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ENTIRE SOLUTIONS TO FERMAT-TYPE DIFFERENCE AND

PARTIAL DIFFERENTIAL-DIFFERENCE EQUATIONS IN Cn

HONG YAN XU, GOUTAM HALDAR

Abstract. In this article, we study the existence and the form of finite order
transcendental entire solutions of systems of Fermat-type difference and par-

tial differential-difference equations in several complex variables. Our results

extend previous theorems given by Xu-Cao [49], Xu et al [52], and Zheng-Xu
[55]. We give some examples to illustrate the content of this article.

1. Introduction and main results

It is well known that Nevanlinna theory is an important tool to study value dis-
tribution of entire and meromorphic solutions of complex differential equations (see
[15, 21]). Initially, Fermat-type functional equations were investigated by Montel
[35], Gross [6, 7], and Iyer [18], independently. In fact, Iyer [18] considered the
Fermat type functional equation

f(z)2 + g(z)2 = 1, (1.1)

and proved that the entire solutions of (1.1) are of the form f(z) = cosα(z),
g(z) = sinα(z), where α(z) is entire function.

Many researchers pay considerable attention to study the existence of entire
and meromorphic solutions of complex difference as well as complex differential-
difference equations, and obtained a number of important results; see [29, 30, 32, 42].
Mainly utilizing difference analogues of Nevanlinna theory, which was developed by
Halburd and Korhonen [8, 9], and Chiang and Feng [3], independently.

In 2012, Liu et al. [30] proved that the Fermat-type difference equation f(z)2 +
f(z+c)2 = 1 has the solutions of the form f(z) = sin(az+b), where c( ̸= 0), a, b ∈ C,
a = (4k+1)π/2c, and k is an integer. In 2013, Liu and Yang [27] extended this result
by considering the Fermat-type difference equation f(z)2 + P (z)2f(z + c)2 = Q(z)
where P (z) and Q(z) are two non-zero polynomials.

After that Liu [28], Liu and Dong [31] considered some variations of Fermat-type
equations

f(z)2 + [f(z + c)− f(z)]2 = 1, (1.2)

a21f(z)
2 + [a2f(z + c) + a3f(z)]

2 = 1, (1.3)
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[a1f(z + c) + a2f(z)]
2 + [a3f(z + c) + a4f(z)]

2 = 1, (1.4)

and obtained some remarkable results.
Hereafter, we denote z + w = (z1 + w1, z2 + w2, . . . , zn + wn) for any z =

(z1, z2, . . . , zn), w = (w1, w2, . . . , wn) and c = (c1, c2, . . . , cn), where z, w, c ∈ Cn

except otherwise stated.
Considering equations (1.2)–(1.4), in 2021, Zheng and Xu [55] extended the

results due to Liu [28], Liu and Dong [31] from one complex variable to several
complex variables, and obtained the following results.

Theorem 1.1. [55] Let c = (c1, c2) ∈ C2 \ {(0, 0)}. Then there are no transcen-
dental entire solutions f : C2 → P1(C) with finite order for equation (1.2).

Theorem 1.2. [55] Let c = (c1, c2) ∈ C2 \ {(0, 0)} and a1, a2, a3 be nonzero con-
stants in C. If (1.3) has a transcendental entire solution f : C2 → P1(C) with finite
order, then a21 + a23 = a22 and

f(z) =
1

a1
sin(L(z) + Φ(t) +A),

where L(z) = α1z1 + α2z2, α1, α2, A ∈ C, Φ(t) is a polynomial in t := c2z1 − c1z2
in C, and L(z) satisfies

L(c) = α1c1 + α2c2 = θ + kπ ± π

2
, tan θ =

a3
a1

.

Theorem 1.3. [55] Let c = (c1, c2) ∈ C2 \ {(0, 0)}, a1, a2, a3, a4 be nonzero con-
stants in C, and let D := a1a4 − a2a3 ̸=0. If (1.4) has a transcendental entire
solution f : C2 → P1(C) with finite order, then a21 + a23 = a22 + a24 and

f(z) =
1

2D

[
− (a3 + ia1)e

L(z)+Φ(t)+A − (a3 − ia1)e
−(L(z)+Φ(t)+A)

]
,

where L(z) = α1z1 + α2z2, α1, α2, A ∈ C, Φ(t) is a polynomial in t := c2z1 − c1z2
in C, and L(z) satisfies

eL(c) = eα1c1+α2c2 = −a3 − ia1
a4 − ia2

= −a4 + ia2
a3 + ia1

.

As far as our knowledge is concerned, although there are some remarkable results
about the existence and forms of transcendental entire solutions of Fermat-type
difference and partial differential-difference equations in several complex variables
(see [17, 49, 50, 51, 55, 11, 12, 14, 45, 13, 47, 48, 46]), the number of results about
the solutions of the system of Fermat-type equations in the literature (see [52]) are
scanty. We would like to discuss some of these results which are relevant to the
content of this article.

Theorem 1.4. [52] Let c = (c1, c2) be constants in C2. Then any pair of tran-
scendental entire solutions with finite order for the system of Fermat-type difference
equations

f1(z1, z2)
2 + (f2(z1 + c1, z2 + c2))

2 = 1

f2(z1, z2)
2 + (f1(z1 + c1, z2 + c2))

2 = 1,

has the following form

(f1(z), f2(z)) =
(eL(z)+B1 + e−(L(z)+B1)

2
,
A21e

L(z)+B1 +A22e
−(L(z)+B1)

2

)
,
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where L(z) = α1z1 +α2z2, B1 is a constant in C, and c, A21, A22 satisfy one of the
following cases

(i) L(c) = 2kπi, A21 = −i and A22 = i, or L(c) = (2k + 1)πi, A21 = i and
A22 = −i, here and below k is an integer;

(ii) L(c) = (2k + 1/2)πi, A21 = −1 and A22 = −1, or L(c) = (2k − 1/2)πi,
A21 = 1 and A22 = 1.

Now, we consider the following systems Fermat-type functional equations on Cn.

f1(z1, . . . , zn)
2 + (∆cf2(z1, . . . , zn))

2 = 1

f2(z1, . . . , zn)
2 + (∆cf1(z1, . . . , zn))

2 = 1,
(1.5)

where c = (c1, c2, . . . , cn) are constant in Cn.

a21f1(z)
2 + (a2f2(z + c) + a3f2(z))

2 = 1

a21f2(z)
2 + (a2f1(z + c) + a3f1(z))

2 = 1,
(1.6)

(a1f1(z + c) + a2f1(z))
2 + (a3f2(z + c) + a4f2(z))

2 = 1

(a1f2(z + c) + a2f2(z))
2 + (a3f1(z + c) + a4f1(z))

2 = 1,
(1.7)

where fj : Cn → P1(C), j = 1, 2, c = (c1, c2, . . . , cn) are constants in Cn \ {0},
a1, a2, a3, a4 are nonzero constants in C, and ∆cf(z) = f(z1 + c1, . . . zn + cn) −
f(z1, . . . zn) as defined in [20].

Inspired by Theorems 1.1–1.4, one may ask the following questions.

What can be said about the existence and the forms of finite order
transcendental entire solutions for the system of the Fermat-type
functional equations (1.5)–(1.7)?
Can we extend all the results stated above from C2 to Cn?

Our main goal is to investigate the existence and form of finite order transcen-
dental entire solutions of system (1.5)–(1.7) with the help of Nevanlinna theory
andthe difference logarithmic lemma in several complex variables (see [2, 20]).

We extend Theorems 1.1–1.4 from the complex Fermat-type difference equations
to the Fermat-type system of difference equations. ow we list our main results.

Theorem 1.5. There is no pair of transcendental entire solutions with finite order
for the system of Fermat-type difference equation (1.5).

Theorem 1.6. Let a1, a2, a3 be three non-zero complex constants in one variable
and c = (c1, . . . cn) ∈ Cn \ {(0, 0, . . . , 0)}. If (f1, f2) is a pair of transcendental
entire solution with finite order of simultaneous Fermat-type difference equation
(1.6), then (f1, f2) takes one of the following forms

(i) (f1, f2) =
(

1
a1

cos(L(z) + Φ(z) + A), 1
a1

cos(L(z) + Φ(z) + A + k)
)
, where

a22 = a21 + a23, e
2ik = 1,

e2iL(c) = −a1 − ia3e
−ik

a1 + ia3eik
,

where L(z) =
∑n

j=1 αjzj, αj , A ∈ C, j = 1, 2, . . . , n, and

Φ(z) =

n∑
i1,i2=1(i1<i2)

Hi1,i2(ci2zi1 − ci1zi2)
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+

n∑
i1,i2,i3=1(i1<i2<i3)

Hi1,i2,i3(ci2ci2zi1 − 2ci3ci1zi2 + ci1ci2zi3) + · · ·

+H(c2c3 · · · cnz1 − (n− 1)c1c3 · · · cnz2 + · · ·+ c1c2 · · · cn−1zn),

where Hi1,i2 is a polynomial in ci2zi1 − ci1zi2 , 1 ≤ i1 < i2 ≤ n, Hi1,i2,i3 is a
polynomial in ci2ci2zi1 −2ci3ci1zi2 +ci1ci2zi3 , 1 ≤ i1 < i2 < i3 ≤ n, . . ., and
H is a polynomial in c2c3 · · · cnz1−(n−1)c1c3 · · · cnz2+· · ·+c1c2 · · · cn−1zn;

(ii) (f1, f2) =
(

1
a1

cos(−(L(z)+Φ(z)+A)+k), 1
a1

cos(L(z)+Φ(z)+A)
)
, where

L(z) and Φ(z) are defined as in (i), and L(z), k, a1, a2, a3 satisfy one of
the following conditions:
(a) eiL(c) = 1, eik = ±i and a1 = ±(a2 + a3).
(b) eiL(c) = −1, eik = ±i and a1 = ±(a2 − a3).

The following examples show the existence of transcendental entire solutions
with finite order for system (1.6).

Example 1.7. Let a1 = 3, a2 = 5, a3 = 4 and L(z) = 7z1−5z2. Choose k ∈ C such
that eik = 1. Also, let c = (c1, c2, c3) ∈ C3 such that eiL(c) = cos 2π+α

2 + i sin 2π+α
2 ,

where tanα = 24/7. Let

f1 =
cos(7z1 − 5z2 + z3 + i(c2c3z1 − 2c3c1z2 + c1c2z3)

3 + 3)

3
,

f2 =
cos(7z1 − 5z2 + z3 + i(c2c3z1 − 2c3c1z2 + c1c2z3)

3 + 3 + k)

3
.

Then, it can be easily verified that (f1, f2) is a solution of (1.6).

Example 1.8. Let a1 = 1, a2 = −2, a3 =
√
3, and L(z) = z1 +2z2. Choose k ∈ C

such that eik = 1. Also, let c = (c1, c2) ∈ C2 such that eiL(c) = (1+ i
√
3)/2. Then,

it can be easily verified that

(f1(z), f2(z)) = (cos(z1 + 2z2 + 3), cos(z1 + 2z2 + 3 + k))

is a solution of (1.6).

Example 1.9. Let a1 = 1, a2 = −2, a3 =
√
3, and L(z) = 5z1−2z2. Choose k ∈ C

such that eik = −1. Also, let c = (c1, c2) ∈ C2 such that eiL(c) = (1 − i
√
3)/2.

Then, it can be easily verified that

(f1(z), f2(z)) = (cos(5z1 − 2z2 + 10i), cos(5z1 − 2z2 + 10i+ k))

is a solution of (1.6).

Example 1.10. Let a1 = 12, a2 = 7, a3 = 5 and L(z) = z1 + iz2. Choose k ∈ C
such that eik = i. Also, let c = (c1, c2) ∈ C2 such that eiL(c) = 1. Then, it can be
easily verified that

(f1(z), f2(z)) =
( 1

12
cos(−(z1 + iz2 + 17i) + k),

1

12
cos(z1 + iz2 + 17i)

)
is a solution of (1.6).

Theorem 1.11. Let a1, a2, a3, a4 be four non-zero constants in C such that a21 +
a23 = a22 + a24 and D := a1a4 − a2a3 ̸= 0. Let c = (c1, . . . , cn) ∈ Cn \ {(0, 0, . . . , 0)}.
If (f1, f2) is a pair of transcendental entire solution with finite order of Fermat-type
simultaneous difference equation (1.7), then one of the following cases must occur.



EJDE-2024/26 FERMAT-TYPE DIFFERENCE EQUATIONS IN Cn 5

(i)

f1(z) =
−1

2D
[(a3 + ia1e

k)eL(z)+A+Φ(z) + (a3 − ia1e
−k)e−(L(z)+A+Φ(z))] (1.8)

f2(z) =
−1

2D
[(a3e

k + ia1)e
L(z)+A+Φ(z) + (a3e

−k − ia1)e
−(L(z)+A+Φ(z))], (1.9)

where L(z) and Φ(z) are defined the conclusion (i) in Theorem 1.6 such
that

eL(c) =
a3e

k − ia1
ia2 − a4ek

=
a3e

−k − ia1
ia2 − a4e−k

=
−(a4e

k + ia2)

a3 + ia1ek
=

−(a4e
k + ia2)

a3ek + ia1
,

and e2k = 1, k ∈ C;
(ii)

f1(z1, z2) =
−1

2D

[
(a3 − ia1e

−k)eL(z)+Φ(z)+ξ + (a3 + ia1e
k)e−(L(z)+Φ(z)+ξ)

]
,

f2(z1, z2) =
−1

2D

[
(ia2 − a4e

k)e−(L(z)+Φ(z)+ξ) + (ia2 + a4e
−k)eL(z)+Φ(z)+ξ

]
,

where L(z) and Φ(z) are defined the conclusion (i) in Theorem 1.6 such
that e2L(c) = 1, e2k = −1 and a1a3 = a2a4.

The following examples show the existence of transcendental entire solutions
with finite order of the system (1.7).

Example 1.12. Let us choose a1 = a2 = a3 = 1, a4 = −1, L(z) =
∑n

j=1 jzj ,

c = (c1, c2, . . . , cn) ∈ Cn such that
∑n

j=1 jcj = (2m + 1/2)πi, m being an integer,

and Φ(t) = (
∑n

j=1 djzj)
10, where dj =

∏n
i=1,i̸=j c1c2 · · · cj−1cj+1 · · · cn. Let

f1(z) =
1

4

(
(1 + i)eL(z)+Φ(z)+3 + (1− i)e−(L(z)+Φ(z)+3)

)
,

f2(z) =
1

4

(
(1 + i)eL(z)+Φ(z)+3 − (i− 1)e−(L(z)+Φ(z)+3)

)
.

Then one can easily verify that (f1, f2) is a solution of (1.7)

Example 1.13. Let us choose a1 = a2 = a3 = 1, a4 = −1, L(z) = i(z1 − z2),
Φ(t) = i(c2z1−c1z2)

5, A = 3, and c = (c1, c2) ∈ C2 such that c1+2c2 = (2m−1/2)π,
m being an integer. Let

f1(z) =
cos

(
z1 − z2 + (c2z1 − c1z2)

5 − 3i
)
+ sin

(
z1 − z2 + (c2z1 − c1z2)

5 − 3i
)

2
,

f2(z) = −
cos

(
z1 − z2 + (c2z1 − c1z2)

5 − 3i
)
+ sin

(
z1 − z2 + (c2z1 − c1z2)

5 − 3i
)

2
.

Then one can easily verify that (f1(z), f2(z)) is a solution of (1.7)

2. Solutions of Fermat-type partial differential-difference
equations in several complex variables

The study partial differential equations, which is a generalizations of the well-
known eikonal equation in real variable case has a long history [4, 5, 37]. Recently,
many mathematicians have paid considerable attention to the study of entire and
meromorphic solutions of Fermat type partial differential equations in several com-
plex variables; see [25, 24, 39, 40, 23, 34, 33]). In 1995, Khavinson [19] pointed
out that in C2, the entire solution of the Fermat type partial differential equation
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f2
z1 + f2

z2 = 1 must necessarily be linear. In view of the result of Khavinson, Xu
and Cao [49] investigated the entire solutions of Fermat-type partial differential-
difference equation (∂f(z1, z2)

∂z1

)n

+ fm(z1 + c1, z2 + c2) = 1, (2.1)

and proved that in C2, Equation (2.1) does not have any transcendental entire
solution with finite order, where m and n are two distinct positive integers. In
2020, Xu and Wang [51] generalized the result by considering the Fermat-type
partial differential-difference equation(∂f(z1, z2)

∂z1
+

∂f(z1, z2)

∂z2

)n

+ fm(z1 + c1, z2 + c2) = 1, (2.2)

and proved that if (2.2) satisfies one of the conditions: (i)m > n and (ii) n > m ≥ 2,
then (2.2) does not have any finite order transcendental entire solutions.

In 2020, Xu et al. [52] considered the system of partial differential-difference
equations and obtained the following result.

Theorem 2.1. [52] Let c = (c1, c2) be a constant in C2, and mj , nj (j = 1, 2) be
positive integers. If the system of Fermat-type partial differential-difference equa-
tions (∂f1(z1, z2)

∂z1

)n1

+ f2(z1 + c1, z2 + c2)
m1 = 1(∂f2(z1, z2)

∂z1

)n2

+ f1(z1 + c1, z2 + c2)
m2 = 1,

satisfies one of the conditions (i) m1m2 > n1n2 or (ii) mj >
nj

nj−1 , j = 1, 2, then

the above system does not have any pair of transcendental entire solution with finite
order.

As far as we know, the Fermat-type mixed partial differential-difference equations
in several complex variables has not been addressed in the literature before. To
generalize Theorem 1.5, we consider the partial differential-difference equation

(a∂If1(z1, z2) + b∂Jf1(z1, z2))
n1 + f2(z1 + c1, z2 + c2)

m1 = 1,

(a∂If2(z1, z2) + b∂Jf2(z1, z2))
n2 + f1(z1 + c1, z2 + c2)

m2 = 1,
(2.3)

where

∂Ifj(z1, z2) =
∂|I|fj(z1, z2)

∂zα1
1 ∂zα2

2

and ∂Jfj(z1, z2) =
∂|J|fj(z1, z2)

∂zβ1

1 ∂zβ2

2

with I = (α1, α2) and J = (β1, β2) are multi-index with I ̸= J , where α1, α2, β1,
and β2 are non-negative integers and a, b ∈ C, not both zero. We denote by | I | to
denote the length of I, that is, | I |= α1 + α2. Similarly, for J also.

As a matter of fact, we prove the next result for any order Fermat-type partial
differential-difference equation (2.3).

Theorem 2.2. Let c = (c1, . . . cn) be a constant in Cn and mj, nj be positive
integers with j = 1, 2. If the Fermat-type simultaneous partial differential-difference
equation (2.3) satisfies one of the following conditions:

(i) m1m2 > n1n2;
(ii) mj >

nj

nj−1 , for nj ≥ 2, j = 1, 2,
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then (2.3) does not have any pair of finite order transcendental entire solutions of
the form (f1, f2).

The following example shows the existence of finite order transcendental entire
solutions of system (2.3) when n1 = n2 = 2 and m1 = m2 = 1.

Example 2.3. Let us consider the following particular type of system of equation
of (2.3). (∂2f1

∂z21

)2
+ f2(z + c) = 1

(∂2f2
∂z21

)2
+ f1(z + c) = 1.

(2.4)

Let c = (c1, c2) ∈ C2 be such that c1 = 0 and ec2 = 1
3 . Let

f1(z1, z2) = f2(z1, z2) = − 1

144
z41 +

1

2
z21e

z2 + 1− 9e2z2 .

Then one can easily verify that (f1, f2) is a solution of (2.4).

Example 2.4. Let c = (c1, c2) ∈ C2 be such that c1 = 0 and ec2 = − 1
3 . Let

f1(z1, z2) = − 1

144
z41−

1

2
z21e

z2−9e2z2+1, f2(z1, z2) = − 1

144
z41+

1

2
z21e

z2−9e2z2+1.

Then one can easily verify that (f1, f2) is a solution of (2.4).

3. Proof of main results

First, we present here some lemmas which play key role to prove the main results.

Lemma 3.1 ([16]). Let fj ̸≡ 0 (j = 1, 2, . . . ,m; m ≥ 3) be meromorphic functions
on Cn such that f1, . . . , fm−1 are not constant, f1+f2+ · · ·+fm = 1 and such that

m∑
j=1

{
Nn−1

(
r,

1

fj

)
+ (m− 1)N(r, fj)

}
< λT (r, fj) +O(log+ T (r, fj))

holds for j = 1, . . . ,m − 1 and all r outside possibly a set with finite logarithmic
measure, where λ < 1 is a positive number. Then fm = 1.

Lemma 3.2 ([22, 38, 41]). For an entire function F on Cn, F (0) ̸≡ 0 and put
ρ(nF ) = ρ < ∞. Then there exist a canonical function fF and a function gF ∈ Cn

such that F (z) = fF (z)e
gF (z). For the special case n = 1, fF is the canonical

product of Weierstrass.

Lemma 3.3 ([36]). If g and h are entire functions on the complex plane C and
g(h) is an entire function of finite order, then there are only two possible cases:
either

(i) the internal function h is a polynomial and the external function g is of
finite order; or

(ii) the internal function h is not a polynomial but a function of finite order,
and the external function g is of zero order.
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Lemma 3.4 ([1, 54]). Let f be a non-constant meromorphic function on Cn and
let I = (α1, . . . , αn) be a multi-index with length |I| =

∑n
j=1 αj. Assume that

T (r0, f) ≥ e for some r0. Then

m
(
r,
∂If

f

)
= S(r, f)

for all r ≥ r0 outside a set E ⊂ (0,+∞) of finite logarithmic measure,
∫
E

dt
t < ∞,

where ∂If = ∂|I|f
∂z

α1
1 ...∂z

α2
2

.

Lemma 3.5 ([2, 20]). Let f be a non-constant meromorphic function with finite
order on Cn such that f(0) ̸= 0,∞, and let ϵ > 0. Then for c ∈ Cn,

m
(
r,
f(z + c)

f(z)

)
+m

(
r,

f(z)

f(z + c)

)
= S(r, f)

for all r ≥ r0 outside a set E ⊂ (0,+∞) of finite logarithmic measure,
∫
E

dt
t < ∞.

Lemma 3.6 ([16]). Let fj (̸≡ 0), j = 1, 2, 3 be meromorphic functions on Cm such
that f1 is not constant. If f1 + f2 + f3 = 1, and if

m∑
j=1

{
N2

(
r,

1

fj

)
+ 2N(r, fj)

}
< λT (r, fj) +O(log+ T (r, fj)),

for all r outside possibly a set with finite logarithmic measure, where λ < 1 is a
positive number, then either f2 = 1 or f3 = 1.

Proof of Theorem 1.5. Suppose that (f1, f2) is a pair of transcendental entire func-
tions with finite order satisfying system (1.5). We write (1.5) as follows:

(f1(z) + i(f2(z + c)− f2(z)))(f1(z)− i(f2(z + c)− f2(z))) = 1

(f2(z) + i(f1(z + c)− f1(z)))(f2(z)− i(f1(z + c)− f1(z))) = 1.
(3.1)

Since f1, f2 are transcendental entire functions with finite order, there exist poly-
nomials p1(z), p2(z) in Cn such that

f1(z) + i(f2(z + c)− f2(z)) = ep1(z)

f1(z)− i(f2(z + c)− f2(z)) = e−p1(z)

f2(z) + i(f1(z + c)− f1(z)) = ep2(z)

f2(z)− i(f1(z + c)− f1(z)) = e−p2(z).

(3.2)

In view of (3.2), we obtain

f1(z) =
1

2

(
ep1(z) + e−p1(z)

)
f2(z + c)− f2(z) =

1

2i

(
ep1(z) − e−p1(z)

)
f2(z) =

1

2

(
ep2(z) + e−p2(z)

)
f1(z + c)− f1(z) =

1

2i

(
ep2(z) − e−p2(z)

)
.

(3.3)

After simple calculations, it follows from (3.3) that

−iep2(z)+p1(z+c) − iep2(z)−p1(z+c) + iep2(z)+p1(z) + iep2(z)−p1(z) + e2p2(z) = 1 (3.4)
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and

−iep1(z)+p2(z+c) − iep1(z)−p2(z+c) + iep1(z)+p2(z) + iep1(z)−p2(z) + e2p1(z) = 1. (3.5)

Now, we consider the following two possible cases.

Case 1: Let p2(z) − p1(z) = k, where k is a constant in C. Then it follows from
(3.4) and (3.5) that

−iep1(z)+p1(z+c)+k − iep1(z)−p1(z+c)+k + ie2p1(z)+k + e2p1(z)+2k = 1− iek

−iep1(z)+p1(z+c)+k − iep1(z)−p1(z+c)−k + ie2p1(z)+k + e2p1(z) = 1− ie−k.
(3.6)

First we consider that ek ̸= ±i. Then, we obtain from (3.6) that

−iek

1− iek
ep1(z)+p1(z+c) +

−iek

1− iek
ep1(z)−p1(z+c) +

(i+ ek)ek

1− iek
e2p1(z) = 1

−iek

1− ie−k
ep1(z)+p1(z+c) +

−ie−k

1− ie−k
ep1(z)−p1(z+c) +

1 + iek

1− ie−k
e2p1(z) = 1.

(3.7)

By Lemma 3.1, we obtain from (3.7) that

−iek

1− iek
ep1(z)−p1(z+c) = 1,

−ie−k

1− ie−k
ep1(z)−p1(z+c) = 1.

(3.8)

It follows from (3.7) and (3.8) that

e−p1(z)+p1(z+c) = 1− iek

e−p1(z)+p1(z+c) = 1− ie−k.
(3.9)

It follows from (3.8) and (3.9) that −ie−k = (1− ie−k)(1− iek), which yields that
iek = 0, a contradiction.

Next, suppose that ek = −i. Then from (3.6), we obtain that

e−p1(z)+p1(z+c) + e−(p1(z)+p1(z+c)) = −2.

This implies that

T
(
r, e−(p1(z)+p1(z+c))

)
= T

(
r, e−p1(z)+p1(z+c)

)
+ S

(
r, e−p1(z)+p1(z+c)

)
.

By the second fundamental theorem of Nevanlinna for several complex variables,
we have

T
(
r, e−(p1(z)+p1(z+c))

)
≤ N

(
r, e−(p1(z)+p1(z+c))

)
+N

(
r,

1

e−(p1(z)+p1(z+c))

)
+N

(
r,

1

e−(p1(z)+p1(z+c)) + 2

)
+ S

(
r, e−(p1(z)+p1(z+c))

)
≤ N

(
r,

1

e−p1(z)+p1(z+c)

)
+ S

(
r, e−p1(z)+p1(z+c)

)
≤ S

(
r, e−(p1(z)+p1(z+c))

)
+ S

(
r, e−p1(z)+p1(z+c)

)
,

which implies that p1(z) is a constant, which is a contradiction. Similarly, we can
get a contradiction for the cases ek = i.

Case 2: Let p2(z)−p1(z) be non-constant. We consider the following two possible
subcases:
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Subcase 2.1 Let p2(z) + p1(z) = k, where k ∈ C. Then, from (3.4) and (3.5), we
obtain

iekep1(z+c)−p1(z) + ieke−(p1(z)+p1(z+c)) − (i+ ek)eke−2p1(z) = iek − 1

iekep1(z)−p1(z+c) + ie−kep1(z)+p1(z+c) − (ie−k + 1)e2p1(z) = iek − 1.
(3.10)

Observe that ek ̸= −i. Otherwise, it follows from (3.10) that e2p1(z+c) = −1, which
implies that p1(z) is constant, a contradiction. By Lemma 3.1, we obtain from
(3.10) that

iekep1(z+c)−p1(z) = iek − 1

iekep1(z)−p1(z+c) = iek − 1.
(3.11)

In view of (3.10) and (3.11), we obtain that

ie−p1(z+c)+p1(z) = i+ ek

ie−ke−p1(z)+p1(z+c) = ie−k + 1.
(3.12)

It follows from (3.11) and (3.12) that ek = −i/2 = −2i, which is not possible.

Subcase 2.2 Suppose p2(z) + p1(z) is non-constant.

Subcase 2.2.1 Let p2(z)− p1(z + c) = k1, a constant in C. Then (3.4) reduces to

−iep2(z)+p1(z+c) + iep2(z)+p1(z) + iep2(z)−p1(z) + e2p2(z) = 1 + iek1 . (3.13)

If 1 + iek1 = 0, then it follows from (3.13) that

ep1(z+c)−p1(z) − e−2p1(z) − iep2(z)−p1(z) = 1. (3.14)

By Lemma 3.1, it follows from (3.14) that ep1(z+c)−p1(z) = 1, which implies that
p1(z + c) − p1(z) =constant. Then, we can assume that p1(z) = L(z) + Φ(z) + ξ,
where L(z) =

∑n
j=1 αjzj , Φ(z) is a polynomial defined in (i) in Theorem 1.6. Hence,

p2(z) = L(z)+Φ(z)+L(c)+ξ+k1. But, then p2(z)−p1(z) = L(c)+k1 =constant,
which is a contradiction. Hence, 1 + iek1 ̸= 0.

In view of Lemma 3.1, it follows from (3.13) that −iep2(z)+p1(z+c) = 1 + iek1 .
This implies that p2(z) + p1(z + c) = k2, a constant in C, say. But then p2(z) =
(k1 + k2)/2 =constant, which is a contradiction.

Subcase 2.2.2 Let p2(z) − p1(z + c) be non-constant. Then, by Lemma 3.1, it
follows from (3.4) that

−iep2(z)+p1(z+c) = 1, (3.15)

which yields that p2(z) + p1(z + c) is constant, say k2. In view of (3.4) and (3.15)
that

−iep1(z)−p1(z+c) + ie2p1(z) + ep2(z)+p1(z) = −i. (3.16)

By Lemma 3.1, it follows from (3.16) that −iep1(z)−p1(z+c) = −i, which yields that
p1(z)− p1(z + c) =constant, say k3. But then, p2(z) + p1(z) = k1 + k3 is constant,
which is a contradiction. This completes the proof of the theorem. □

Proof of Theorem 1.6. As we know the entire solutions of the functional equation
f2+g2 = 1 are f = cosα(z) and g = sinα(z), where α(z) is an entire function. If f
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and g are finite order entire functions, then p(z) must be a non-constant polynomial
(see [6, 7, 35]). In view of the above fact, we easily obtain from (1.6) that

a1f1(z) =
1

2

(
eip1(z) + e−ip1(z)

)
a2f2(z + c) + a3f2(z) =

1

2i

(
eip1(z) − e−ip1(z)

)
a1f2(z) =

1

2

(
eip2(z) + e−ip2(z)

)
a2f1(z + c) + a3f1(z) =

1

2i

(
eip2(z) − e−ip2(z)

)
,

(3.17)

where p1(z), p2(z) are two non-constant polynomials in Cn.
After some simple calculations, from (3.17) we obtain

− ia2
a1

ei(p2(z)+p1(z+c)) − ia2
a1

ei(p2(z)−p1(z+c)) − ia3
a1

ei(p2(z)+p1(z))

− ia3
a1

ei(p2(z)−p1(z)) + e2ip2(z) = 1

(3.18)

and

− ia2
a1

ei(p1(z)+p2(z+c)) − ia2
a1

ei(p1(z)−p2(z+c)) − ia3
a1

ei(p1(z)+p2(z))

− ia3
a1

ei(p1(z)−p2(z)) + e2ip1(z) = 1.

(3.19)

Now, we consider the following possible two cases.

Case 1. Let p2(z)− p1(z) = k, a constant in C. It follows from (3.18) and (3.19)
that

− ia2e
i(p1(z)+p1(z+c)) − ia2e

i(p1(z)−p1(z+c)) −
(
ia3 − a1e

ik
)
e2ip1(z)

= a1e
−ik + ia3

(3.20)

and

− ia2e
i(p1(z)+p1(z+c)) − ia2e

−2ikei(p1(z)−p1(z+c)) −
(
ia3 − a1e

−ik
)
e2ip1(z)

=
(
a1 + ia3e

−ik
)
e−ik.

(3.21)

If eik ̸= ia1/a3, −ia3/a1, then by Lemma 3.1, it follows from (3.20) and (3.21) that

−ia2e
i(p1(z)−p1(z+c)) = a1e

−ik + ia3

−ia2e
i(p1(z)−p1(z+c)) = a1e

ik + ia3.
(3.22)

In view of (3.20), (3.21) and (3.22), it follows that

−ia2e
i(−p1(z)+p1(z+c)) = ia3 − a1e

ik

−ia2e
i(−p1(z)+p1(z+c)) = ia3 − a1e

−ik.
(3.23)

In view of (3.23), we conclude that p1(z+ c)− p1(z) is constant, and hence we can
assume that p1(z) = L(z) + Φ(z) + ξ, where L(z) =

∑n
j=1 αjzj with αj , ξ ∈ C,

j = 1, 2, . . . n, and Φ(z) is a polynomial defined in (i) in Theorem 1.6.
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Therefore, from (3.22) and (3.23), we obtain that

−ia2e
−iL(c) = a1e

−ik + ia3,

−ia2e
−iL(c) = a1e

ik + ia3,

−ia2e
iL(c) = ia3 − a1e

ik,

−ia2e
iL(c) = ia3 − a1e

−ik.

(3.24)

It follows from (3.24) that

e2ik = 1, a22 = a21 + a23, e2iL(c) = −a1 − ia3e
−ik

a1 + ia3eik
.

It follows from (3.17) that the solution of the system (1.5) is

(f1(z), f2(z)) =
( 1

a1
cos(L(z) + Φ(z) + ξ),

1

a1
cos(L(z) + Φ(z) + ξ + k)

)
.

Case 2. Let p2(z)− p1(z) be non-constant. We discuss the following two possible
subcases:

Subcase 2.1 Let p2(z) + p1(z) = k, a constant, k ∈ C. Therefore, from (3.18) and
(3.19), we obtain

− ia2e
i(−p1(z)+p1(z+c)) − ia2e

−i(p1(z)+p1(z+c)) −
(
ia3 − a1e

ik
)
e−2ip1(z)

= a1e
−ik + ia3

(3.25)

and
− ia2e

i(p1(z)−p1(z+c)) − ia2e
−2ikei(p1(z)+p1(z+c))

−
(
ia3e

−ik − a1
)
e−ike2ip1(z) = a1e

−ik + ia3.
(3.26)

If a1e
−ik + ia3 = 0, then it follows from (3.25) that

ei(p1(z)+p1(z+c)) + ei(p1(z)−p1(z+c)) = w, (3.27)

where w = a1e
ik−ia3

ia2
. Observe from (3.27) that

N
(
r,

1

ei(p1(z)+p1(z+c)) − w

)
= N

(
r,

1

ei(p1(z)−p1(z+c))

)
= S

(
r, ei(p1(z)−p1(z+c))

)
.

By the second fundamental theorem of Nevanlinna for several complex variables,
we have

T
(
r, ei(p1(z)+p1(z+c))

)
≤ N

(
r, ei(p1(z)+p1(z+c))

)
+N

(
r,

1

ei(p1(z)+p1(z+c))

)
+N

(
r,

1

ei(p1(z)+p1(z+c)) − w

)
+ S

(
r, ei(p1(z)+p1(z+c))

)
≤ S

(
r, ei(p1(z)+p1(z+c))

)
+ S

(
r, ei(p1(z)−p1(z+c))

)
.

This implies that p1 is a constant, which is a contradiction. Therefore, a1e
−ik +

ia3 ̸= 0. By Lemma 3.1, we obtain from (3.25) and (3.26) that

−ia2e
i(−p1(z)+p1(z+c)) = a1e

−ik + ia3,

−ia2e
i(p1(z)−p1(z+c)) = a1e

−ik + ia3.
(3.28)
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In view of (3.25), (3.26) and (3.29), we have

−ia2e
i(p1(z)−p1(z+c)) = ia3 − a1e

ik,

−ia2e
i(−p1(z)+p1(z+c)) = ia3 − a1e

ik.
(3.29)

In view of (3.28), we conclude that p1(z + c) − p1(z) is constant, and hence we
can assume that p1(z) = L(z) + Φ(z) + ξ, where L(z),Φ(z) are defined in Case 1.
Therefore, p2(z) = −(L(z) + Φ(z) + ξ) + k It follows from (3.28) and (3.29) that

−ia2e
iL(c) = a1e

−ik + ia3,

−ia2e
−iL(c) = a1e

−ik + ia3,

−ia2e
−iL(c) = ia3 − a1e

ik,

−ia2e
iL(c) = ia3 − a1e

ik.

(3.30)

In view of (3.30), it follows that

e2iL(c) = 1, e2ik = 1, a22 = (a1 ± a3)
2.

In view of (3.17), the solution of the system (1.5) is

(f1, f2) =
( 1

a1
cos[L(z) + Φ(z) + ξ],

1

a1
cos(−[L(z) + Φ(z) + ξ] + k)

)
.

Subcase 2.2 Let p2(z) + p1(z) be non-constant. Now, if p2(z)− p1(z + c) is non-
constant, then by Lemma 3.1, we obtain from (3.18) that a2e

i(p2(z)+p1(z+c)) = ia1,
which yields that p2(z) + p1(z + c) is constant, say k ∈ C. It follows from (3.18)
that

ei(p1(z)−p2(z)) + e−i(p1(z)+p2(z)) =
a1 − ia2e

−ik

ia3
. (3.31)

Clearly, a1 − ia2e
−ik ̸= 0. Otherwise, it follows from (3.31) that p1(z) is constant,

which is a contradiction. In view of (3.31), we observe that

N
(
r,

1

e−i(p1(z)+p2(z)) − a1−ia2e−ik

ia3

)
= S

(
r, e−i(p1(z)+p2(z))

)
.

By the second fundamental theorem of Nevanlinna for several complex variables,
we have that

[T
(
r, e−i(p1(z)+p2(z))

)
≤ N

(
r, e−i(p1(z)+p2(z))

)
+N

(
r,

1

e−i(p1(z)+p2(z))

)
+N

(
r,

1

e−i(p1(z)+p2(z)) − a1−ia2e−ik

ia3

)
+ S

(
r, e−i(p1(z)+p2(z))

)
≤ S

(
r, e−i(p1(z)+p2(z))

)
+ S

(
r, ei(p1(z)−p2(z))

)
.

This implies that p1(z)+p2(z) is a constant in C, which contradicts our assumption.
Thus, p2(z)− p1(z + c) is a constant in C.

Let p2(z)− p1(z + c) = k, k ∈ C. Then (3.18) reduces to

− ia2e
i(p2(z)+p1(z+c)) − ia3e

i(p2(z)+p1(z)) − ia3e
i(p2(z)−p1(z)) + a1e

2ip2(z)

= a1 + ia2e
ik.

(3.32)
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If a1 + ia2e
ik ̸= 0, then using Lemma 3.1, we obtain from (3.32) that a1 + ia2e

ik =
−ia2e

i(p2(z)+p1(z+c)), which implies that p2(z) + p1(z + c) = k1 ∈ C. But, then
2p2(z) = k + k1, a constant in C, which contradicts to the fact that p2(z) is non-
constant. Thus, a1 + ia2e

ik = 0. Then after simple computation, equation (3.32)
reduces to equation (3.31). Then, by similar argument, we can get a contradiction.

□

Proof of Theorem 1.11. Assume that (f1, f2) is a pair of transcendental entire solu-
tion of (1.7) with each fj of finite order for j = 1, 2. Then, by an argument similar
to the one in the proof of Theorem 1.6, we obtain

a1f1(z + c) + a2f1(z) =
1

2

(
ep1(z) + e−p1(z)

)
,

a3f2(z + c) + a4f2(z) =
1

2i

(
ep1(z) − e−p1(z)

)
,

a1f2(z + c) + a2f2(z) =
1

2

(
ep2(z) + e−p2(z)

)
,

a3f1(z + c) + a4f1(z) =
1

2i

(
ep2(z) − e−p2(z)

)
,

where p1(z), p2(z) are two non-constant polynomials. Since D := a1a4 − a2a3 ̸= 0,
solving the above system of equations, we obtain

f1(z + c) =
1

2D

(
a4
(
ep1(z) + e−p1(z)

)
+ ia2

(
ep2(z) − e−p2(z)

))
, (3.33)

f1(z) =
1

−2D

(
a3
(
ep1(z) + e−p1(z)

)
+ ia1

(
ep2(z) − e−p2(z)

))
, (3.34)

f2(z + c) =
1

2D

(
a4
(
ep2(z) + e−p2(z)

)
+ ia2

(
ep1(z) − e−p1(z)

))
, (3.35)

f2(z) =
1

−2D

(
a3
(
ep2(z) + e−p2(z)

)
+ ia1

(
ep1(z) − e−p1(z)

))
. (3.36)

It follows from (3.33) and (3.34) that

a3e
p1(z+c)+p2(z) + a3e

−p1(z+c)+p2(z) + ia1e
p2(z+c)+p2(z)

− ia1e
−p2(z+c)+p2(z) + a4e

p2(z)+p1(z) + a4e
−p1(z)+p2(z) + ia2e

2p2(z) = ia2.
(3.37)

From (3.35) and (3.36), we obtain that

a3e
p2(z+c)+p1(z) + a3e

−p2(z+c)+p1(z) + ia1e
p1(z+c)+p1(z)

− ia1e
−p1(z+c)+p1(z) + a4e

p1(z)+p2(z) + a4e
p1(z)−p2(z) + ia2e

2p1(z) = ia2.
(3.38)

Now, we consider the following two possible cases.

Case 1. Suppose p2(z) − p1(z) = k, where k is a constant in C. Then (3.37) and
(3.38), respectively, yield

ek
(
a3 + ia1e

k
)
ep1(z)+p1(z+c) +

(
a3e

k − ia1
)
ep1(z)−p1(z+c)

+ ek
(
a4 + ia2e

k
)
e2p1(z) =

(
ia2 − a4e

k
) (3.39)

and (
a3e

k + ia1
)
ep1(z)+p1(z+c) +

(
a3e

−k − ia1
)
ep1(z)−p1(z+c)

+
(
a4e

k + ia2
)
e2p1(z) =

(
ia2 − a4e

−k
)
.

(3.40)
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Now, we show that all of a3 + ia1e
k, a3e

k − ia1, a4 + ia2e
k, ia2 − a4e

k, a3e
k + ia1,

a3e
−k − ia1, a4e

k + ia2, and ia2 − a4e
−k are non-zero. Suppose a3 + ia1e

k = 0.
Then, clearly, a4 + ia2e

k ̸= 0. It follows from (3.39) that(
a3e

k − ia1
)
ep1(z)−p1(z+c) + ek

(
a4 + ia2e

k
)
e2p1(z) = ia2 − a4e

k. (3.41)

Since a4 + ia2e
k ̸= 0, it follows from (3.41) that a3e

k − ia1 ̸= 0. Otherwise, p1(z)
would be constant, which is not possible.

Also, it is clear that ia2 − a4e
k is non-zero. Otherwise, then we must have from

(3.41) that

−
(a3ek − ia1
a4 + ia2ek

)
e−(p1(z)+p1(z+c)) = 1,

which implies that p1(z) + p1(z + c), and hence p1(z) is constant, which is a con-
tradiction.

In view of (3.41),

T
(
r, ep1(z)−p1(z+c)

)
= T

(
r, e2p1(z)

)
+ S

(
r, e2p1(z)

)
.

Since p1(z) is a polynomial, it is easy to see that

N
(
r,

1

ep1(z)−p1(z+c)

)
= N

(
r, ep1(z)−p1(z+c)

)
= N

(
r,

1

e2p1(z)

)
= S

(
r, ep1(z)

)
.

Then, in view of (3.41) and using the second fundamental theorem of Nevanlinna
in several complex variables, we obtain

T
(
r, ep1(z)−p1(z+c)

)
≤ N

(
r,

1

ep1(z)−p1(z+c)

)
+N

(
r, ep1(z)−p1(z+c)

)
+N

(
r,

1

ep1(z)−p1(z+c) − α

)
+ S

(
r, ep1(z)−p1(z+c)

)
≤ N

(
r,

1

e2p1(z)

)
+ S

(
r, ep1(z)−p1(z+c)

)
≤ S

(
r, ep1(z)−p1(z+c) + S

(
r, e2p1(z)

))
where α = (ia2 − a4e

k)/(a3e
k − ia1). This implies T

(
r, e2p1(z)

)
= o

(
T
(
r, e2p1(z)

))
,

which is not possible as ep1(z) is transcendental entire. We conclude that a3+a1e
k ̸=

0. Similarly, we can prove that the others are also non-zero.
In view of Lemma 3.1, from (3.39) we obtain that(a3ek − ia1

ia2 − a4ek

)
ep1(z)−p1(z+c) = 1. (3.42)

In view of (3.42) and (3.39), we have

−
(a3 + ia1e

k

a4 + ia2ek

)
e−p1(z)+p1(z+c) = 1. (3.43)

Again, in view of Lemma 3.1, from (3.40) we obtain that(a3e−k − ia1
ia2 − a4e−k

)
ep1(z)−p1(z+c) = 1. (3.44)

Using (3.44) in (3.40), we obtain that

−
(a3ek + ia1
a4ek + ia2

)
e−p1(z)+p1(z+c) = 1. (3.45)
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In view of the fact that D ̸= 0, from (3.42) and (3.44), we obtain e2k = 1. Multi-
plying (3.42) and (3.43), we obtain(

(a22 + a24)− (a21 + a23)
)
ek + i(a2a4 − a1a3)(e

2k − 1) = 0.

As e2k = 1, the above equation yields

a22 + a24 = a21 + a23.

In view of (3.42), we conclude that p1(z)−p1(z+c) is constant. Thus, we can write

p1(z) = L(z) + Φ(z) +A,

where L(z) =
∑n

j=1 αjzj , αj , A ∈ C, j = 1, 2, . . . , n, and Φ(z) is a polynomial

defined in in Theorem 1.6(i). Therefore, from (3.42), (3.43), (3.44). and (3.45), we
obtain

eL(c) =
a3e

k − ia1
ia2 − a4ek

=
a3e

−k − ia1
ia2 − a4e−k

=
−(a4e

k + ia2)

a3 + ia1ek
=

−(a4e
k + ia2)

a3ek + ia1
.

Case 2. Let p2(z)− p1(z) be non-constant. We consider the following subcases:

Subcase 2.1 Suppose p2(z) + p1(z) = k, where k is a constant in C. Then from
(3.37) and (3.38), we obtain(

a3e
k − ia1

)
e−p1(z)+p1(z+c) + ek

(
a3 + ia1e

k
)
e−(p1(z)+p1(z+c))

+ ek
(
a4 + ia2e

k
)
e−2p1(z)

=
(
ia2 − a4e

k
) (3.46)

and (
a3e

k − ia1
)
ep1(z)−p1(z+c) +

(
a3e

−k + ia1
)
ep1(z)+p1(z+c)

+
(
ia2 + a4e

−k
)
e2p1(z)

=
(
ia2 − a4e

k
)
.

(3.47)

In a similar manner as in Case 1, we can prove that a3e
k−ia1, a3+ia1e

k, a4+ia2e
k,

ia2 − a4e
k, a3e

−k + ia1, and ia2 + a4e
−k are non-constant.

As p1(z) is a non-constant polynomial in C2, in view of Lemma 3.1, and equations
(3.46) and (3.47), we obtain that(

a3e
k − ia1

)
e−p1(z)+p1(z+c) = ia2 − a4e

k,

(a3e
k − ia1)e

p1(z)−p1(z+c) = ia2 − a4e
k.

(3.48)

In view of (3.46), (3.47), and (3.48), we obtain that

−
(
a3 + ia1e

k
)
ep1(z)−p1(z+c) = a4 + ia2e

k,

−
(
a3e

−k + ia1
)
ep1(z+c)−p1(z) = ia2 + ia4e

−k.
(3.49)

Since p1(z) is a non-constant polynomial in C2, it follows from (3.48) that p1(z +
c)− p1(z) = k, a constant in C. This implies that p1(z) = L(z) + Φ(z) + ξ, where
L(z) =

∑n
j=1 αjzj , Φ(z) is a polynomial defined in (i) of Theorem 1.6, ξ, αj are in
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C, j = 1, 2, . . . , n. In view of the form of p1(z), we obtain from (3.48) and (3.49)
that (

a3e
k − ia1

)
eL(c) = ia2 − a4e

k,

(a3e
k − ia1)e

−L(c) = ia2 − a4e
k,

−
(
a3 + ia1e

k
)
e−L(c) = a4 + ia2e

k,

−
(
a3e

−k + ia1
)
eL(c) = ia2 + ia4e

−k.

(3.50)

Now, in view of equations of (3.50), we can easily obtain that

e2L(c) = 1, e2k = −1, a21 + a23 = a22 + a24, a1a3 = a2a4.

Thus, in view of (3.34) and (3.36), it follows that

f1(z1, z2) =
−1

2D

[
(a3 − ia1e

−k)eL(z)+Φ(z)+ξ + (a3 + ia1e
k)e−(L(z)+Φ(z)+ξ)

]
and

f2(z1, z2) =
−1

2D

[
(ia2 − a4e

k)e−(L(z)+Φ(z)+ξ) + (ia2 + a4e
−k)eL(z)+Φ(z)+ξ

]
.

Subcase 2.2 Let p2(z) + p1(z) be non-constant.

Subcase 2.2.1 Let p1(z + c) + p2(z) = k ∈ C. Then, clearly −p1(z + c) + p2(z)
is non-constant. Otherwise, we obtain that p2(z) is constant, a contradiction. It
follows from (3.37) that

a3e
−p1(z+c)+p2(z) + ia1e

p2(z+c)+p2(z) − ia1e
p2(z)−p2(z+c) + a4e

p1(z)+p2(z)

+ a4e
p2(z)−p1(z) + ia2e

2p2(z) = ia2 − a3e
k.

(3.51)

Subcase 2.2.1.1 Let ia2 − a3e
k = 0. Then equation (3.51) reduces to

ia1e
p2(z+c)−p2(z) − ia1e

−[p2(z+c)+p2(z)] + a4e
p1(z)−p2(z) + a4e

−[p1(z)+p2(z)]

= −(ia2 + a3e
−k).

(3.52)

Subcase 2.2.1.1.1 Let ia2 + a3e
−k = 0. Then (3.52) becomes

ia1e
p2(z+c)+p1(z) − ia1e

p1(z)−p2(z+c) + a4e
2p1(z) = −a4. (3.53)

In view of Lemma 3.6, it follows from (3.53) that either

ia1e
p2(z+c)+p1(z) = −a4, (3.54)

or
−ia1e

−p2(z+c)+p1(z) = −a4. (3.55)

First, we assume that (3.54) holds. Since p1(z), p2(z) are non-constant polynomials
in C2, it follows from (3.54) that p2(z + c) + p1(z) = k1, a constant in C. As
p1(z + c) + p2(z) = k, it follows that p1(z + 2c) − p1(z) = k − k1. Then, we may
assume that p1(z) = L(z) +Φ(z) + ξ, where L(z),Φ(z) are defined in the Theorem
1.6(i). Hence, p2(z) = −[L(z)+Φ(z)+ξ]+k−L(c). Thus, p1(z)+p2(z) = k−L(c),
a constant in C, which contradicts to our assumption. In a similar manner we can
obtain a contradiction for the case (3.55).

Subcase 2.2.1.1.2 Let ia2 + a3e
−k ̸= 0. Then in view of Lemma 3.1, it follows

from (3.32) that

ia1e
p2(z+c)−p2(z) = −(ia2 + a3e

−k). (3.56)
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Therefore, in view of (3.32) and (3.56), we obtain that

−ia1e
−p2(z+c)+p1(z) + a4e

2p1(z) = −a4. (3.57)

In view of (3.57), we observe that

N
(
r,

1

e2p1(z) + 1

)
= N

(
r,

1

e−p2(z+c)+p1(z)

)
= S

(
r, e−p2(z+c)+p1(z))

)
.

Now, by the second fundamental theorem of Nevanlinna for several complex vari-
ables, we obtain that

T
(
r, e2p1(z)

)
≤ N

(
r, e2p1(z)

)
+N

(
r,

1

e2p1(z)

)
+N

(
r,

1

e2p1(z) + 1

)
+ S

(
r, e2p1(z)

)
≤ S

(
r, e−p2(z+c)+p1(z))

)
+ S

(
r, e2p1(z)

)
.

This implies that p1(z) is constant in C, which is a contradiction.

Subcase 2.2.1.2 Let ia2 − a3e
k ̸= 0. Then, in view of Lemma 3.1, we obtain from

(3.51) that −ia1e
−p2(z+c)+p2(z) = ia2−a3e

k. This implies that −p2(z+c)+p2(z) =
k1, a constant in C. As p1(z + c) + p2(z) = k, it follows that p1(z + c) − p2(z) =
p1(z)− p2(z) = k + k1, which is a contradiction.

Subcase 2.2.2 Let p1(z + c) + p2(z) be non-constant.

Subcase 2.2.2.1 Let −p1(z + c) + p2(z) = k, a constant in C. Then, from (3.37),
we obtain that

a3e
p1(z+c)+p2(z) + ia1e

p2(z+c)+p2(z) − ia1e
p2(z)−p2(z+c) + a4e

p1(z)+p2(z)

+ a4e
p2(z)−p1(z) + ia2e

2p2(z) = ia2 − a3e
k.

Then by an argument similar one used in Subcase 2.2.1.1 and Subcase 2.2.1.2, we
can easily obtain a contradiction.

Subcase 2.2.2.2 Let −p1(z+ c)+p2(z) be non-constant. Then, in view of Lemma
3.1, it follows from (3.37) that

−ia1e
p2(z)−p2(z+c) = ia2. (3.58)

As p2(z) is a non-constant polynomials in C2, it follows from (3.58) that p2(z) −
p2(z + c) is a constant in C. Thus, p2(z + c) + p1(z) and −p2(z + c) + p1(z) both
are non-constant.

In view of Lemma 3.1, it follows from (3.38) that

−ia1e
−p1(z+c)+p1(z) = ia2. (3.59)

Substituting (3.58) in (3.37), we obtain

a3e
p1(z+c)−p2(z) + a3e

−(p1(z+c)+p2(z)) + ia1e
p2(z+c)−p2(z) + a4e

p1(z)−p2(z)

+ a4e
−(p1(z)+p2(z)) = −ia2.

(3.60)

Substituting (3.59) in (3.38), we obtain

a3e
p2(z+c)−p1(z) + a3e

−(p2(z+c)+p1(z)) + ia1e
p1(z+c)−p1(z) + a4e

p2(z)−p1(z)

+ a4e
−(p1(z)+p2(z)) = −ia2.

(3.61)

Again, in view of Lemma 3.1, it follows from (3.60) that

ia1e
p2(z+c)−p2(z) = −ia2. (3.62)
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Substituting (3.62) in (3.60), we obtain

a3e
p1(z+c)+p1(z) + a3e

p1(z)−p1(z+c) + a4e
2p1(z) = −a4. (3.63)

In view of Lemma 3.1, we obtain from (3.61) that

ia1e
p1(z+c)−p1(z) = −ia2. (3.64)

In view of Lemma 3.1, we obtain from (3.63) that

a3e
p1(z)−p1(z+c) = −a4. (3.65)

Substituting (3.65) in (3.63), we obtain that

a3e
p1(z+c)−p1(z) = −a4. (3.66)

In view of (3.59), we conclude that −p1(z+ c)+ p1(z) must be constant in C. This
implies that p1(z) = L(z) + Φ(z) + ξ, where L(z),Φ(z) are defined in Theorem
1.6(i). Therefore, in view of (3.59), (3.64), (3.65) and (3.66), we obtain that

−ia1e
−L(c) = ia2, −ia1e

L(c) = ia2, a3e
−L(c) = −a4, a3e

L(c) = −a4.

From the above fours equations, we can easily obtain that D = 0, which contradicts
to our assumption. □

Proof of Theorem 2.2. Using Lemmas 3.4 and 3.5, the proof of this theorem can be
carried out with arguments similar to those in the proof of [52, Theorem 1.1]. □

Concluding remark and an open question. Observe that if p(z) = L(z) +
Φ(z) + ξ, where L(z) =

∑n
j=1 ajzj and Φ(z) is defined as in the conclusion (i) of

Theorem 1.6, then p(z+c)−p(z) must be a constant in C, c = (c1, c2, . . . , cn) ∈ Cn,
ξ, aj ∈ C, j = 1, 2, . . . , n. But, we are still unable to prove the converse part.
Therefore, we pose the following open problem.

What will be the exact form of the polynomial p(z) : Cn → P1(C) if
it satisfies the relation p(z+c)−p(z) = ξ, where c = (c1, c2, . . . , cn) ∈
Cn and ξ ∈ C?
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