{T}_{\lambda}$,

$$
\begin{gather*}
\partial_{t} u^{\lambda}+\partial_{x} \Delta u^{\lambda}+u^{\lambda} \partial_{x} u^{\lambda}=0, \quad(x, y) \in \mathbb{R} \times \mathbb{T}_{\lambda}, t \in \mathbb{R}, \\
u^{\lambda}(x, y, 0)=u_{0}^{\lambda}(x, y) \in H_{\lambda}^{s}, \quad(x, y) \in \mathbb{R} \times \mathbb{T}_{\lambda} . \tag{3.2}
\end{gather*}
$$

If we construct the solution $u^{\lambda}(t)$ of $(3.2)$ on the time interval $\left[0, \lambda^{3} T\right]$, we have the solution $u(t)$ of (1.1) on $[0, T]$.

Let $\zeta$ be a combination of spatial variables, $\zeta=(\xi, q) \in \mathbb{R} \times \mathbb{Z} / \lambda$. Define the Fourier multiplier operator $I$, which was originally introduced in [5] to consider global well-posedness for KdV equation. For $N \in 2^{\mathbb{N}}$, define the operator $I$ by

$$
\mathcal{F}^{\lambda} I f(\zeta)=m(\zeta) \mathcal{F}^{\lambda} f(\zeta)
$$

where $m$ is a smooth, radially symmetric, non-increasing function satisfying

$$
m(\zeta)= \begin{cases}1, & (|\zeta| \leq N) \\ \left(\frac{|\zeta|}{N}\right)^{s-1}, & (|\zeta| \geq 2 N)\end{cases}
$$

On the low frequency part $|\zeta| \leq N$, the operator $I$ is the identity operator, while on the high frequency, $I$ is regarded as the integral operator. Remark that $I$ maps $H_{\lambda}^{s}$ functions to $H_{\lambda}^{1}$ one.

In this section, we prove the following local well-posedness results on $I^{-1} H_{\lambda}^{1}$.
Proposition 3.1 (A variant of local well-posedness). Let $s>9 / 10$. The Cauchy problem (3.2) is locally well-posed in $H_{\lambda}^{s}$ for data $u_{0}^{\lambda}$ satisfying $u_{0}^{\lambda} \in H_{\lambda}^{s}$. Moreover, the solution exists on a time interval $[0, \delta]$ with $\delta \sim\left\|I u_{0}^{\lambda}\right\|_{H_{\lambda}^{1}}$, and the solution $u^{\lambda}(t)$ satisfies the estimate

$$
\left\|I u^{\lambda}\right\|_{X_{\delta, \lambda}^{1,1 / 2+}} \lesssim\left\|I u_{0}^{\lambda}\right\|_{H_{\lambda}^{1}}
$$

Next we give several lemmas in conjunction with rescaling argument in 6.
Lemma 3.2 ([19, Lemma 3.7]). Denote a set $\Lambda \subset \mathbb{R} \times \mathbb{Z} / \lambda$. Let the projection on the $q$ be axis contained in a set $I \subset \mathbb{Z} / \lambda$. Assume that there is a positive constant $C$ such that for any fixed $q_{0} \in I \cap \mathbb{Z} / \lambda$ and $\left|\Lambda \cap\left\{\left(\xi, q_{0}\right) \mid q_{0} \in \mathbb{Z} / \lambda\right\}\right| \leq C$. Then, $|\Lambda| \leq \lambda C(|I|+1)$.

Using this lemma and the mean value theorem, we have the estimates for constructing bilinear estimates.

Lemma 3.3 ([19, Lemma 3.8]). Let $I$ and $J$ be two intervals on the real line and $f: J \rightarrow \mathbb{R}$ be a smooth function. Then

$$
|\{x \in J \mid f(x) \in I\}| \lesssim \frac{|I|}{\inf _{\xi \in J}\left|f^{\prime}(\xi)\right|}
$$

Lemma 3.4. Let $a \neq 0, b, c$ be real numbers and $I$ an interval on the real line. Then

$$
\left|\left\{q \in \mathbb{Z} / \lambda \mid a q^{2}+b q+c \in I\right\}\right| \lesssim \lambda\left(\frac{|I|^{1 / 2}}{|a|^{1 / 2}}+1\right)
$$

Proof. Following [19, Lemma 3.9], we only consider the case of $a>0$ and $b=c=0$. Put $I=\left[a s^{2}, a t^{2}\right]$ for $s, t \in \mathbb{R}$ with $s^{2}<t^{2}$ and $s, t \geq 0$. From the shape of parabola curve and distribution of $\mathbb{Z} / \lambda$ points, we can say

$$
\left|\left\{q \in \mathbb{Z} / \lambda \mid a q^{2}+b q+c \in I\right\}\right| \leq 2 \lambda(|t-s|+1)
$$

Since

$$
|t-s|=\sqrt{(t-s)^{2}} \leq \sqrt{2\left(t^{2}-s^{2}\right)}=\frac{\sqrt{2\left(a t^{2}-a s^{2}\right)}}{\sqrt{a}}=\frac{\sqrt{2}|I|^{1 / 2}}{|a|^{1 / 2}}
$$

we obtain

$$
\left|\left\{q \in \mathbb{Z} / \lambda \mid a q^{2}+b q+c \in I\right\}\right| \lesssim \lambda\left(\frac{|I|^{1 / 2}}{|a|^{1 / 2}}+1\right)
$$

which completes the proof.
Using these lemmas, we obtain the following bilinear estimates.
Lemma 3.5. For $u, v \in L_{\lambda}^{2}$, we have
$\left\|\left(P_{N_{1}} Q_{L_{1}} u\right)\left(P_{N_{2}} Q_{L_{2}} v\right)\right\|_{L_{\lambda}^{2}} \lesssim\left(N_{1} \wedge N_{2}\right)\left(L_{1} \wedge L_{2}\right)^{1 / 2}\left\|P_{N_{1}} Q_{L_{1}} u\right\|_{L_{\lambda}^{2}}\left\|P_{N_{2}} Q_{L_{2}} v\right\|_{L_{\lambda}^{2}}$,

$$
\begin{align*}
& \left\|R_{K}\left(\left(P_{N_{1}} Q_{L_{1}} u\right)\left(P_{N_{2}} Q_{L_{2}} v\right)\right)\right\|_{L_{\lambda}^{2}}  \tag{3.3}\\
& \lesssim \frac{\left(N_{1} \wedge N_{2}\right)^{1 / 2}}{K^{1 / 4}}\left(L_{1} \wedge L_{2}\right)^{1 / 2}\left(L_{1} \vee L_{2}\right)^{1 / 4}\left\|P_{N_{1}} Q_{L_{1}} u\right\|_{L_{\lambda}^{2}}\left\|P_{N_{2}} Q_{L_{2}} v\right\|_{L_{\lambda}^{2}} . \tag{3.4}
\end{align*}
$$

Moreover, when $N_{1} \wedge N_{2} \ll N_{1} \vee N_{2}$, for $0<\theta<1$ we have

$$
\begin{align*}
& \left\|\left(P_{N_{1}} Q_{L_{1}} u\right)\left(P_{N_{2}} Q_{L_{2}} v\right)\right\|_{L_{\lambda}^{2}} \\
& \lesssim \frac{\left(N_{1} \wedge N_{2}\right)^{1 / 2}}{N_{1} \vee N_{2}}\left(L_{1} \wedge L_{2}\right)^{1 / 2}\left(L_{1} \vee L_{2}\right)^{1 / 2}\left\|P_{N_{1}} Q_{L_{1}} u\right\|_{L_{\lambda}^{2}}\left\|P_{N_{2}} Q_{L_{2}} v\right\|_{L_{\lambda}^{2}}  \tag{3.5}\\
\| & \left(P_{N_{1}} Q_{L_{1}} u\right)\left(P_{N_{2}} Q_{L_{2}} v\right) \|_{L_{\lambda}^{2}} \\
\lesssim & \frac{\left(N_{1} \wedge N_{2}\right)^{(1+\theta) / 2}}{\left(N_{1} \vee N_{2}\right)^{1-\theta}}\left(L_{1} \wedge L_{2}\right)^{1 / 2}\left(L_{1} \vee L_{2}\right)^{\theta / 2}\left\|P_{N_{1}} Q_{L_{1}} u\right\|_{L_{\lambda}^{2}}\left\|P_{N_{2}} Q_{L_{2}} v\right\|_{L_{\lambda}^{2}}, \tag{3.6}
\end{align*}
$$

where $N_{1}, N_{2}, L_{1}, L_{2}, K$ are dyadic numbers.
Proof. Estimate $\sqrt{3.6}$ ) follows from the interpolation argument with $\sqrt{3.3}$ ) and (3.5), so that we prove (3.3), (3.5) and (3.4) in this order.

Using the Plancherel's identity (2.1), convolution structure 2.2 and the CauchySchwarz inequality, we obtain

$$
\begin{aligned}
& \left\|\left(P_{N_{1}} Q_{L_{1}} u\right)\left(P_{N_{2}} Q_{L_{2}} v\right)\right\|_{L_{\lambda}^{2}} \\
& =\left(\frac{1}{\lambda} \sum_{q \in \mathbb{Z} / \lambda} \int_{\mathbb{R}^{2}}\left|\left(\widehat{F}^{\lambda}\left(P_{N_{1}} Q_{L_{1}} u\right) *^{\lambda} \widehat{F}^{\lambda}\left(P_{N_{2}} Q_{L_{2}} v\right)\right)(\xi, q, \tau)\right|^{2} d \xi d \tau\right)^{1 / 2} \\
& \lesssim \frac{1}{\lambda^{1 / 2}} \sup _{(\xi, q, \tau) \in \mathbb{R} \times \mathbb{Z} / \lambda \times \mathbb{R}}\left|A_{\xi, q, \tau}\right|^{1 / 2}\left\|P_{N_{1}} Q_{L_{1}} u\right\|_{L_{\lambda}^{2}}\left\|P_{N_{2}} Q_{L_{2}} v\right\|_{L_{\lambda}^{2}},
\end{aligned}
$$

where

$$
\begin{aligned}
A_{\xi, q, \tau}=\{ & \left(\xi_{1}, q_{1}, \tau_{1}\right) \in \mathbb{R} \times \mathbb{Z} / \lambda \times \mathbb{R}| |\left(\xi_{1}, q_{1}\right)\left|\in I_{N_{1}},\left|\left(\xi-\xi_{1}, q-q_{1}\right)\right| \in I_{N_{2}}\right. \\
& \left.\left|\tau_{1}-\sigma\left(\xi_{1}, q_{1}\right)\right| \in I_{L_{1}},\left|\tau-\tau_{1}-\sigma\left(\xi-\xi_{1}, q-q_{1}\right)\right| \in I_{L_{2}}\right\} .
\end{aligned}
$$

By the definition of $A_{\xi, q, \tau}$ and Lemma 3.2 with $|I| \sim \lambda\left(N_{1} \wedge N_{2}\right)$, we obtain

$$
\left|A_{\xi, q, \tau}\right| \lesssim \lambda\left(N_{1} \wedge N_{2}\right)^{2}\left(L_{1} \wedge L_{2}\right)
$$

which is 3.3 ).
Next we prove (3.5). By the triangle inequality

$$
\begin{aligned}
& \left|\tau_{1}-\sigma\left(\xi_{1}, q_{1}\right)\right|+\left|\tau-\tau_{1}-\sigma\left(\xi-\xi_{1}, q-q_{1}\right)\right| \\
& \leq\left|\tau-\sigma\left(\xi_{1}, q_{1}\right)-\sigma\left(\xi-\xi_{1}, q-q_{1}\right)\right| \\
& =\left|\tau-\sigma(\xi, q)-\mathcal{H}\left(\xi_{1}, \xi-\xi_{1}, q_{1}, q-q_{1}\right)\right|
\end{aligned}
$$

we obtain

$$
\left|A_{\xi, q, \tau}\right| \lesssim\left(L_{1} \wedge L_{2}\right)\left|B_{\xi, q, \tau}\right|
$$

where

$$
\begin{aligned}
B_{\xi, q, \tau}=\{ & \left(\xi_{1}, q_{1}\right) \in \mathbb{R} \times \mathbb{Z} / \lambda| |\left(\xi_{1}, q_{1}\right)\left|\in I_{N_{1}},\left|\left(\xi-\xi_{1}, q-q_{1}\right)\right| \in I_{N_{2}},\right. \\
& \left.\left|\tau-\sigma(\xi, q)-\mathcal{H}\left(\xi_{1}, \xi-\xi_{1}, q_{1}, q-q_{1}\right)\right| \lesssim L_{1} \vee L_{2}\right\} .
\end{aligned}
$$

Let us focus on the resonance function $\mathcal{H}$ in (2.4). We have

$$
\begin{equation*}
\left|\frac{\partial \mathcal{H}}{\partial \xi_{1}}\left(\xi_{1}, \xi-\xi_{1}, q_{1}, q-q_{1}\right)\right|=\left|3 \xi_{1}^{2}+q_{1}^{2}-\left(3\left(\xi-\xi_{1}\right)^{2}+\left(q-q_{1}\right)^{2}\right)\right| \gtrsim\left(N_{1} \vee N_{2}\right)^{2} \tag{3.7}
\end{equation*}
$$

If we define $\widetilde{B}_{\xi, q, \tau}\left(q_{1}\right)=\left\{\xi_{1} \in \mathbb{R} \mid\left(\xi_{1}, q_{1}\right) \in B_{\xi, q, \tau}\right\}$ for each $q_{1}$, Lemma 3.3 yields

$$
\left|\widetilde{B}_{\xi, q, \tau}\left(q_{1}\right)\right| \lesssim \frac{L_{1} \vee L_{2}}{\left(N_{1} \vee N_{2}\right)^{2}}
$$

Hence

$$
\left|B_{\xi, q, \tau}\right| \lesssim \lambda \frac{\left(L_{1} \vee L_{2}\right)\left(N_{1} \wedge N_{2}\right)}{\left(N_{1} \vee N_{2}\right)^{2}}
$$

Combining this with $\left|A_{\xi, q, \tau}\right| \lesssim\left(L_{1} \wedge L_{2}\right)\left|B_{\xi, q, \tau}\right|$, we obtain (3.5).
From the Cauchy-Schwarz inequality and the Plancherel's identity as before, it holds that

$$
\begin{aligned}
& \left\|R_{K}\left(\left(P_{N_{1}} Q_{L_{1}} u\right)\left(P_{N_{2}} Q_{L_{2}} v\right)\right)\right\|_{L_{\lambda}^{2}} \\
& \lesssim \frac{1}{\lambda^{1 / 2}} \sup _{(\xi, q, \tau) \in \mathbb{R} \times \mathbb{Z} / \lambda \times \mathbb{R}}\left|A_{\xi, q, \tau}^{K}\right|^{1 / 2}\left\|P_{N_{1}} Q_{L_{1}} u\right\|_{L_{\lambda}^{2}}\left\|P_{N_{2}} Q_{L_{2}} v\right\|_{L_{\lambda}^{2}}
\end{aligned}
$$

where

$$
\begin{aligned}
A_{\xi, q, \tau}^{K}=\{ & \left(\xi_{1}, q_{1}, \tau_{1}\right) \in \mathbb{R} \times \mathbb{Z} / \lambda \times \mathbb{R}| | \xi\left|\sim K,\left|\left(\xi_{1}, q_{1}\right)\right| \in I_{N_{1}}\right. \\
& \left|\left(\xi-\xi_{1}, q-q_{1}\right)\right| \in I_{N_{2}},\left|\tau_{1}-\sigma\left(\xi_{1}, q_{1}\right)\right| \in I_{L_{1}} \\
& \left.\left|\tau-\tau_{1}-\sigma\left(\xi-\xi_{1}, q-q_{1}\right)\right| \in I_{L_{2}}\right\}
\end{aligned}
$$

Using the triangle inequality, we have

$$
\left|A_{\xi, q, \tau}^{K}\right| \lesssim\left(L_{1} \wedge L_{2}\right)\left|B_{\xi, q, \tau}^{K}\right|
$$

where

$$
\begin{aligned}
B_{\xi, q, \tau}^{K}=\{ & \left(\xi_{1}, q_{1}\right) \in \mathbb{R} \times \mathbb{Z} / \lambda| | \xi\left|\sim K,\left|\left(\xi_{1}, q_{1}\right)\right| \in I_{N_{1}},\left|\left(\xi-\xi_{1}, q-q_{1}\right)\right| \in I_{N_{2}}\right. \\
& \left.\left|\tau-\sigma(\xi, q)-\mathcal{H}\left(\xi_{1}, \xi-\xi_{1}, q_{1}, q-q_{1}\right)\right| \lesssim L_{1} \vee L_{2}\right\}
\end{aligned}
$$

For the bound of $B_{\xi, q, \tau}^{K}$, we calculate the second derivative of $\mathcal{H}$ as

$$
\begin{equation*}
\left|\frac{\partial^{2} \mathcal{H}}{\partial \xi_{1}{ }^{2}}\left(\xi_{1}, \xi-\xi_{1}, q_{1}, q-q_{1}\right)\right|=6|\xi| \sim K \tag{3.8}
\end{equation*}
$$

for $\left(\xi_{1}, q_{1}\right) \in B_{\xi, q, \tau}^{K}$. Let $\widetilde{B}_{\xi, q, \tau}^{K}\left(q_{1}\right)=\left\{\xi_{1} \in \mathbb{R} \mid\left(\xi_{1}, q_{1}\right) \in B_{\xi, q, \tau}^{K}\right\}$ for each $q_{1}$. Combining with Lemma 3.4, we obtain

$$
\left|\widetilde{B}_{\xi, q, \tau}^{K}\left(q_{1}\right)\right| \lesssim \frac{\left(L_{1} \vee L_{2}\right)^{1 / 2}}{K^{1 / 2}}
$$

for all $q_{1} \in \mathbb{Z} / \lambda$. Finally,

$$
\begin{equation*}
\left|B_{\xi, q, \tau}^{K}\right| \lesssim \lambda \frac{\left(N_{1} \wedge N_{2}\right)\left(L_{1} \vee L_{2}\right)}{K^{1 / 2}} \tag{3.9}
\end{equation*}
$$

and we obtain (3.4) by $\left|A_{\xi, q, \tau}^{K}\right| \lesssim\left(L_{1} \wedge L_{2}\right)\left|B_{\xi, q, \tau}^{K}\right|$.
Next we prove bilinear estimates in $I^{-1} X_{\lambda}^{1,1 / 2+}$.
Lemma 3.6. For $s>9 / 10$, we have

$$
\left\|\partial_{x} I(u v)\right\|_{X_{\lambda}^{1,-1 / 2+}} \lesssim\|I u\|_{X_{\lambda}^{1,1 / 2+}}\|I v\|_{X_{\lambda}^{1,1 / 2+}}
$$

Proof. We may assume the functions $\widehat{u}^{\lambda}$ and $\widehat{v}^{\lambda}$ are nonnegative, since by the definition of $X_{\lambda}^{s, b}$ norm.

Replacing $\langle\zeta\rangle\langle\tau-\sigma(\zeta)\rangle^{1 / 2+} m(\zeta) \widehat{u}(\zeta, \tau)$ and $\langle\zeta\rangle\langle\tau-\sigma(\zeta)\rangle^{1 / 2+} m(\zeta) \widehat{v}(\zeta, \tau)$ by $\widehat{u}(\zeta, \tau)$ and $\widehat{v}(\zeta, \tau)$, respectively, and duality argument, one has to show that

$$
\begin{align*}
J= & \frac{1}{\lambda^{2}} \sum_{q, q_{1} \in \mathbb{Z} / \lambda} \int_{\mathbb{R}^{4}} \Gamma_{\xi, q, \tau}^{\xi_{1}, q_{1}, \tau_{1}} \frac{m(\zeta)}{m\left(\zeta_{1}\right) m\left(\zeta-\zeta_{1}\right)} \\
& \times \widehat{u}^{\lambda}\left(\zeta_{1}, \tau_{1}\right) \widehat{v}^{\lambda}\left(\zeta-\zeta_{1}, \tau-\tau_{1}\right) \widehat{w}^{\lambda}(\zeta, \tau) d \xi d \xi_{1} d \tau d \tau_{1}  \tag{3.10}\\
\lesssim & \|u\|_{L_{\lambda}^{2}}\|v\|_{L_{\lambda}^{2}}\|w\|_{L_{\lambda}^{2}}
\end{align*}
$$

for $w \in L_{\lambda}^{2}$ whose Fourier transform is nonnegative. Here

$$
\Gamma_{\xi, q, \tau}^{\xi_{1}, q_{1}, \tau_{1}}=\frac{|\xi|\langle\zeta\rangle}{\left\langle\zeta_{1}\right\rangle\left\langle\zeta-\zeta_{1}\right\rangle\langle\tau-\sigma(\zeta)\rangle^{1 / 2-}\left\langle\tau_{1}-\sigma\left(\zeta_{1}\right)\right\rangle^{1 / 2+}\left\langle\tau-\tau_{1}-\sigma\left(\zeta-\zeta_{1}\right)\right\rangle^{1 / 2+}}
$$

Using dyadic decomposition, we rewrite $J$ as the following

$$
J=\sum_{\substack{N_{0}, N_{1}, N_{2} \\ L_{0}, L_{1}, L_{2}}} J_{N_{0}, N_{1}, N_{2}}^{L_{0}, L_{1}, L_{2}},
$$

where

$$
\begin{align*}
J_{N_{0}, N_{1}, N_{2}}^{L_{0}, L_{1}, L_{2}}= & \frac{1}{\lambda^{2}} \sum_{q, q_{1} \in \mathbb{Z} / \lambda} \int_{\mathbb{R}^{4}} \Gamma_{\xi, q, \tau}^{\xi_{1}, q_{1}, \tau_{1}} \frac{m(\zeta)}{m\left(\zeta_{1}\right) m\left(\zeta-\zeta_{1}\right)} \\
& \times \widehat{P_{N_{1} Q_{L_{1}}}} u^{\lambda}\left(\zeta_{1}, \tau_{1}\right) P_{N_{N_{2}} Q_{L_{2}}} v^{\lambda}\left(\zeta-\zeta_{1}, \tau-\tau_{1}\right)  \tag{3.11}\\
& \times \widehat{P_{N_{0} Q_{L_{0}}}} w^{\lambda}(\xi, q, \tau) d \xi d \xi_{1} d \tau d \tau_{1} .
\end{align*}
$$

We decompose again $J$ to five parts in frequencies:

$$
\begin{aligned}
& J_{L L \rightarrow L}=\sum_{\substack{N_{1} \vee N_{2} \vee N_{0} \ll N \\
L_{0}, L_{1}, L_{2}}} J_{N_{0}, N_{1}, N_{2}}^{L_{0}, L_{1}, L_{2}}, \quad J_{L H \rightarrow H}=\sum_{\substack{N_{1} \ll N_{2} \sim N_{0} \\
N_{0} \gtrsim N_{0} \\
L_{0}, L_{1}, L_{2}}} J_{N_{0}, N_{1}, N_{2}}^{L_{0}, L_{1}, L_{2}}, \\
& J_{H L \rightarrow H}=\sum_{\substack{N_{2} \ll N_{1} \sim N_{0} \\
N_{0} \gtrsim N_{0} \\
L_{0}, L_{1}, L_{2}}} J_{N_{0}, N_{1}, N_{2}}^{L_{0}, L_{1}, L_{2}}, \quad J_{H H \rightarrow L}=\sum_{\substack{N_{0} \ll N_{1} \sim N_{2} \\
N_{1} \gtrsim N_{1} \\
L_{0}, L_{1}, L_{2}}} J_{N_{0}, N_{1}, N_{2}}^{L_{0}, L_{1}, L_{2}}, \\
& J_{H H \rightarrow H}=J-\left(J_{L L \rightarrow L}+J_{H L \rightarrow H}+J_{L H \rightarrow H}+J_{H H \rightarrow L}\right) .
\end{aligned}
$$

Estimate of $J_{L L \rightarrow L}$. In this case, we have

$$
\frac{m(\zeta)}{m\left(\zeta_{1}\right) m\left(\zeta-\zeta_{1}\right)} \sim 1, \quad \Gamma_{\xi, q, \tau}^{\xi_{1}, q_{1}, \tau_{1}} \lesssim \frac{N_{1} \vee N_{2}}{\left(N_{1} \wedge N_{2}\right) L_{0}^{1 / 2-} L_{1}^{1 / 2+} L_{2}^{1 / 2+}}
$$

We split this case two cases, when $N_{1} \wedge N_{2} \ll N_{1} \vee N_{2}$, and $N_{1} \wedge N_{2} \sim N_{1} \vee N_{2}$.

First, we consider the contribution of the case when $N_{1} \wedge N_{2} \ll N_{1} \vee N_{2}$. In this case, by (3.5) and the Cauchy-Schwarz inequality, we have that the contribution of the case to $J_{L L \rightarrow L}$ is bounded by

$$
\begin{aligned}
& \lesssim \sum_{\substack{N_{1} \vee N_{2} \vee N_{0} \ll \\
N_{1} \wedge N_{2}<N_{1} \vee N_{2} \\
L_{0}, L_{1}, L_{2}}} \frac{N_{1} \vee N_{2}}{\left(N_{1} \wedge N_{2}\right) L_{0}^{1 / 2-} L_{1}^{1 / 2+} L_{2}^{1 / 2+}} \\
& \quad \times\left\|\left(P_{N_{1}} Q_{L_{1}} u\right)\left(P_{N_{2}} Q_{L_{2}} v\right)\right\|_{L_{\lambda}^{2}}\left\|P_{N_{0}} Q_{L_{0}} w\right\|_{L_{\lambda}^{2}} \\
& \quad \times \sum_{\substack{N_{1} \vee N_{2} \vee N_{0} \ll N \\
L_{0}, L_{1}, L_{2}}} \frac{1}{\left(N_{1} \wedge N_{2}\right)^{0+} L_{0}^{0+} L_{1}^{0+} L_{2}^{0+}}\left\|P_{N_{1}} Q_{L_{1}} u\right\|_{L_{\lambda}^{2}}\left\|P_{N_{2}} Q_{L_{2}} v\right\|_{L_{\lambda}^{2}}\left\|P_{N_{0}} Q_{L_{0}} w\right\|_{L_{\lambda}^{2}} \\
& \lesssim\|u\|_{L_{\lambda}^{2}}\|v\|_{L_{\lambda}^{2}}\|w\|_{L_{\lambda}^{2}},
\end{aligned}
$$

where we use $N_{0} \lesssim N_{1} \vee N_{2}$.
Second, we consider the contribution of the case when $N_{1} \wedge N_{2} \sim N_{1} \vee N_{2}$, namely $N_{1} \sim N_{2}$. Note that $P_{N}=P_{N} \widetilde{P}_{N}$ for $\widetilde{P}_{N}=P_{N / 2}+P_{N}+P_{2 N}$. In this case, the contribution of the case to $J_{L L \rightarrow L}$ is bounded by

$$
\begin{aligned}
& \lesssim \sum_{\substack{N_{1} \vee N_{2} \vee N_{0} \ll \\
N_{0}, N_{1}, L_{2}}} \frac{N_{1} \vee N_{2}}{\left(N_{1} \wedge N_{2}\right) L_{0}^{1 / 2-} L_{1}^{1 / 2+} L_{2}^{1 / 2+}} \\
& \times\left\|\widetilde{P}_{N_{0}}\left(\left(P_{N_{1}} Q_{L_{1}} u\right)\left(P_{N_{2}} Q_{L_{2}} v\right)\right)\right\|_{L_{\lambda}^{2}}\left\|P_{N_{0}} Q_{L_{0}} w\right\|_{L_{\lambda}^{2}} \\
& \lesssim \sum_{\substack{N_{1} \sim N_{2} \\
L_{1}, L_{2}}} \frac{1}{L_{1}^{0+} L_{2}^{0+}}\left\|P_{N_{1}} Q_{L_{1}} u\right\|_{L_{\lambda}^{2}}\left\|P_{N_{2}} Q_{L_{2}} v\right\|_{L_{\lambda}^{2}}\|w\|_{L_{\lambda}^{2}} \\
& \lesssim\|u\|_{L_{\lambda}^{2}}\|v\|_{L_{\lambda}^{2}}\|w\|_{L_{\lambda}^{2}} .
\end{aligned}
$$

Hence

$$
J_{L L \rightarrow L} \lesssim\|u\|_{L_{\lambda}^{2}}\|v\|_{L_{\lambda}^{2}}\|w\|_{L_{\lambda}^{2}}
$$

Estimate of $J_{L H \rightarrow H}$. We split this case into two cases that $N_{1} \ll N \lesssim N_{2} \sim N_{0}$ and that $N \lesssim N_{1} \ll N_{2} \sim N_{0}$.

If $N_{1} \ll N \lesssim N_{2} \sim N_{0}$, we have

$$
\frac{m(\zeta)}{m\left(\zeta_{1}\right) m\left(\zeta-\zeta_{1}\right)} \sim 1
$$

Applying the Cauchy-Schwarz inequality again with 3.5, we have that the contribution of this case to $J_{N_{0}, N_{1}, N_{2}}^{L_{0}, L_{1}, L_{2}}$ is bounded by

$$
\begin{align*}
& \lesssim \frac{N_{0}}{N_{1} L_{0}^{1 / 2-} L_{1}^{1 / 2+} L_{2}^{1 / 2+}}\left\|\left(P_{N_{1}} Q_{L_{1}} u\right)\left(P_{N_{2}} Q_{L_{2}} v\right)\right\|_{L_{\lambda}^{2}}\left\|P_{N_{0}} Q_{L_{0}} w\right\|_{L_{\lambda}^{2}} \\
& \lesssim \frac{1}{N_{1}^{1 / 2} L_{0}^{1 / 2-} L_{1}^{0+} L_{2}^{0+}}\left\|P_{N_{1}} Q_{L_{1}} u\right\|_{L_{\lambda}^{2}}\left\|P_{N_{2}} Q_{L_{2}} v\right\|_{L_{\lambda}^{2}}\left\|P_{N_{0}} Q_{L_{0}} w\right\|_{L_{\lambda}^{2}}  \tag{3.12}\\
& \lesssim \frac{1}{N_{1}^{0+} L_{0}^{0+} L_{1}^{0+} L_{2}^{0+}}\left\|P_{N_{1}} Q_{L_{1}} u\right\|_{L_{\lambda}^{2}}\left\|P_{N_{2}} Q_{L_{2}} v\right\|_{L_{\lambda}^{2}}\left\|P_{N_{0}} Q_{L_{0}} w\right\|_{L_{\lambda}^{2}}
\end{align*}
$$

If $N \lesssim N_{1} \ll N_{2} \sim N_{0}$, we have

$$
\frac{m(\zeta)}{m\left(\zeta_{1}\right) m\left(\zeta-\zeta_{1}\right)} \sim \frac{N_{1}^{1-s}}{N^{1-s}}
$$

In a similar way to above, we have that the contribution of this case to $J_{N_{0}, N_{1}, N_{2}}^{L_{0}, L_{1}, L_{2}}$ is bounded by

$$
\begin{align*}
& \lesssim \frac{N_{0} N_{1}^{1-s}}{N_{1} N^{1-s} L_{0}^{1 / 2-} L_{1}^{1 / 2+} L_{2}^{1 / 2+}}\left\|\left(P_{N_{1}} Q_{L_{1}} u\right)\left(P_{N_{2}} Q_{L_{2}} v\right)\right\|_{L_{\lambda}^{2}}\left\|P_{N_{0}} Q_{L_{0}} w\right\|_{L_{\lambda}^{2}} \\
& \lesssim \frac{1}{N_{1}^{s-1 / 2} L_{0}^{1 / 2-} L_{1}^{0+} L_{2}^{0+}}\left\|P_{N_{1}} Q_{L_{1}} u\right\|_{L_{\lambda}^{2}}\left\|P_{N_{2}} Q_{L_{2}} v\right\|_{L_{\lambda}^{2}}\left\|P_{N_{0}} Q_{L_{0}} w\right\|_{L_{\lambda}^{2}}  \tag{3.13}\\
& \lesssim \frac{1}{N_{1}^{0+} L_{0}^{0+} L_{1}^{0+} L_{2}^{0+}}\left\|P_{N_{1}} Q_{L_{1}} u\right\|_{L_{\lambda}^{2}}\left\|P_{N_{2}} Q_{L_{2}} v\right\|_{L_{\lambda}^{2}}\left\|P_{N_{0}} Q_{L_{0}} w\right\|_{L_{\lambda}^{2}}
\end{align*}
$$

Therefore, by 3.12 and 3.13 in conjunction with previous estimate, we have

$$
J_{L H \rightarrow H} \lesssim\|u\|_{L_{\lambda}^{2}}\|v\|_{L_{\lambda}^{2}}\|w\|_{L_{\lambda}^{2}}
$$

which is acceptable.
Estimate of $J_{H L \rightarrow H}$. The proof is same as for $J_{L H \rightarrow H}$, because of the symmetry.
Estimate of $J_{H H \rightarrow L}$. By symmetry, we assume $N_{0} \ll N_{1} \leq N_{2}$. We separate this case into two cases that $N_{0} \ll N \ll N_{1} \sim N_{2}$ and that $N \lesssim N_{0} \ll N_{1} \sim N_{2}$.

If $N_{0} \ll N \ll N_{1} \sim N_{2}$, we have

$$
\frac{m(\zeta)}{m\left(\zeta_{1}\right) m\left(\zeta-\zeta_{1}\right)} \sim \frac{N_{1}^{1-s} N_{2}^{1-s}}{N^{2(1-s)}} .
$$

Applying the $L_{\lambda}^{2}$ norm of functions $\left(\widetilde{P_{N_{1}} Q_{L_{1}}} u\right)\left(P_{N_{0}} Q_{L_{0}} w\right)$ and $P_{N_{2}} Q_{L_{2}} v$, we have that then the contribution of this case to $J_{N_{0}, N_{1}, N_{2}}^{L_{0}, L_{1}, L_{2}}$ is bounded by

$$
\lesssim \frac{N_{1}^{1-s} N_{2}^{1-s} N_{0}^{2}}{N^{2(1-s)} N_{1} N_{2} L_{0}^{1 / 2-} L_{1}^{1 / 2+} L_{2}^{1 / 2+}}\left\|\left(\widetilde{P_{N_{1}} Q_{L_{1}}} u\right)\left(P_{N_{0}} Q_{L_{0}} w\right)\right\|_{L_{\lambda}^{2}}\left\|P_{N_{2}} Q_{L_{2}} v\right\|_{L_{\lambda}^{2}}
$$

where $\hat{\tilde{f}}^{\lambda}(\zeta, \tau)=\hat{f}^{\lambda}(-\zeta,-\tau)$. We apply (3.6) to this and have that the contribution of this case to $J_{N_{0}, N_{1}, N_{2}}^{L_{0}, L_{1}, L_{2}}$ is bounded by

$$
\begin{align*}
\lesssim & \frac{N_{1}^{1-s} N_{2}^{1-s} N_{0}^{2}}{N^{2(1-s)} N_{1} N_{2} L_{0}^{1 / 2-} L_{1}^{1 / 2+} L_{2}^{1 / 2+}} \frac{N_{0}^{(1+\theta) / 2}\left(L_{0} \wedge L_{1}\right)^{1 / 2}\left(L_{0} \vee L_{1}\right)^{\theta / 2}}{N_{1}^{1-\theta}} \\
& \times\left\|P_{N_{1}} Q_{L_{1}} u\right\|_{L_{\lambda}^{2}}\left\|P_{N_{0}} Q_{L_{0}} w\right\|_{L_{\lambda}^{2}}\left\|P_{N_{2}} Q_{L_{2}} v\right\|_{L_{\lambda}^{2}} \\
\lesssim & \frac{1}{N^{1-s} N_{1}^{s-1 / 2-3 \theta / 2} L_{0}^{0+} L_{1}^{0+} L_{2}^{0+}}\left\|P_{N_{1}} Q_{L_{1}} u\right\|_{L_{\lambda}^{2}}\left\|P_{N_{0}} Q_{L_{0}} w\right\|_{L_{\lambda}^{2}}\left\|P_{N_{2}} Q_{L_{2}} v\right\|_{L_{\lambda}^{2}} \tag{3.14}
\end{align*}
$$

for small $\theta>0$.
If $N \lesssim N_{0} \ll N_{1} \sim N_{2}$, we have

$$
\frac{m(\zeta)}{m\left(\zeta_{1}\right) m\left(\zeta-\zeta_{1}\right)} \sim \frac{N_{1}^{1-s} N_{2}^{1-s}}{N^{1-s} N_{0}^{1-s}}
$$

Similarly, the contribution of this case to $J_{N_{0}, N_{1}, N_{2}}^{L_{0}, L_{1}, L_{2}}$ is bounded by

$$
\begin{equation*}
\lesssim \frac{1}{N_{1}^{s-1 / 2-3 \theta / 2} N^{1-s} L_{0}^{0+} L_{1}^{0+} L_{2}^{0+}}\left\|P_{N_{1}} Q_{L_{1}} u\right\|_{L_{\lambda}^{2}}\left\|P_{N_{0}} Q_{L_{0}} w\right\|_{L_{\lambda}^{2}}\left\|P_{N_{2}} Q_{L_{2}} v\right\|_{L_{\lambda}^{2}} \tag{3.15}
\end{equation*}
$$

for small $\theta>0$.

Summing with respect to $N_{0}, N_{1}, N_{2}, L_{0}, L_{1}, L_{2}$, we obtain

$$
J_{H H \rightarrow L} \lesssim\|u\|_{L_{\lambda}^{2}}\|v\|_{L_{\lambda}^{2}}\|w\|_{L_{\lambda}^{2}}
$$

Estimate of $J_{H H \rightarrow H}$. In this case, we can assume $N \ll N_{0} \sim N_{1} \sim N_{2}$ and have

$$
\frac{m(\zeta)}{m\left(\zeta_{1}\right) m\left(\zeta-\zeta_{1}\right)} \sim \frac{N_{0}^{1-s}}{N^{1-s}}, \quad \Gamma_{\xi, q, \tau}^{\xi_{1}, q_{1}, \tau_{1}} \sim \frac{|\xi|}{N_{0} L_{0}^{1 / 2-} L_{1}^{1 / 2+} L_{2}^{1 / 2+}}
$$

Now, we separate this case into five subcases:
(i) $|\xi| \lesssim 1$,
(ii) $\left|\xi_{1}\right| \wedge\left|\xi-\xi_{1}\right| \lesssim 1 \ll|\xi|$,
(iii) $1 \ll\left|\xi_{1}\right| \wedge\left|\xi-\xi_{1}\right| \wedge|\xi|$ and $\left||\zeta|^{2}-\left|\zeta_{1}\right|^{2}\right| \vee\left|\left|\zeta_{1}\right|^{2}-\left|\zeta-\zeta_{1}\right|^{2}\right| \vee\left|\left|\zeta-\zeta_{1}\right|^{2}-|\zeta|^{2}\right| \gtrsim$ $N_{0}^{6 / 5}\left(L_{0} \vee L_{1} \vee L_{1}\right)^{0+}$,
(iv) $1 \ll\left|\xi_{1}\right| \wedge\left|\xi-\xi_{1}\right| \wedge|\xi|,\left.\left||\zeta|^{2}-\left|\zeta_{1}\right|^{2}\right| \wedge| | \zeta_{1}\right|^{2}-\left|\zeta-\zeta_{1}\right|^{2}|\wedge|\left|\zeta-\zeta_{1}\right|^{2}-|\zeta|^{2} \mid \ll$ $N_{0}^{6 / 5}\left(L_{0} \vee L_{1} \vee L_{1}\right)^{0+}$ and $\left(|\xi| \vee\left|\xi_{1}\right| \vee\left|\xi-\xi_{1}\right|\right)\left(|\xi| \wedge\left|\xi_{1}\right| \wedge\left|\xi-\xi_{1}\right|\right) \gg$ $N_{0}^{6 / 5}\left(L_{0} \vee L_{1} \vee L_{1}\right)^{0+}$,
(v) $1 \ll\left|\xi_{1}\right| \wedge\left|\xi-\xi_{1}\right| \wedge|\xi|,\left.\left||\zeta|^{2}-\left|\zeta_{1}\right|^{2}\right| \wedge| | \zeta_{1}\right|^{2}-\left|\zeta-\zeta_{1}\right|^{2}|\wedge|\left|\zeta-\zeta_{1}\right|^{2}-|\zeta|^{2} \mid \ll$ $N_{0}^{6 / 5}\left(L_{0} \vee L_{1} \vee L_{1}\right)^{0+}$ and $\left(|\xi| \vee\left|\xi_{1}\right| \vee\left|\xi-\xi_{1}\right|\right)\left(|\xi| \wedge\left|\xi_{1}\right| \wedge\left|\xi-\xi_{1}\right|\right) \lesssim$ $N_{0}^{6 / 5}\left(L_{0} \vee L_{1} \vee L_{1}\right)^{0+}$.

Subcase (i). Denote

$$
J_{N_{0}, N_{1}, N_{2}}^{L_{0}, L_{1}, L_{2}}=\sum_{k \in \mathbb{N}} J_{N_{0}, N_{1}, N_{2}}^{L_{0}, L_{1}, L_{2}}(k)
$$

where

$$
\begin{aligned}
& J_{N_{0}, N_{1}, N_{2}}^{L_{0}, L_{1}, L_{2}}(k)= \frac{1}{\lambda^{2}} \sum_{q, q_{1} \in \mathbb{Z} / \lambda} \int_{Y_{k}} \Gamma_{\xi, q, \tau}^{\xi_{1}, q_{1}, \tau_{1}} \frac{m(\zeta)}{m\left(\zeta_{1}\right) m\left(\zeta-\zeta_{1}\right)}{\widehat{P_{N_{1} Q_{L_{1}}}} u^{\lambda}\left(\zeta_{1}, \tau_{1}\right)}^{\times{\widehat{P N_{2} Q_{L_{2}}}}^{\lambda} v^{\lambda}\left(\zeta-\zeta_{1}, \tau-\tau_{1}\right) \widehat{P_{N_{0} Q_{L_{0}}}} w^{\lambda}(\zeta, \tau) d \xi d \xi_{1} d \tau d \tau_{1}} \\
& Y_{k}=\left\{\left(\xi, \xi_{1}, \tau, \tau_{1}\right) \in \mathbb{R}^{4}| | \xi \mid \sim 2^{-k}\right\}
\end{aligned}
$$

We apply the Cauchy-Schwarz inequality, and we have that the contribution of this case to $J_{N_{0}, N_{1}, N_{2}}^{L_{0}, L_{1}, L_{2}}(k)$ is bounded by

$$
\lesssim \frac{2^{-k}}{N^{1-s} N_{0}^{s} L_{0}^{1 / 2-} L_{1}^{1 / 2+} L_{2}^{1 / 2+}}\left\|R_{2^{-k}}\left(\left(P_{N_{1}} Q_{L_{1}} u\right)\left(P_{N_{2}} Q_{L_{2}} v\right)\right)\right\|_{L_{\lambda}^{2}}\left\|P_{N_{0}} Q_{L_{0}} w\right\|_{L_{\lambda}^{2}}
$$

For $|\xi| \sim 2^{-k}$, we obtain by 2.4

$$
\left|\frac{\partial^{2} \mathcal{H}}{\partial \xi_{1}^{2}}\left(\xi_{1}, \xi-\xi_{1}, q_{1}, q-q_{1}\right)\right|=6|\xi| \sim 2^{-k}
$$

Using (3.4), we obtain

$$
\begin{aligned}
& \left\|R_{2^{-k}}\left(\left(P_{N_{1}} Q_{L_{1}} u\right)\left(P_{N_{2}} Q_{L_{2}} v\right)\right)\right\|_{L_{\lambda}^{2}} \\
& \lesssim 2^{k / 4} N_{0}^{1 / 2}\left(L_{1} \vee L_{2}\right)^{1 / 4}\left(L_{1} \wedge L_{2}\right)^{1 / 2}\left\|P_{N_{1}} Q_{L_{1}} u\right\|_{L_{\lambda}^{2}}\left\|P_{N_{2}} Q_{L_{2}} v\right\|_{L_{\lambda}^{2}}
\end{aligned}
$$

Then

$$
\begin{align*}
& J_{N_{0}, N_{1}, N_{2}}^{L_{0}, L_{1}, L_{2}}(k) \\
& \lesssim \frac{2^{-3 k / 4}}{N^{1-s} N_{0}^{s-1 / 2} L_{0}^{0+} L_{1}^{0+} L_{2}^{0+}}\left\|P_{N_{1}} Q_{L_{1}} u\right\|_{L_{\lambda}^{2}}\left\|P_{N_{2}} Q_{L_{2}} v\right\|_{L_{\lambda}^{2}}\left\|P_{N_{0}} Q_{L_{0}} w\right\|_{L_{\lambda}^{2}} \tag{3.16}
\end{align*}
$$

Summing with respect to dyadic numbers $N_{0}, N_{1}, N_{2}, L_{0}, L_{1}, L_{2}$ and $k \in \mathbb{N}$, we have the desired bound for the contribution of this case to $J_{H H \rightarrow H}$.

Subcase (ii). By symmetry, we may suppose $\left|\xi-\xi_{1}\right| \leq\left|\xi_{1}\right| \wedge 1$. First, we calculate the resonance function 2.4 as

$$
\frac{\partial \mathcal{H}}{\partial \xi_{1}}\left(\xi_{1}, \xi-\xi_{1}, q, q-q_{1}\right)=3 \xi\left(\xi-2 \xi_{1}\right)+q\left(q-2 q_{1}\right) .
$$

First we consider the case when $\left|\partial \mathcal{H} / \partial \xi_{1}\right| \gtrsim \xi^{2}$. We shall use the dyadic decomposition $|\xi| \sim K$. By the Cauchy-Schwarz inequality such as Case (i) above, we have that the contribution of this case to $J_{N_{0}, N_{1}, N_{2}}^{L_{0}, L_{1}, L_{2}}$ is bounded by

$$
\begin{aligned}
\lesssim & \sum_{K \in 2^{\mathbb{N}}} \frac{K}{N^{1-s} N_{0}^{s} L_{0}^{1 / 2-} L_{1}^{1 / 2+} L_{2}^{1 / 2+}} \\
& \times\left\|R_{K}\left(\left(P_{N_{1}} Q_{L_{1}} u\right)\left(P_{N_{2}} Q_{L_{2}} v\right)\right)\right\|_{L_{\lambda}^{2}}\left\|R_{K} P_{N_{0}} Q_{L_{0}} w\right\|_{L_{\lambda}^{2}}
\end{aligned}
$$

Recall the proof of Lemma 3.5, we have

$$
\begin{aligned}
& \left\|R_{K}\left(\left(P_{N_{1}} Q_{L_{1}} u\right)\left(P_{N_{2}} Q_{L_{2}} v\right)\right)\right\|_{L_{\lambda}^{2}} \\
& \lesssim \frac{1}{\lambda^{1 / 2}} \sup _{(\xi, q, \tau) \in \mathbb{R} \times \mathbb{Z} / \lambda \times \mathbb{R}}\left|A_{\xi, q, \tau}(K)\right|^{1 / 2}\left\|P_{N_{1}} Q_{L_{1}} u\right\|_{L_{\lambda}^{2}}\left\|P_{N_{2}} Q_{L_{2}} v\right\|_{L_{\lambda}^{2}},
\end{aligned}
$$

where

$$
\begin{aligned}
A_{\xi, q, \tau}(K)=\{ & \left(\xi_{1}, q_{1}, \tau_{1}\right) \in \mathbb{R} \times \mathbb{Z} / \lambda \times \mathbb{R}| | \xi\left|\sim K,\left|\zeta_{1}\right| \in I_{N_{1}},\left|\zeta-\zeta_{1}\right| \in I_{N_{2}}\right. \\
& \left.\left|\tau_{1}-\sigma\left(\zeta_{1}\right)\right| \in I_{L_{1}},\left|\tau-\tau_{1}-\sigma\left(\zeta-\zeta_{1}\right)\right| \in I_{L_{2}}\right\}
\end{aligned}
$$

From the triangle inequality,

$$
\left|A_{\xi, q, \tau}(K)\right| \lesssim\left(L_{1} \wedge L_{2}\right)\left|B_{\xi, q, \tau}(K)\right|,
$$

where

$$
\begin{aligned}
B_{\xi, q, \tau}(K)=\{ & \left(\xi_{1}, q_{1}\right) \in \mathbb{R} \times \mathbb{Z} / \lambda| | \xi\left|\sim K,\left|\zeta_{1}\right| \in I_{N_{1}},\left|\zeta-\zeta_{1}\right| \in I_{N_{2}},\right. \\
& \left.\left|\tau-\sigma(\zeta)-\mathcal{H}\left(\xi_{1}, \xi-\xi_{1}, q_{1}, q-q_{1}\right)\right| \lesssim L_{1} \vee L_{2}\right\}
\end{aligned}
$$

Let $\widetilde{B}_{\xi, q, \tau}\left(K, q_{1}\right)=\left\{\xi_{1} \in \mathbb{R} \mid \zeta_{1} \in B_{\xi, q, \tau}(K)\right\}$ for each $q_{1}$. Then combining Lemma 3.3 and the bound $\left|\partial \mathcal{H} / \partial \xi_{1}\right| \gtrsim \xi^{2} \sim K^{2}$, we obtain

$$
\left|\widetilde{B}_{\xi, q, \tau}\left(K, q_{1}\right)\right| \lesssim \frac{L_{1} \vee L_{2}}{K^{2}}
$$

Hence, we obtain

$$
\left|B_{\xi, q, \tau}\right| \lesssim \lambda \frac{\left(L_{1} \vee L_{2}\right)\left(N_{1} \wedge N_{2}\right)}{K^{2}}
$$

Then,

$$
\begin{aligned}
& \left\|R_{K}\left(\left(P_{N_{1}} Q_{L_{1}} u\right)\left(P_{N_{2}} Q_{L_{2}} v\right)\right)\right\|_{L_{\lambda}^{2}} \\
& \lesssim \frac{N_{0}^{1 / 2}\left(L_{1} \vee L_{0}\right)^{1 / 2}\left(L_{1} \wedge L_{0}\right)^{1 / 2}}{K}\left\|P_{N_{1}} Q_{L_{1}} u\right\|_{L_{\lambda}^{2}}\left\|P_{N_{0}} Q_{L_{0}} w\right\|_{L_{\lambda}^{2}}
\end{aligned}
$$

Combining the Cauchy-Schwarz inequality and bilinear estimate, we obtain that the contribution of this case to $J_{N_{0}, N_{1}, N_{2}}^{L_{0}, L_{1}, L_{2}}$ is bounded by

$$
\begin{align*}
& \lesssim \sum_{K \lesssim N_{0}} \frac{1}{N^{1-s} N_{0}^{s-1 / 2} L_{0}^{0+} L_{1}^{0+} L_{2}^{0+}}\left\|P_{N_{1}} Q_{L_{1}} u\right\|_{L_{\lambda}^{2}}\left\|P_{N_{2}} Q_{L_{2}} v\right\|_{L_{\lambda}^{2}}\left\|R_{K} P_{N_{0}} Q_{L_{0}} w\right\|_{L_{\lambda}^{2}} \\
& \lesssim \frac{1}{N^{1-s} N_{0}^{s-1 / 2-} L_{0}^{0+} L_{1}^{0+} L_{2}^{0+}}\left\|P_{N_{1}} Q_{L_{1}} u\right\|_{L_{\lambda}^{2}}\left\|P_{N_{2}} Q_{L_{2}} v\right\|_{L_{\lambda}^{2}}\left\|P_{N_{0}} Q_{L_{0}} w\right\|_{L_{\lambda}^{2}} \tag{3.17}
\end{align*}
$$

Again summing with respect to dyadic numbers $N_{0}, N_{1}, N_{2}, L_{0}, L_{1}, L_{2}$, we have the desired bound for the contribution of this case to $J_{H H \rightarrow H}$.

Next, we consider the case when $\left|\partial \mathcal{H} / \partial \xi_{1}\right| \ll \xi^{2}$. In this case, we have

$$
\begin{aligned}
\frac{\partial \mathcal{H}}{\partial \xi_{1}}\left(\xi_{1}, \xi-\xi_{1}, q_{1}, q-q_{1}\right) & =3 \xi\left(\xi-\xi_{1}\right)-3 \xi \xi_{1}+q\left(q-q_{1}\right)-q q_{1} \\
& =6 \xi\left(\xi-\xi_{1}\right)-3 \xi^{2}+q\left(q-q_{1}\right)-q q_{1} \\
& =O(\xi)-3 \xi^{2}+q\left(q-q_{1}\right)-q q_{1}
\end{aligned}
$$

To satisfy the hypothesis of resonance function $\left|\partial \mathcal{H} / \partial \xi_{1}\right| \ll \xi^{2}, N_{0} \sim N_{1} \sim N_{2}$ and $\left|\xi-\xi_{1}\right| \lesssim 1 \ll|\xi|$, we need $\left|q-q_{1}\right| \sim N_{0},|\xi| \lesssim|q| \wedge\left|q_{1}\right|$ to set $q\left(q-q_{1}\right)-q q_{1} \sim \xi^{2}$. Furthermore we have

$$
\begin{gathered}
|q| \sim\left|q_{1}\right| \sim\left|q-q_{1}\right| \sim|\xi| \sim N_{0}, \quad 3 \xi \xi_{1}\left(\xi-\xi_{1}\right) \sim O\left(\xi^{2}\right) \\
\left(\xi-\xi_{1}\right)\left(q^{2}-\left(q-q_{1}\right)^{2}\right) \sim O\left(\xi^{2}\right)
\end{gathered}
$$

Let us recall the resonance function $\mathcal{H}$ in 2.4,
$\mathcal{H}\left(\xi_{1}, \xi-\xi_{1}, q_{1}, q-q_{1}\right)=3 \xi \xi_{1}\left(\xi-\xi_{1}\right)+\left(\xi-\xi_{1}\right)\left(q^{2}-\left(q-q_{1}\right)^{2}\right)+\left(q-q_{1}\right) \xi_{1}\left(q+q_{1}\right)$,
If $\left|\mathcal{H}\left(\xi_{1}, \xi-\xi_{1}, q_{1}, q-q_{1}\right)\right| \gtrsim \xi^{2}$, then $L_{0} \vee L_{1} \vee L_{2} \gtrsim \xi^{2}$ by (2.4). Hence we have $|\xi| \lesssim N_{0}^{0+}\left(L_{0} \vee L_{1} \vee L_{2}\right)^{1 / 2-}$. The same estimate as in 3.13 implies that the contribution of this case to $J_{H H \rightarrow H}$ is bounded by

$$
\begin{align*}
& \lesssim \frac{N_{0}^{0+} N_{0}^{1-s}}{N_{0} N^{1-s} L_{0}^{0+} L_{1}^{0+} L_{2}^{0+}}\left\|\left(P_{N_{1}} Q_{L_{1}} u\right)\left(P_{N_{2}} Q_{L_{2}} v\right)\right\|_{L_{\lambda}^{2}}\left\|P_{N_{0}} Q_{L_{0}} w\right\|_{L_{\lambda}^{2}} \\
& \sim \frac{1}{N^{1-s} N_{0}^{s-} L_{0}^{0+} L_{1}^{0+} L_{2}^{0+}}\left\|P_{N_{1}} Q_{L_{1}} u\right\|_{L_{\lambda}^{2}}\left\|P_{N_{2}} Q_{L_{2}} v\right\|_{L_{\lambda}^{2}}\left\|P_{N_{0}} Q_{L_{0}} w\right\|_{L_{\lambda}^{2}} \tag{3.18}
\end{align*}
$$

Summing in dyadic numbers $N_{0}, N_{1}, N_{2}, L_{0}, L_{1}, L_{2}$, we have the bound of this case to $J_{H H \rightarrow H}$ by

$$
\lesssim\|u\|_{L_{\lambda}^{2}}\|v\|_{L_{\lambda}^{2}}\|w\|_{L_{\lambda}^{2}}
$$

as desired.
On the other hand, if $\left|\mathcal{H}\left(\xi_{1}, \xi-\xi_{1}, q_{1}, q-q_{1}\right)\right| \ll \xi^{2}$, it follows that $\mid\left(q-q_{1}\right) \xi_{1}(q+$ $\left.q_{1}\right) \mid \lesssim O\left(\xi^{2}\right)$ and then $\left|q+q_{1}\right| \lesssim 1$. In this case, we use the form

$$
q_{1}=\left[q_{1}\right]+\left(q_{1}-\left[q_{1}\right]\right)
$$

and then

$$
q-q_{1}=[q]+(q-[q])-q_{1}=[q]-\left[q_{1}\right]+\left(q-[q]-q_{1}+\left[q_{1}\right]\right)
$$

where $[a]$ denotes integer part of $a \in \mathbb{R}$. Note that $q_{1}-\left[q_{1}\right], q-q_{1}-\left[q-q_{1}\right] \in$ $\mathbb{Z} / \lambda \cap[0,1)$. The restriction $\left|q+q_{1}\right| \lesssim 1$ implies $\left|2\left[q_{1}\right]+[q]\right| \lesssim 1$. By performing the same calculation as [21, Proof of Proposition 3.1] and [11, Proof of Theorem 2.1],
we use the Cauchy-Schwarz inequality to have that the contribution of this case to $J_{H H \rightarrow H}$ is bounded by

$$
\lesssim \sup _{(\zeta, \tau) \in \mathbb{R} \times \mathbb{Z} / \lambda \times \mathbb{R}} \mathcal{I}(\zeta, \tau)\|u\|_{L_{\lambda}^{2}}\|v\|_{L_{\lambda}^{2}}\|w\|_{L_{\lambda}^{2}}
$$

where

$$
\begin{aligned}
\mathcal{I}(\zeta, \tau)= & \frac{N_{0}^{1-s}}{\lambda^{1 / 2} L_{0}^{1 / 2-} N^{1-s}} \\
& \times\left(\sum_{\left|2\left[q_{1}\right]+[q]\right| \lesssim 1} \int_{\left|\xi-\xi_{1}\right| \lesssim 1} \frac{d \xi_{1}}{\left\langle\tau-\sigma(\zeta)-\mathcal{H}\left(\xi_{1}, \xi-\xi_{1}, q_{1}, q-q_{1}\right)\right\rangle^{1+}}\right)^{1 / 2},
\end{aligned}
$$

where we assume $\left|\mathcal{H}\left(\xi_{1}, \xi-\xi_{1}, q_{1}, q-q_{1}\right)\right| \ll \xi^{2}$ in the integration of region. Then it suffices to show that

$$
\begin{equation*}
\sup _{(\zeta, \tau) \in \mathbb{R} \times \mathbb{Z} / \lambda \times \mathbb{R}} \mathcal{I}(\zeta, \tau)^{2}<\infty \tag{3.19}
\end{equation*}
$$

The resonance function is reformulated as

$$
\mathcal{H}=3 \xi \xi_{1}\left(\xi-\xi_{1}\right)+\left(\xi-\xi_{1}\right)\left(q^{2}-\left(q-q_{1}\right)^{2}\right)+\left(q-q_{1}\right) \xi_{1}\left(q+q_{1}\right)
$$

which is equivalent to a quadratic equation in $\xi_{1}$,

$$
3 \xi \xi_{1}^{2}-\left(\left(2 q-q_{1}\right) q+3 \xi^{2}\right) \xi_{1}-\left(q^{2}-\left(q-q_{1}\right)^{2}\right) \xi+\mathcal{H}=0
$$

The roots of the quadratic equation are the values of $\xi_{1}$ as $\xi_{1}^{ \pm}$, where

$$
\xi_{1}^{ \pm}=\frac{\left(2 q_{1}-q\right) q_{1}-3 \xi^{2} \pm \sqrt{\left(\left(2 q_{1}-q\right) q-3 \xi^{2}\right)^{2}+12 \xi^{2}\left(q^{2}-\left(q-q_{1}\right)^{2}\right)-12 \xi \mathcal{H}}}{6 \xi}
$$

Using the change of variables, we have

$$
d \xi_{1}= \pm \frac{d \mathcal{H}}{\sqrt{\left(\left(2 q_{1}-q\right) q-3 \xi^{2}\right)^{2}+12 \xi^{2}\left(q^{2}-\left(q-q_{1}\right)^{2}\right)-12 \xi \mathcal{H}}} .
$$

We evaluate integrals using the change of variables as

$$
\begin{aligned}
& \int_{\left|\xi-\xi_{1}\right| \lesssim 1} \frac{d \xi_{1}}{\left\langle\tau-\sigma(\zeta)-\mathcal{H}\left(\xi_{1}, \xi-\xi_{1}, q_{1}, q-q_{1}\right)\right\rangle^{1+}} \\
& \lesssim \int_{\mathbb{R}} \frac{d \mathcal{H}}{\langle\tau-\sigma(\zeta)-\mathcal{H}\rangle^{1+}\left|\left(\left(2 q_{1}-q\right) q-3 \xi^{2}\right)^{2}+12 \xi^{2}\left(q^{2}-\left(q-q_{1}\right)^{2}\right)-12 \xi \mathcal{H}\right|^{1 / 2}} \\
& \lesssim \frac{1}{|\xi|^{1 / 2}+\left|\xi(\tau-\sigma(\zeta))+\left(\left(2 q_{1}-q\right) q-3 \xi^{2}\right)^{2} / 12+\xi^{2}\left(q^{2}-\left(q-q_{1}\right)^{2}\right)\right|^{1 / 2}} .
\end{aligned}
$$

Then we have the bound

$$
\int_{\left|\xi-\xi_{1}\right| \lesssim 1} \frac{d \xi_{1}}{\left\langle\tau-\sigma(\zeta)-\mathcal{H}\left(\xi_{1}, \xi-\xi_{1}, q_{1}, q-q_{1}\right)\right\rangle^{1+}} \lesssim \frac{1}{N_{0}^{1 / 2}}
$$

Therefore,

$$
\begin{align*}
\mathcal{I}(\zeta, \tau) & \lesssim \frac{N_{0}^{1-s}}{\lambda^{1 / 2} L_{0}^{1 / 2-} N^{1-s}}\left(\sum_{\left|2\left[q_{1}\right]+[q]\right| \lesssim 1} \frac{1}{N_{0}^{1 / 2}}\right)^{1 / 2}  \tag{3.20}\\
& \lesssim \frac{1}{L_{0}^{1 / 2-} N^{1-s} N_{0}^{s-3 / 4}} \lesssim 1
\end{align*}
$$

which is acceptable for 3.19 .

Subcase (iii). The proof follows from the same as one in 19] (also 21, Proposition 3.1]). By symmetry, we assume $\|\left.\zeta\right|^{2}-\left|\zeta_{1}\right|^{2} \mid \gtrsim N_{0}^{6 / 5} L_{0}^{0+}$. Then

$$
\left|\frac{\partial \mathcal{H}}{\partial \xi_{1}}\left(\xi_{1}, \xi-\xi_{1}, q_{1}, q-q_{1}\right)\right|=\left||\zeta|^{2}-\left|\zeta_{1}\right|^{2}\right| \gtrsim N_{0}^{6 / 5} L_{0}^{0+}
$$

which modifies the computation appeared in (3.7) for the proof of 3.5). Hence the contribution of this case to $J_{N_{0}, N_{1}, N_{2}}^{L_{0}, L_{1}, L_{2}}$ is bounded by

$$
\begin{align*}
\lesssim & \frac{N_{0}^{1-s}}{N^{1-s} L_{0}^{1 / 2-} L_{1}^{1 / 2+} L_{2}^{1 / 2+}} \frac{N_{0}^{1 / 2}\left(L_{1} \vee L_{2}\right)^{1 / 2}}{N_{0}^{3 / 5} L_{0}^{0+}} \\
& \times\left\|P_{N_{1}} Q_{L_{1}} u\right\|_{L_{\lambda}^{2}}\left\|P_{N_{1}} Q_{L_{2}} v\right\|_{L_{\lambda}^{2}}\left\|P_{N_{0}} Q_{L_{0}} w\right\|_{L_{\lambda}^{2}}  \tag{3.21}\\
\lesssim & \frac{1}{N^{1-s} N_{0}^{s-9 / 10} L_{0}^{0+} L_{1}^{0+} L_{2}^{0+}}\left\|P_{N_{1}} Q_{L_{1}} u\right\|_{L_{\lambda}^{2}}\left\|P_{N_{1}} Q_{L_{2}} v\right\|_{L_{\lambda}^{2}}\left\|P_{N_{0}} Q_{L_{0}} w\right\|_{L_{\lambda}^{2}},
\end{align*}
$$

which is acceptable after taking the sum in dyadic numbers $N_{0}, N_{1}, N_{2}, L_{0}, L_{1}, L_{2}$.

Subcase (iv). We can rewrite resonance function $\mathcal{H}$ as

$$
\begin{aligned}
\mathcal{H}\left(\xi_{1}, \xi-\xi_{1}, q_{1}, q-q_{1}\right) & =3 \xi \xi_{1}\left(\xi-\xi_{1}\right)+\xi_{1} q^{2}-\xi q_{1}^{2}-2 \xi_{1} q q_{1}+2 \xi q q_{1} \\
& =-3 \xi \xi_{1}\left(\xi-\xi_{1}\right)+P\left(\xi, \xi_{1}, q, q_{1}\right)
\end{aligned}
$$

where

$$
P\left(\xi, \xi_{1}, q, q_{1}\right)=6 \xi \xi_{1} \xi_{2}+\xi_{1} q^{2}-\xi q_{1}^{2}-2 \xi_{1} q q_{1}+2 \xi q q_{1}
$$

By the same argument as in [19] (also [21, Proposition 3.1]), we have in this case

$$
\begin{aligned}
\left|\mathcal{H}\left(\xi_{1}, \xi-\xi_{1}, q_{1}, q-q_{1}\right)\right| & \gtrsim\left(|\xi| \vee\left|\xi_{1}\right| \vee\left|\xi-\xi_{1}\right|\right)^{2}\left(|\xi| \wedge\left|\xi_{1}\right| \wedge\left|\xi-\xi_{1}\right|\right) \\
& \gtrsim\left(|\xi| \vee\left|\xi_{1}\right| \vee\left|\xi-\xi_{1}\right|\right)\left(|\xi| \wedge\left|\xi_{1}\right| \wedge\left|\xi-\xi_{1}\right|\right)|\xi| \\
& \gg N_{0}^{6 / 5} L_{0}^{0+}|\xi| \gtrsim|\xi|^{11 / 5} L_{0}^{0+}
\end{aligned}
$$

By symmetry we assume $L_{0}=L_{0} \vee L_{1} \vee L_{2}$, which implies $\left|\mathcal{H}\left(\xi_{1}, \xi-\xi_{1}, q_{1}, q-q_{1}\right)\right| \lesssim$ $L_{0}$. Combining these estimates in this case, we obtain $|\xi| \lesssim L_{0}^{5 / 11-}$. We use (3.4) to have that the contribution of this case to $J_{N_{0}, N_{1}, N_{2}}^{L_{0}, L_{1}, L_{2}}$ is bounded by

$$
\begin{align*}
& \lesssim \sum_{K \lesssim L_{0}^{1 / 2--}} \frac{K}{N^{1-s} N_{0}^{s} L_{0}^{1 / 2-} L_{1}^{1 / 2+} L_{2}^{1 / 2+}} \frac{N_{0}^{1 / 2}}{K^{1 / 4}}\left(L_{1} \wedge L_{2}\right)^{1 / 2}\left(L_{1} \vee L_{2}\right)^{1 / 2} \\
& \\
& \times\left\|P_{N_{1}} Q_{L_{1}} u\right\|_{L_{\lambda}^{2}}\left\|P_{N_{1}} Q_{L_{2}} v\right\|_{L_{\lambda}^{2}}\left\|R_{K} P_{N_{0}} Q_{L_{0}} w\right\|_{L_{\lambda}^{2}}  \tag{3.22}\\
& \lesssim \frac{1}{N^{1-s} N_{0}^{s-9 / 10} L_{0}^{0+} L_{1}^{0+} L_{2}^{0+}}\left\|P_{N_{1}} Q_{L_{1}} u\right\|_{L_{\lambda}^{2}}\left\|P_{N_{1}} Q_{L_{2}} v\right\|_{L_{\lambda}^{2}}\left\|R_{K} P_{N_{0}} Q_{L_{0}} w\right\|_{L_{\lambda}^{2}},
\end{align*}
$$

which is acceptable after taking the sum in dyadic numbers $N_{0}, N_{1}, N_{2}, L_{0}, L_{1}, L_{2}$.

Subcase (v). Finally, we consider this case. We repeat the argument in 19 (also [21, Proposition 3.1]). Introducing dyadic numbers $K_{j}$, we have that the
contribution this case to $J_{N_{0}, N_{1}, N_{2}}^{L_{0}, L_{1}, L_{2}}$ is bounded by

$$
\begin{align*}
\lesssim & \frac{1}{N^{1-s} N_{0}^{s} L_{0}^{1 / 2-} L_{1}^{1 / 2+} L_{2}^{1 / 2+}} \\
& \times \sum_{K_{0}, K_{1}, K_{2}} K_{0}\left\|R_{K_{0}}\left(\left(R_{K_{1}} P_{N_{1}} Q_{L_{1}} u\right)\left(R_{K_{2}} P_{N_{2}} Q_{L_{2}} v\right)\right)\right\|_{L_{\lambda}^{2}}\left\|R_{K_{0}} P_{N_{0}} Q_{L_{0}} w\right\|_{L_{\lambda}^{2}} \tag{3.23}
\end{align*}
$$

In the proof of 3.4 , we modify that in 3.9

$$
\left|B_{\xi, q, \tau}^{K}\right| \lesssim \lambda \frac{\left(K_{1} \wedge K_{2}\right)\left(L_{1} \vee L_{2}\right)}{K^{\frac{1}{2}}}
$$

which shows

$$
\begin{aligned}
& \left\|R_{K_{0}}\left(\left(R_{K_{1}} P_{N_{1}} Q_{L_{1}} u\right)\left(R_{K_{2}} P_{N_{2}} Q_{L_{2}} v\right)\right)\right\|_{L_{\lambda}^{2}} \\
& \lesssim \frac{\left(K_{1} \wedge K_{2}\right)^{1 / 2}\left(L_{1} \wedge L_{2}\right)^{1 / 2}\left(L_{1} \vee L_{2}\right)^{1 / 4}}{K_{0}^{1 / 4}}\left\|P_{N_{1}} Q_{L_{1}} u\right\|_{L_{\lambda}^{2}}\left\|P_{N_{2}} Q_{L_{2}} v\right\|_{L_{\lambda}^{2}}
\end{aligned}
$$

Then the left hand-side of 3.23 is controlled by

$$
\begin{aligned}
& \lesssim \sum_{K_{0}, K_{1}, K_{2}} \frac{K_{0}^{3 / 4}\left(K_{1} \wedge K_{2}\right)^{1 / 2}\left(L_{1} \wedge L_{2}\right)^{1 / 2}\left(L_{1} \vee L_{2}\right)^{1 / 4}}{N^{1-s} N_{0}^{s} L_{0}^{1 / 2-} L_{1}^{1 / 2+} L_{2}^{1 / 2+}} \\
& \quad \times\left\|P_{N_{1}} Q_{L_{1}} u\right\|_{L_{\lambda}^{2}}\left\|P_{N_{2}} Q_{L_{2}} v\right\|_{L_{\lambda}^{2}}\left\|P_{N_{0}} Q_{L_{0}} w\right\|_{L_{\lambda}^{2}}
\end{aligned}
$$

where the sum is based on the region $\left(K_{0} \vee K_{1} \vee K_{2}\right)\left(K_{0} \wedge K_{1} \wedge K_{2}\right) \lesssim N_{0}^{6 / 5}\left(L_{0} \vee\right.$ $\left.L_{1} \vee L_{1}\right)^{0+}$. Since $K_{0}^{3 / 4}\left(K_{1} \wedge K_{2}\right)^{1 / 2} \lesssim N_{0}^{9 / 10}\left(L_{0} \vee L_{1} \vee L_{2}\right)^{0+}$, we have that the contribution of this case to $J_{N_{0}, N_{1}, N_{2}}^{L_{0}, L_{1}, L_{2}}$ is bounded by

$$
\begin{align*}
\lesssim & \frac{1}{N^{1-s} N_{0}^{s-9 / 10} L_{0}^{0+} L_{1}^{0+} L_{2}^{0+}}  \tag{3.24}\\
& \left\|P_{N_{1}} Q_{L_{1}} R_{K_{1}} u\right\|_{L_{\lambda}^{2}}\left\|P_{N_{2}} Q_{L_{2}} R_{K_{2}} v\right\|_{L_{\lambda}^{2}}\left\|R_{K_{0}} P_{N_{0}} Q_{L_{0}} w\right\|_{L_{\lambda}^{2}}
\end{align*}
$$

which is acceptable.
We completed the proof of $J_{H H \rightarrow H}$, and hence of Lemma 3.6.
Proof of Proposition 3.1. Define

$$
\Psi\left(u^{\lambda}\right)(t)=\eta(t) e^{-t \partial_{x} \Delta} u_{0}^{\lambda}+\frac{1}{2} \eta(t) \int_{0}^{t} e^{-\left(t-t^{\prime}\right) \partial_{x} \Delta} \partial_{x}\left(u^{\lambda}\left(t^{\prime}\right)^{2}\right) d t^{\prime}
$$

We show that the map $\Psi$ defines a contraction in

$$
Y_{\delta, \lambda}=\left\{u^{\lambda} \in I^{-1} X_{\delta, \lambda}^{1,1 / 2+} \mid\left\|I u^{\lambda}\right\|_{X_{\delta, \lambda}^{1,1 / 2+}} \leq 2 C\left\|I u_{0}^{\lambda}\right\|_{H_{\lambda}^{1}}\right\}
$$

for (small) $\delta>0$, where the norm on $Y_{\delta, \lambda}$ is induced by $\left\|I u^{\lambda}\right\|_{X_{\delta, \lambda}^{1,1 / 2+}}$, In fact, from Lemmas 2.3, 2.4 and 2.5 and 3.6 , it follows that

$$
\begin{align*}
\left\|I \Psi\left(u^{\lambda}\right)\right\|_{X_{\delta, \lambda}^{1,1 / 2+}} & \leq C\left\|I u_{0}^{\lambda}\right\|_{H_{\lambda}^{1}}+C\left\|\partial_{x} I\left(u^{\lambda}\right)^{2}\right\|_{X_{\delta, \lambda}^{1,-1 / 2+\varepsilon}} \\
& \leq C\left\|I u_{0}^{\lambda}\right\|_{H_{\lambda}^{1}}+C \delta^{\varepsilon}\left\|\partial_{x} I\left(u^{\lambda}\right)^{2}\right\|_{X_{\delta, \lambda}^{1,-1 / 2+2 \varepsilon}} \\
& \leq C\left\|I u_{0}^{\lambda}\right\|_{H_{\lambda}^{1}}+C \delta^{\varepsilon}\left\|I u^{\lambda}\right\|_{X_{\delta, \lambda}^{1,-1 / 2+}}^{2}  \tag{3.25}\\
& \leq 2 C\left\|I u_{0}^{\lambda}\right\|_{H_{\lambda}^{1}},
\end{align*}
$$

for $u^{\lambda} \in Y_{\delta, \lambda}$ and choosing small $\delta>0$ which will depend on $\left\|I u_{0}^{\lambda}\right\|_{H_{\lambda}^{s}}$. Similarly,

$$
\left\|I \Psi\left(u^{\lambda}\right)-I \Psi\left(v^{\lambda}\right)\right\|_{X_{\delta, \lambda}^{1,1 / 2+}} \leq \frac{1}{2}\left\|I u^{\lambda}-I v^{\lambda}\right\|_{X_{\delta, \lambda}^{1,1 / 2+}}
$$

for $u^{\lambda}, v^{\lambda} \in Y_{\delta, \lambda}$ and small $\delta>0$. Then the contraction mapping theorem tells us that there is a unique solution $u^{\lambda}=\Psi\left(u^{\lambda}\right) \in Y_{\delta, \lambda}$ to the Cauchy problem (3.2).

The persistence property $u^{\lambda} \in C\left([0, \delta]: H_{\lambda}^{s}\right)$ and the uniqueness in whole space $I u^{\lambda} \in X_{\delta, \lambda}^{1,1 / 2+}$ follow in a similar way to [11, Proof of Theorem 1.5], by using a variant of (3.25), therefore we omit them.

## 4. Modified energy

The conserved quantities associated with (3.2) are

$$
\begin{aligned}
E^{\lambda}\left[u^{\lambda}\right](t)= & \frac{1}{2} \int_{\mathbb{R} \times \mathbb{T}_{\lambda}}\left(\left|\nabla u^{\lambda}(x, y, t)\right|^{2}-\frac{1}{3} u^{\lambda}(x, y, t)^{3}\right) d x d y \\
& M^{\lambda}\left[u^{\lambda}\right](t)=\int_{\mathbb{R} \times \mathbb{T}_{\lambda}} u^{\lambda}(x, y, t)^{2} d x d y
\end{aligned}
$$

From $\mathcal{F}^{\lambda} u_{0}^{\lambda}(\xi, q)=\mathcal{F} u_{0}(\lambda \xi, \lambda q)$, it is easy to see that

$$
\begin{equation*}
\left\|I u_{0}^{\lambda}\right\|_{L_{\lambda}^{2}} \leq\left\|u_{0}^{\lambda}\right\|_{L_{\lambda}^{2}} \leq \frac{\left\|u_{0}\right\|_{L^{2}}}{\lambda}=o(1) \tag{4.1}
\end{equation*}
$$

for $\lambda \gg 1$. Here the choice of the large parameter $N$ will be made latter, but $\lambda>1$ is chosen by

$$
\begin{equation*}
\frac{N^{1-s}}{\lambda^{1+s}}=o(1) \tag{4.2}
\end{equation*}
$$

in which

$$
\begin{equation*}
\left\|\nabla I u_{0}^{\lambda}\right\|_{L_{\lambda}^{2}} \lesssim \frac{N^{1-s}}{\lambda^{1+s}}\left\|u_{0}\right\|_{H^{s}}=o(1), \quad\left\|I u_{0}^{\lambda}\right\|_{H_{\lambda}^{1}}=o(1) \tag{4.3}
\end{equation*}
$$

Moreover, we have

$$
\begin{equation*}
\left\|u\left(\frac{t}{\lambda^{3}}\right)\right\|_{H^{s}} \lesssim \lambda^{1+s}\left\|I u^{\lambda}(t)\right\|_{H_{\lambda}^{s}} \leq \lambda^{1+s}\left\|I u^{\lambda}(t)\right\|_{H_{\lambda}^{1}} \tag{4.4}
\end{equation*}
$$

Remark 4.1. By Gagliardo-Nirenberg inequality, the conservation law of $L_{\lambda}^{2}$-norm and 4.1, the solution $u^{\lambda}(t)$ satisfies

$$
\begin{equation*}
\left\|\nabla I u^{\lambda}(t)\right\|_{L_{\lambda}^{2}}^{2}-C_{1}\left\|u_{0}^{\lambda}\right\|_{L_{\lambda}^{2}}^{4} \leq C_{2} E^{\lambda}\left[I u^{\lambda}\right](t) \tag{4.5}
\end{equation*}
$$

where constants $C_{1}$ and $C_{2}$ are independent of $\lambda$.
Let us introduce the modified energy for proving global well-posedness. Using the Fundamental Theorem of Calculus, we obtain

$$
E^{\lambda}\left[I u^{\lambda}\right](\delta)-E^{\lambda}\left[I u^{\lambda}\right](0)=\int_{0}^{\delta} \frac{d E^{\lambda}\left[I u^{\lambda}\right](t)}{d t} d t
$$

for $\delta>0$. We continue calculation of the integrand in the right-hand side. Then

$$
\begin{align*}
\frac{d E^{\lambda}\left[I u^{\lambda}\right]}{d t}(t)= & \int_{\mathbb{R} \times \mathbb{T}_{\lambda}}\left(\frac{d}{d t} \nabla I u^{\lambda} \cdot \nabla I u^{\lambda}-\frac{1}{2}\left(I u^{\lambda}\right)^{2} \frac{d}{d t} I u^{\lambda}\right) d x d y \\
= & \int_{\mathbb{R} \times \mathbb{T}_{\lambda}}\left(-I \partial_{t} u^{\lambda} \Delta I u^{\lambda}-\frac{1}{2} I \partial_{t} u^{\lambda}\left(I u^{\lambda}\right)^{2}\right) d x d y \\
= & \int_{\mathbb{R} \times \mathbb{T}_{\lambda}} \partial_{x}\left(I \Delta u^{\lambda}+\frac{1}{2} I\left(u^{\lambda}\right)^{2}\right)\left(\frac{1}{2}\left(I u^{\lambda}\right)^{2}+\Delta I u^{\lambda}\right) d x d y  \tag{4.6}\\
= & -\frac{1}{2} \int_{\mathbb{R} \times \mathbb{T}_{\lambda}} I \Delta u^{\lambda} \partial_{x}\left(\left(I u^{\lambda}\right)^{2}-I\left(u^{\lambda}\right)^{2}\right) d x d y \\
& -\frac{1}{4} \int_{\mathbb{R} \times \mathbb{T}_{\lambda}} I\left(u^{\lambda}\right)^{2} \partial_{x}\left(\left(I u^{\lambda}\right)^{2}-I\left(u^{\lambda}\right)^{2}\right) d x d y
\end{align*}
$$

where we use the equation in 3.2 . Taking the integral on $[0, \delta]$, we have

$$
\begin{align*}
& E^{\lambda}\left[I u^{\lambda}\right](\delta)-E^{\lambda}\left[I u^{\lambda}\right](0) \\
& =  \tag{4.7}\\
& -\frac{1}{2} \int_{0}^{\delta} \int_{\mathbb{R} \times \mathbb{T}_{\lambda}} I \Delta u^{\lambda} \partial_{x}\left(\left(I u^{\lambda}\right)^{2}-I\left(u^{\lambda}\right)^{2}\right) d x d y d t \\
& \quad-\frac{1}{4} \int_{0}^{\delta} \int_{\mathbb{R} \times \mathbb{T}_{\lambda}} I\left(u^{\lambda}\right)^{2} \partial_{x}\left(\left(I u^{\lambda}\right)^{2}-I\left(u^{\lambda}\right)^{2}\right) d x d y d t
\end{align*}
$$

We will estimate two terms on the right hand of 4.7 with $\left\|I u^{\lambda}\right\|_{X_{\lambda, \delta}^{1,1 / 2+}}$ by multilinear estimates associated with the transition of energy in 4.7).

Lemma 4.2. For $s>9 / 10$, we have

$$
\begin{equation*}
\left\|\partial_{x}(I u I v-I(u v))\right\|_{X_{\lambda}^{1,-1 / 2+}} \lesssim N^{-1 / 10+}\|I u\|_{X_{\lambda}^{1,1 / 2+}}\|I v\|_{X_{\lambda}^{1,1 / 2+}} \tag{4.8}
\end{equation*}
$$

Remark 4.3. Comparing to the estimate in Lemma 3.6 we have the small factor at the front of the right-hand, which corresponding to properties such as dispersion or the smoothing effects.

Proof. We recast the proof of Lemma 3.6 in the form of formula 4.8). Here we used the same symbol over as in the proof of Lemma 3.6. By Plancherel identity, it suffices to show that

$$
\begin{align*}
J= & \frac{1}{\lambda^{2}} \sum_{q, q_{1} \in \mathbb{Z} / \lambda} \int_{\mathbb{R}^{4}} \Gamma_{\xi, q, \tau}^{\xi_{1}, q_{1}, \tau_{1}} \frac{m(\zeta)}{m\left(\zeta_{1}\right) m\left(\zeta-\zeta_{1}\right)} \Xi\left(\zeta, \zeta_{1}, \zeta-\zeta_{1}\right) \\
& \times \widehat{u}^{\lambda}\left(\zeta_{1}, \tau_{1}\right) \widehat{v}^{\lambda}\left(\zeta-\zeta_{1}, \tau-\tau_{1}\right) \widehat{w}^{\lambda}(\zeta, \tau) d \xi d \xi_{1} d \tau d \tau_{1}  \tag{4.9}\\
\lesssim & \|u\|_{L_{\lambda}^{2}}\|v\|_{L_{\lambda}^{2}}\|w\|_{L_{\lambda}^{2}}
\end{align*}
$$

for $u, v, w \in L_{\lambda}^{2}$ whose Fourier transform are nonnegative. In 4.9), we have

$$
\begin{gathered}
\Gamma_{\xi, q, \tau}^{\xi_{1}, q_{1}, \tau_{1}}=\frac{|\xi|\langle\zeta\rangle}{\left\langle\zeta_{1}\right\rangle\left\langle\zeta-\zeta_{1}\right\rangle\langle\tau-\sigma(\zeta)\rangle^{1 / 2-}\left\langle\tau_{1}-\sigma\left(\zeta_{1}\right)\right\rangle^{1 / 2+}\left\langle\tau-\tau_{1}-\sigma\left(\zeta-\zeta_{1}\right)\right\rangle^{1 / 2+}} \\
\Xi\left(\zeta, \zeta_{1}, \zeta-\zeta_{1}\right)=\frac{N^{1 / 10-}}{m(\zeta)}\left|m\left(\zeta_{1}\right) m\left(\zeta-\zeta_{1}\right)-m(\zeta)\right|
\end{gathered}
$$

Note the trivial bound

$$
\begin{equation*}
\Xi\left(\zeta, \zeta_{1}, \zeta-\zeta_{1}\right) \lesssim \frac{N^{1 / 10-}}{m(\zeta)} \tag{4.10}
\end{equation*}
$$

Using dyadic decomposition in a similar way to the proof of Lemma 3.6, we rewrite $J$ as the following

$$
J=\sum_{\substack{N_{0}, N_{1}, N_{2} \\ L_{0}, L_{1}, L_{2}}} J_{N_{0}, N_{1}, N_{2}}^{L_{0}, L_{1}, L_{2}},
$$

where

$$
\begin{align*}
J_{N_{0}, N_{1}, N_{2}}^{L_{0}, L_{1}, L_{2}}= & \frac{1}{\lambda^{2}} \sum_{q, q_{1} \in \mathbb{Z} / \lambda} \int_{\mathbb{R}^{4}} \Gamma_{\xi, q, \tau}^{\xi_{1}, q_{1}, \tau_{1}} \frac{m(\zeta)}{m\left(\zeta_{1}\right) m\left(\zeta-\zeta_{1}\right)} \Xi\left(\zeta, \zeta_{1}, \zeta-\zeta_{1}\right) \\
& \times \widehat{P_{N_{1} Q_{L_{1}}}} u^{\lambda}\left(\zeta_{1}, \tau_{1}\right) \widehat{P_{N_{2} Q_{L_{2}}}} v^{\lambda}\left(\zeta-\zeta_{1}, \tau-\tau_{1}\right)  \tag{4.11}\\
& \times \widehat{P_{N_{0} Q_{L_{0}}}} w^{\lambda}(\xi, q, \tau) d \xi d \xi_{1} d \tau d \tau_{1} .
\end{align*}
$$

We repeat the same procedure as one of Lemma 3.6. Decompose again $J$ to five parts in frequencies:

$$
\begin{gathered}
J_{L L \rightarrow L}=\sum_{\substack{N_{1} \vee N_{2} \vee N_{0} \ll N \\
L_{0}, L_{1}, L_{2}}} J_{N_{0}, N_{1}, N_{2}}^{L_{0}, L_{1}, L_{2}}, \quad J_{L H \rightarrow H}=\sum_{\substack{N_{1} \ll N_{2} \sim N_{0} \\
N_{0} \gtrsim N \\
L_{0}, L_{1}, L_{2}}} J_{N_{0}, N_{1}, N_{2}}^{L_{0}, L_{1}, L_{2}}, \\
J_{H L \rightarrow H}=\sum_{\substack{N_{2} \ll N_{1} \sim N_{0} \\
N_{0} \gtrsim N_{0} \\
L_{0}, L_{1}, L_{2}}} J_{N_{0}, N_{1}, N_{2}}^{L_{0}, L_{1}, L_{2}}, \quad J_{H H \rightarrow L}=\sum_{\substack{N_{0} \ll N_{1} \sim N_{2} \\
N_{1} \gtrsim N \\
L_{0}, L_{1}, L_{2}}}^{L_{0}, L_{1}, L_{2}}, N_{N_{0}, N_{1}, N_{2}}, \\
J_{H H \rightarrow H}=J-\left(J_{L L \rightarrow L}+J_{H L \rightarrow H}+J_{L H \rightarrow H}+J_{H H \rightarrow L}\right) .
\end{gathered}
$$

We estimate each of them by case analysis.
Estimate of $J_{L L \rightarrow L}$. In this region, we have $\Xi\left(\zeta, \zeta_{1}, \zeta-\zeta_{1}\right)=0$, since by $m(\zeta)=$ $m\left(\zeta_{1}\right)=m\left(\zeta-\zeta_{1}\right)=1$. Hence $J_{L L \rightarrow L}=0$.

Estimate of $J_{L H \rightarrow H}$. We split the case into two cases, when $N_{1} \gtrsim N$ and when $N_{1} \ll N$. When $N_{1} \gtrsim N$, we use the bound 4.10. On the other hand, when $N_{1} \ll N$, the mean value theorem gives

$$
\begin{equation*}
\left|m\left(\zeta_{1}\right) m\left(\zeta-\zeta_{1}\right)-m(\zeta)\right|=\left|m\left(\zeta-\zeta_{1}\right)-m(\zeta)\right| \lesssim m^{\prime}\left(N_{0}\right) N_{1} \sim \frac{m\left(N_{0}\right) N_{1}}{N_{0}} \tag{4.12}
\end{equation*}
$$

By making use of the estimates in (3.12 and (3.13), we easily have the desired bounds for the contribution of this case to $J_{L H \rightarrow H}$. Indeed, when $N_{1} \ll N$, the computation in 3.12 with 4.10 leads the bound

$$
\begin{aligned}
& \lesssim \frac{N_{1}}{N_{0}} \frac{N^{1 / 10-}}{N_{1}^{1 / 2} L_{0}^{1 / 2-} L_{1}^{0+} L_{2}^{0+}}\left\|P_{N_{1}} Q_{L_{1}} u\right\|_{L_{\lambda}^{2}}\left\|P_{N_{2}} Q_{L_{2}} v\right\|_{L_{\lambda}^{2}}\left\|P_{N_{0}} Q_{L_{0}} w\right\|_{L_{\lambda}^{2}} \\
& \lesssim \frac{1}{N_{1}^{0+} L_{0}^{1 / 2-} L_{1}^{0+} L_{2}^{0+}}\left\|P_{N_{1}} Q_{L_{1}} u\right\|_{L_{\lambda}^{2}}\left\|P_{N_{2}} Q_{L_{2}} v\right\|_{L_{\lambda}^{2}}\left\|P_{N_{0}} Q_{L_{0}} w\right\|_{L_{\lambda}^{2}}
\end{aligned}
$$

While $N_{1} \gtrsim N$, we have $\left|m\left(\zeta_{1}\right) m\left(\zeta-\zeta_{1}\right)-m(\zeta)\right| \lesssim m\left(N_{0}\right)$ and then $\Xi\left(\zeta, \zeta_{1}, \zeta-\zeta_{1}\right) \lesssim$ $N^{1 / 10-}$. By the computation in $(3.13$ with 4.12 we estimate this contribution by

$$
\begin{aligned}
& \lesssim N^{1 / 10-} \frac{1}{N_{1}^{s-1 / 2} L_{0}^{1 / 2-} L_{1}^{0+} L_{2}^{0+}}\left\|P_{N_{1}} Q_{L_{1}} u\right\|_{L_{\lambda}^{2}}\left\|P_{N_{2}} Q_{L_{2}} v\right\|_{L_{\lambda}^{2}}\left\|P_{N_{0}} Q_{L_{0}} w\right\|_{L_{\lambda}^{2}} \\
& \lesssim \frac{1}{N_{1}^{0+} L_{0}^{0+} L_{1}^{0+} L_{2}^{0+}}\left\|P_{N_{1}} Q_{L_{1}} u\right\|_{L_{\lambda}^{2}}\left\|P_{N_{2}} Q_{L_{2}} v\right\|_{L_{\lambda}^{2}}\left\|P_{N_{0}} Q_{L_{0}} w\right\|_{L_{\lambda}^{2}}
\end{aligned}
$$

Then the desired estimate follows.

Estimate of $J_{H L \rightarrow H}$. We use symmetry arguments as for $J_{L H \rightarrow H}$ to conclude the proof.

Estimate of $J_{H H \rightarrow L}$. In this case, we use the bound 4.10). By employing the same estimates as in (3.14) and (3.15), we have the desired bounds. Actually, the computation in 3.14 will be changed into

$$
\begin{aligned}
& \lesssim \frac{N^{1 / 10-}}{N^{1-s} N_{1}^{s-1 / 2-3 \theta / 2} L_{0}^{0+} L_{1}^{0+} L_{2}^{0+}}\left\|P_{N_{1}} Q_{L_{1}} u\right\|_{L_{\lambda}^{2}}\left\|P_{N_{0}} Q_{L_{0}} w\right\|_{L_{\lambda}^{2}}\left\|P_{N_{2}} Q_{L_{2}} v\right\|_{L_{\lambda}^{2}} \\
& \lesssim \frac{1}{N_{1}^{2 / 5-3 \theta / 2} L_{0}^{0+} L_{1}^{0+} L_{2}^{0+}}\left\|P_{N_{1}} Q_{L_{1}} u\right\|_{L_{\lambda}^{2}}\left\|P_{N_{0}} Q_{L_{0}} w\right\|_{L_{\lambda}^{2}}\left\|P_{N_{2}} Q_{L_{2}} v\right\|_{L_{\lambda}^{2}}
\end{aligned}
$$

for small $\theta>0$, while the formula in 3.15 is changed by the same.
Estimate of $J_{H H \rightarrow H}$ : In this case, we can assume $N \ll N_{0} \sim N_{1} \sim N_{2}$ and then

$$
\Xi\left(\zeta, \zeta_{1}, \zeta-\zeta_{1}\right) \lesssim N^{1 / 10-}
$$

We divide the region into five regions as in the proof of Lemma 3.6. On each case, we recall the estimates in (3.16), (3.17), (3.18), (3.20), (3.21), (3.22) and (3.24), by multiplying $\Xi\left(\zeta, \zeta_{1}, \zeta-\zeta_{1}\right)$. We see that $J_{H H \rightarrow H} \lesssim\|u\|_{L_{\lambda}^{2}}\|v\|_{L_{\lambda}^{2}}\|w\|_{L_{\lambda}^{2}}$ holds provided $s>9 / 10$.

In fact, in subcase (i), the estimate corresponding to 3.16 will be

$$
\begin{aligned}
& \lesssim N^{1 / 10-} \frac{2^{-3 k / 4}}{N^{1-s} N_{0}^{s-1 / 2} L_{0}^{0+} L_{1}^{0+} L_{2}^{0+}}\left\|P_{N_{1}} Q_{L_{1}} u\right\|_{L_{\lambda}^{2}}\left\|P_{N_{2}} Q_{L_{2}} v\right\|_{L_{\lambda}^{2}}\left\|P_{N_{0}} Q_{L_{0}} w\right\|_{L_{\lambda}^{2}} \\
& \lesssim \frac{2^{-3 k / 4}}{N_{0}^{2 / 5-} L_{0}^{0+} L_{1}^{0+} L_{2}^{0+}}\left\|P_{N_{1}} Q_{L_{1}} u\right\|_{L_{\lambda}^{2}}\left\|P_{N_{2}} Q_{L_{2}} v\right\|_{L_{\lambda}^{2}}\left\|P_{N_{0}} Q_{L_{0}} w\right\|_{L_{\lambda}^{2}},
\end{aligned}
$$

which is acceptable after summing over $N_{0}, N_{1}, N_{2}, L_{0}, L_{1}, L_{2}$.
In subcase (ii), we revisit the estimates in (3.17), 3.18) and 3.20). We require the following estimate corresponding to 3.17 )

$$
\begin{aligned}
& \lesssim N^{1 / 10-} \frac{1}{N^{1-s} N_{0}^{s-1 / 2-} L_{0}^{0+} L_{1}^{0+} L_{2}^{0+}}\left\|P_{N_{1}} Q_{L_{1}} u\right\|_{L_{\lambda}^{2}}\left\|P_{N_{2}} Q_{L_{2}} v\right\|_{L_{\lambda}^{2}}\left\|P_{N_{0}} Q_{L_{0}} w\right\|_{L_{\lambda}^{2}} \\
& \lesssim \frac{1}{N_{0}^{2 / 5-} L_{0}^{0+} L_{1}^{0+} L_{2}^{0+}}\left\|P_{N_{1}} Q_{L_{1}} u\right\|_{L_{\lambda}^{2}}\left\|P_{N_{2}} Q_{L_{2}} v\right\|_{L_{\lambda}^{2}}\left\|P_{N_{0}} Q_{L_{0}} w\right\|_{L_{\lambda}^{2}} .
\end{aligned}
$$

The corresponding estimate to 3.18 is

$$
\begin{aligned}
& \lesssim N^{1 / 10-} \frac{1}{N^{1-s} N_{0}^{s-} L_{0}^{0+} L_{1}^{0+} L_{2}^{0+}}\left\|P_{N_{1}} Q_{L_{1}} u\right\|_{L_{\lambda}^{2}}\left\|P_{N_{2}} Q_{L_{2}} v\right\|_{L_{\lambda}^{2}}\left\|P_{N_{0}} Q_{L_{0}} w\right\|_{L_{\lambda}^{2}} \\
& \sim \frac{1}{N_{0}^{9 / 10-} L_{0}^{0+} L_{1}^{0+} L_{2}^{0+}}\left\|P_{N_{1}} Q_{L_{1}} u\right\|_{L_{\lambda}^{2}}\left\|P_{N_{2}} Q_{L_{2}} v\right\|_{L_{\lambda}^{2}}\left\|P_{N_{0}} Q_{L_{0}} w\right\|_{L_{\lambda}^{2}} .
\end{aligned}
$$

The estimate corresponding to 3.20 is

$$
\mathcal{I}(\zeta, \tau) \lesssim N^{1 / 10-} \frac{1}{L_{0}^{1 / 2-} N^{1-s} N_{0}^{s-3 / 4}} \lesssim 1
$$

By a similar proof to one of Lemma 3.6, we have a desired bound.
In subcase (iii), it suffices to show the following estimate corresponding to (3.21),

$$
\lesssim N^{1 / 10-} \frac{N_{0}^{1-s}}{N^{1-s} L_{0}^{1 / 2-} L_{1}^{1 / 2+} L_{2}^{1 / 2+}} \frac{N_{0}^{1 / 2}\left(L_{1} \vee L_{2}\right)^{1 / 2}}{N_{0}^{3 / 5} L_{0}^{0+}}
$$

$$
\begin{aligned}
& \times\left\|P_{N_{1}} Q_{L_{1}} u\right\|_{L_{\lambda}^{2}}\left\|P_{N_{1}} Q_{L_{2}} v\right\|_{L_{\lambda}^{2}}\left\|P_{N_{0}} Q_{L_{0}} w\right\|_{L_{\lambda}^{2}} \\
\lesssim & \frac{1}{N_{0}^{0+} L_{0}^{0+} L_{1}^{0+} L_{2}^{0+}}\left\|P_{N_{1}} Q_{L_{1}} u\right\|_{L_{\lambda}^{2}}\left\|P_{N_{1}} Q_{L_{2}} v\right\|_{L_{\lambda}^{2}}\left\|P_{N_{0}} Q_{L_{0}} w\right\|_{L_{\lambda}^{2}}
\end{aligned}
$$

which holds for $s>9 / 10$.
In subcase (iv), the corresponding estimate to 3.22 is

$$
\begin{aligned}
& \lesssim N^{1 / 10-} \frac{1}{N^{1-s} N_{0}^{s-9 / 10} L_{0}^{0+} L_{1}^{0+} L_{2}^{0+}}\left\|P_{N_{1}} Q_{L_{1}} u\right\|_{L_{\lambda}^{2}}\left\|P_{N_{1}} Q_{L_{2}} v\right\|_{L_{\lambda}^{2}}\left\|R_{K} P_{N_{0}} Q_{L_{0}} w\right\|_{L_{\lambda}^{2}} \\
& \lesssim \frac{1}{N_{0}^{0+} L_{0}^{0+} L_{1}^{0+} L_{2}^{0+}}\left\|P_{N_{1}} Q_{L_{1}} u\right\|_{L_{\lambda}^{2}}\left\|P_{N_{1}} Q_{L_{2}} v\right\|_{L_{\lambda}^{2}}\left\|R_{K} P_{N_{0}} Q_{L_{0}} w\right\|_{L_{\lambda}^{2}}
\end{aligned}
$$

which is acceptable for $s>9 / 10$.
Finally, in subcase (v), we need the following estimate corresponding estimate to (3.24)

$$
\begin{aligned}
\lesssim & N^{1 / 10-} \frac{1}{N^{1-s} N_{0}^{s-9 / 10} L_{0}^{0+} L_{1}^{0+} L_{2}^{0+}} \\
& \times\left\|P_{N_{1}} Q_{L_{1}} R_{K_{1}} u\right\|_{L_{\lambda}^{2}}\left\|P_{N_{2}} Q_{L_{2}} R_{K_{2}} v\right\|_{L_{\lambda}^{2}}\left\|R_{K_{0}} P_{N_{0}} Q_{L_{0}} w\right\|_{L_{\lambda}^{2}} \\
\lesssim & \frac{1}{N_{0}^{0+} L_{0}^{0+} L_{1}^{0+} L_{2}^{0+}}\left\|P_{N_{1}} Q_{L_{1}} R_{K_{1}} u\right\|_{L_{\lambda}^{2}}\left\|P_{N_{2}} Q_{L_{2}} R_{K_{2}} v\right\|_{L_{\lambda}^{2}}\left\|R_{K_{0}} P_{N_{0}} Q_{L_{0}} w\right\|_{L_{\lambda}^{2}}
\end{aligned}
$$

which is also acceptable for $s>9 / 10$. Hence the proof is complete
By Lemma 4.2, we have the following lemma.
Lemma 4.4. For $s>9 / 10$, we have

$$
\left|\int_{0}^{\delta} \int_{\mathbb{R} \times \mathbb{T}_{\lambda}} I \Delta u \partial_{x}\left((I u)^{2}-I(u)^{2}\right) d x d y d t\right| \lesssim \frac{1}{N^{1 / 10-}}\|I u\|_{X_{\delta, \lambda}^{1,1 / 2+}}^{3}
$$

Proof. We apply the Parseval's identity and the Cauchy-Schwartz inequality to get the bound of the left-hand side by

$$
\begin{aligned}
& \left.\lesssim\|I \Delta u\|_{X_{\delta, \lambda}^{-1,1 / 2+}} \| \partial_{x}(I u)^{2}-I(u)^{2}\right) \|_{X_{\delta, \lambda}^{1,1 / 2-}} \\
& \left.\lesssim\|I u\|_{X_{\delta, \lambda}^{1,1 / 2+}} \| \partial_{x}(I u)^{2}-I(u)^{2}\right) \|_{X_{\delta, \lambda}^{1,1 / 2-}}
\end{aligned}
$$

Employing Lemma 4.2, we have the desired bound.
Lemma 4.5. For $s>31 / 40$, we have

$$
\left|\int_{\mathbb{R} \times \mathbb{T}_{\lambda} \times \mathbb{R}} I u^{2} \partial_{x}\left((I u)^{2}-I(u)^{2}\right) d x d y d t\right| \lesssim \frac{1}{N^{1 / 10+}}\|I u\|_{X_{\lambda}^{1,1 / 2+}}^{4}
$$

Proof. We apply Parseval's identity to the left-hand side and use the same argument as in the proof of Lemma 3.6 .

It suffices to show that

$$
\begin{equation*}
J=\frac{1}{\lambda^{3}} \sum_{*} \int_{*}\left|\xi_{3}+\xi_{4}\right| \Gamma_{\zeta_{1}, \zeta_{2}, \zeta_{3}, \zeta_{4}}^{\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}} \Xi\left(\zeta_{1}, \zeta_{2}, \zeta_{3}, \zeta_{4}\right) \prod_{j=1}^{4} \widehat{u}^{\lambda}\left(\zeta_{j}, \tau_{j}\right) \lesssim\|u\|_{L_{\lambda}^{2}}^{4} \tag{4.13}
\end{equation*}
$$

for $u \in L_{\lambda}^{2}$ whose Fourier transform is nonnegative. In 4.13), $\sum_{*} \int_{*}$ stands for the sum-integral of $\left(\zeta_{j}, \tau_{j}\right) \in \mathbb{R} \times \mathbb{Z} / \lambda \times \mathbb{R}(1 \leq j \leq 4)$ over $\xi_{1}+\xi_{2}+\xi_{3}+\xi_{4}=$
$\eta_{1}+\eta_{2}+\eta_{3}+\eta_{4}=\tau_{1}+\tau_{2}+\tau_{3}+\tau_{4}=0$, and

$$
\begin{gathered}
\Gamma_{\zeta_{1}, \zeta_{2}, \zeta_{3}, \zeta_{4}}^{\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}}=\prod_{j=1}^{4} \frac{1}{m\left(\zeta_{j}\right)\left\langle\zeta_{j}\right\rangle\left\langle\tau_{j}-\sigma\left(\zeta_{j}\right)\right\rangle^{1 / 2+}} \\
\Xi\left(\zeta_{1}, \zeta_{2}, \zeta_{3}, \zeta_{4}\right)=m\left(\zeta_{1}+\zeta_{2}\right)\left|m\left(\zeta_{3}\right) m\left(\zeta_{4}\right)-m\left(\zeta_{3}+\zeta_{4}\right)\right| N^{1 / 10+}
\end{gathered}
$$

Note the trivial bound

$$
\begin{equation*}
\Xi\left(\zeta_{1}, \zeta_{2}, \zeta_{3}, \zeta_{4}\right) \lesssim N^{1 / 10+} \tag{4.14}
\end{equation*}
$$

By dyadic decomposition in a similar way to the proof of Lemma 3.6, we use $\left\langle\zeta_{j}\right\rangle \sim N_{j}$ and $\left\langle\tau_{j}-\sigma\left(\zeta_{j}\right)\right\rangle \sim L_{j}$, as before,

$$
J=\sum_{\substack{N_{1}, N_{2}, N_{3}, N_{4} \\ L_{1}, L_{2}, L_{3}, L_{4}}} J_{N_{1}, N_{2}, N_{3}, N_{4}}^{L_{1}, L_{2}, L_{3}, L_{4}},
$$

where

$$
J_{N_{1}, N_{2}, N_{3}, N_{4}}^{L_{1}, L_{2}, L_{3}, L_{4}}=\frac{1}{\lambda^{3}} \sum_{*} \int_{*}\left|\xi_{3}+\xi_{4}\right| \Gamma_{\zeta_{1}, \zeta_{2}, \zeta_{3}, \zeta_{4}}^{\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}} \Xi\left(\zeta_{1}, \zeta_{2}, \zeta_{3}, \zeta_{4}\right) \prod_{j=1}^{4} \widehat{P_{N_{j} Q_{L_{j}}}} u^{\lambda}\left(\zeta_{j}, \tau_{j}\right)
$$

We will show 4.13 using a the case-by-case analysis.
In case $N_{3} \vee N_{4} \ll N$, we have $\Xi\left(\zeta_{1}, \zeta_{2}, \zeta_{3}, \zeta_{4}\right)=0$, which is canceled out when evaluating 4.13). Then we may assume $N_{3} \vee N_{4} \gtrsim N$ in 4.13. Note that $\left|\xi_{3}+\xi_{4}\right|=\left|\xi_{1}+\xi_{2}\right| \lesssim\left(N_{1} \vee N_{2}\right) \wedge\left(N_{3} \vee N_{4}\right)$. We take $\left(P_{N_{1}} Q_{L_{1}} u\right)\left(P_{N_{2}} Q_{L_{2}} u\right)$ and $\left(P_{N_{3}} Q_{L_{3}} u\right)\left(P_{N_{4}} Q_{L_{4}} u\right)$ in $L_{\lambda}^{2}$ by using (3.3), respectively. By (4.14), the contribution of this case to $J_{N_{1}, N_{2}, N_{3}, N_{4}}^{L_{1}, L_{2}, L_{3}}$ is bounded by

$$
\begin{aligned}
& \lesssim \frac{\left(N_{1} \wedge N_{2}\right)\left(N_{1} \vee N_{2}\right)^{11 / 20}}{N_{1} m\left(N_{1}\right) N_{2} m\left(N_{2}\right) L_{1}^{0+} L_{2}^{0+}} \frac{\left(N_{3} \wedge N_{4}\right)\left(N_{3} \vee N_{4}\right)^{9 / 20}}{N_{3} m\left(N_{3}\right) N_{4} m\left(N_{4}\right) L_{3}^{0+} L_{4}^{0+}} N^{1 / 10+} \prod_{j=1}^{4}\left\|P_{N_{j}} Q_{L_{j}} u\right\|_{L_{\lambda}^{2}} \\
& \lesssim \prod_{j=1}^{4} \frac{1}{N_{j}^{9 / 40-} m\left(N_{j}\right) L_{j}^{0+}}\left\|P_{N_{j}} Q_{L_{j}} u\right\|_{L_{\lambda}^{2}} \\
& \lesssim \prod_{j=1}^{4} \frac{1}{N_{j}^{0+} L_{j}^{0+}}\left\|P_{N_{j}} Q_{L_{j}} u\right\|_{L_{\lambda}^{2}}
\end{aligned}
$$

since the function $f(x)=x^{9 / 40-} m(x)$ is non-decreasing on $[1, \infty)$ provided $s>$ $31 / 40$. This is acceptable after taking the dyadic sum on $N_{j}$ and $L_{j}$.

The following lemma is not difficult to prove using Lemma 4.5 as in [5, 6].
Lemma 4.6. For $s>31 / 40(<29 / 31)$,

$$
\left|\int_{0}^{\delta} \int_{\mathbb{R} \times \mathbb{T}_{\lambda}} I(u)^{2} \partial_{x}\left((I u)^{2}-I(u)^{2}\right) d x d y d t\right| \lesssim \frac{1}{N^{1 / 10+}}\|I u\|_{X_{\delta, \lambda}^{1,1 / 2+}}^{4}
$$

## 5. Proof of main theorem

In this section, we will give the proof of Theorem 1.1. by the local well-posedness results of Proposition 3.1 in conjunction with Lemmas 4.4 and 4.6 . The proof follows the strategy described in [5]. We prove the global well-posedness by the local well-posedness theory for solution $I u$ obtained in Proposition 3.1 and by the upper bound of increment of modified energy from 4.7.

Proof of Theorem 1.1. We consider the Cauchy problem 1.1) on an arbitrary time interval $[0, T]$. We rescale solutions by scaling (3.1) and consider the rescaled problem in (3.2) with initial data

$$
u_{0}^{\lambda}(x, y)=\frac{1}{\lambda^{2}} u_{0}\left(\frac{x}{\lambda}, \frac{y}{\lambda}\right)
$$

The goal is to construct rescaled solution $u^{\lambda}(t)$ to the Cauchy problem 3.2 on the time interval $\left[0, \lambda^{3} T\right]$.

By the local well-posedness result of Proposition 3.1 along with (4.3), our solution $u^{\lambda}(t)$ satisfies $\left\|I u^{\lambda}\right\|_{X_{\delta, \lambda}^{1,1 / 2+}} \ll 1$. Applying Lemmas 4.4 and 4.6 to the computation of 4.7), we have

$$
E^{\lambda}\left[I u^{\lambda}\right](\delta) \leq E^{\lambda}\left[I u^{\lambda}\right](0)+\frac{o(1)}{N^{1 / 10-}}=o(1)
$$

By using (4.1) and 4.5), we have

$$
\left\|I u^{\lambda}(\delta)\right\|_{H_{\lambda}^{1}}=o(1)
$$

We can iterate this process up to $N^{1 / 10-}$ times before doubling $\left\|I u^{\lambda}(\delta)\right\|_{H_{\lambda}^{1}}$. This process extends the local solution obtained by Proposition 3.1 to the time $O\left(N^{1 / 10-} \delta\right)$. We choose $N$ such that by 4.2

$$
N^{1 / 10-} \delta>\lambda^{3} T \sim N^{3(1-s) /(1+s)} T
$$

which may be done for $s>29 / 31$, hence complete the claim of Theorem 1.1 .
Furthermore, replacing $\lambda \sim N^{(1-s) /(1+s)}$ and $N \sim T^{10(1+s) /(31 s-29)+}$ in (4.4), the growth of Sobolev norm of the solution $u(t)$ to the Cauchy problem 1.1 has a bound at least

$$
\|u(T)\|_{H^{s}} \lesssim \lambda^{1+s}\left\|I u^{\lambda}\left(\lambda^{3} T\right)\right\|_{H_{\lambda}^{1}} \lesssim T^{10(1-s) /(31 s-29)+}
$$

This completes the proof.
Acknowledgments. The authors want to thank Jean-Claude Saut and Robert Schippa for providing valuable advice according to their areas of expertise. We sincerely thank the referee for useful comments on our manuscript. The first author was supported by JST SPRING, Grant Number JPMJSP2148 and the second author was supported by JSPS KAKENHI, Grant Number 18H01129.

## References

[1] C. Albarracin, G. R. Blanco; The IVP for a periodic generalized ZK equation, J. Differ. Equ., 352 (2023), 1-22.
[2] J. Bourgain; Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, Part I: Schrödinger equations, Geom. Funct. Anal., 3 (1993), 107-156.
[3] J. Bourgain; Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, Part II: The KdV equation, Geom. Funct. Anal., 3 (1993), 209-262.
[4] T. J. Bridges; Universal geometric condition for the transverse instability of solitary waves, Phys. Rev. Lett., 84 (2000), 2614-2617.
[5] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao; Global well-posedness for KdV in Sobolev spaces of negative index, Electron. J. Differ. Equ., 200126 (2001), 1-7.
[6] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao; Sharp Global well-posedness for $K d V$ and modified $K d V$ on $\mathbb{R}$ and $\mathbb{T}$, J. Amer. Math. Soc., 26 (2003), 705-749.
[7] A. V. Faminskii; The Cauchy problem for the Zakharov-Kuznetsov equation, Differ. Equ, 31 (1995), 1002-1012.
[8] L. G. Farah, L. Molinet; A note on the well-posedness in the energy space for the generalized ZK equation posed on $\mathbb{R} \times \mathbb{T}$, https://doi.org/10.48550/arXiv.2306.07433.
[9] J. Ginibre; Le problème de Cauchy pour des EDP semi-linéaires périodiques en variables déspace, Astérisque, 237 (1996), 163-187.
[10] A. Grünrock, S. Herr; The Fourier restriction norm method for the Zakharov-Kuznetsov equation, Discrete Contin. Dyn. Syst., 34 (2014), 2061-2068.
[11] C. E. Kenig, G. Ponce, L. Vega; A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc., 9 (1996), 573-603.
[12] S. Kinoshita; Global well-posedness for the Cauchy problem of the Zakharov-Kuznetsov equation in 2D, Ann. Inst. H. Poincaré Anal. Non Linéaire, 38 (2021), 451-505.
[13] S. Kinoshita, R. Schippa; Loomis-Whitney-type inequalities and low regularity well-posedness of the periodic Zakharov-Kuznetsov equation, J. Funct. Anal., 280 (2021), 108904.
[14] D. Lannes, F. Linares, J. C. Saut; The Cauchy problem for the Euler-Poisson system and derivation of the Zakharov-Kuznetsov equation, Progr. Nonlinear Differential Equations Appl., 84, Birkhäuser/Springer, New York, 2013, 181-213.
[15] F. Linares, M. Panthee, T. Robert, N. Tzvetkov; On the periodic Zakharov-Kuznetsov equation, Discrete Contin. Dyn. Syst., 39 (2019), 3521-3533.
[16] F. Linares, A. Pastor; Well-posedness for the two-dimensional modified Zakharov-Kuznetsov equation, SIAM J. Math. Anal., 41 (2009), 1323-1339.
[17] F. Linares, A. Pastor, J. C. Saut; Well-posedness for the ZK equation in a cylinder and on the background of a KdV soliton, Commun. Partial. Differ. Equ., 35 (2010), 1674-1689.
[18] F. Linares, G. Ponce; Introduction to nonlinear dispersive equations, Springer, New York, 2009.
[19] L. Molinet, D. Pilod; Bilinear Strichartz estimates for the Zakharov-Kuznetsov equation and applications, Ann. Inst. H. Poincaré, Anal. Non Lineairé, 32 (2015), 347-371.
[20] L. Molinet, J. C. Saut, N. Tzvetkov; Global well-posedness for the KP-II equation on the background of a non-localized solution, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 28 (2011), 653-676.
[21] S. Osawa; Local well-posedness for the Zakharov-Kuznetsov equation in Sobolev spaces, To appear in Differ. Integral Equ., https://doi.org/10.48550/arXiv.2207.04657.
[22] F. Rousset, N. Tzvetkov; Transverse nonlinear instability for two-dimensional dispersive models, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 26 (2009), 477-496.
[23] R. Schippa; On the Cauchy problem for higher dimensional Benjamin-Ono and ZakharovKuznetsov equations, Discrete Contin. Dyn. Syst., 40 (2020), 5189-5215.
[24] M. Shan; Global well-posedness and global attractor for two-dimensional Zakharov-Kuznetsov equation, Acta Math. Sin. Engl. Ser., 36 (2020), 969-1000.
[25] Y. Yamazaki; Stability for line solitary waves of Zakharov-Kuznetsov equation, J. Differ. Equ., 262 (2017), 4336-4389.
[26] E. A. Zakharov, V. E. Kuznetsov; On three dimensional solitons, Sov. phys. JETP, 39 (1974), 285-286.

Satoshi Osawa
Department of Mathematics, Kobe University, Kobe, 657-8501, Japan
Email address: sohsawa@math.kobe-u.ac.jp
Hideo Takaoka
Department of Mathematics, Kobe University, Kobe, 657-8501, Japan
Email address: takaoka@math.kobe-u.ac.jp


[^0]:    2020 Mathematics Subject Classification. 35Q53, 42B37.
    Key words and phrases. Zakharov-Kuznetsov equation; low regularity; global well-posedness; bilinear estimate.
    (C)2024. This work is licensed under a CC BY 4.0 license.

    Submitted January 3, 2024. Published January 22, 2024.

