Electronic Journal of Differential Equations, Vol. 2024 (2024), No. 29, pp. 1-20.
ISSN: 1072-6691. URL: https://ejde.math.txstate.edu, https://ejde.math.unt.edu DOI: 10.58997/ejde.2024.29

NORMALIZED GROUND STATE OF A MIXED DISPERSION NONLINEAR SCHRÖDINGER EQUATION WITH COMBINED POWER-TYPE NONLINEARITIES

ZHOUJI MA, XIAOJUN CHANG, ZHAOSHENG FENG

Abstract

We study the existence of normalized ground state solutions to a mixed dispersion fourth-order nonlinear Schrödinger equation with combined power-type nonlinearities. By analyzing the subadditivity of the ground state energy with respect to the prescribed mass, we employ a constrained minimization method to establish the existence of ground state that corresponds to a local minimum of the associated functional. Under certain conditions, by studying the monotonicity of ground state energy as the mass varies, we apply the constrained minimization arguments on the Nehari-Pohozaev manifold to prove the existence of normalized ground state solutions.

1. Introduction and main results

Consider the mixed dispersion nonlinear Schrödinger equation with combined power-type nonlinearities

$$
\begin{equation*}
i \partial_{t} \psi-\epsilon \Delta^{2} \psi+\gamma \Delta \psi+\mu|\psi|^{q-2} \psi+|\psi|^{p-2} \psi=0 \tag{1.1}
\end{equation*}
$$

where $N \geq 1, \mu \geq 0, \epsilon \geq 0, \gamma \in \mathbb{R}, \psi \in \mathbb{R} \times \mathbb{R}^{N} \rightarrow \mathbb{C}$ and $2<q<p \leq 4^{*}$. Note that equation (1.1) becomes the well-known Schrödinger equation when $\epsilon=0$ and $\gamma=1$. This equation has been extensively studied as a partial differential equation, presenting various mathematical challenges from the perspective of mathematical physics 4, 6. Over the past decades, a lot of attention has been paid to normalized solutions of the nonlinear Schrödinger equation with both pure and mixed nonlinearities [1, 7, 10, 11, 12, 13, 17, 18, 19, 22, 23, 26, 34, 35, 38, and the references therein. For the specific case $\mu=0$, when $2<p<2+\frac{4}{N}$, all solutions to 1.1 with $\epsilon=0$ exist globally, and the associated standing waves are orbitally stable. However, for $p \geq 2+\frac{4}{N}$, the solutions to equation 1.1 can exhibit singularity within a finite time. To address regularization and stabilization of these solutions, Karpman-Shagalov [21, 20] proposed the inclusion of a small fourth-order dispersion term $\epsilon\|\Delta u\|_{2}^{2}$ in the model. Through a combination of stability analysis and numerical simulations, they demonstrated the stable outcomes for $2<p<2+\frac{8}{N}$, while noting the instability phenomena for $p \geq 2+\frac{8}{N}$. Consequently, $\bar{p}=2+\frac{8}{N}$

[^0]appears as a new mass critical exponent. Despite the significance of the mixed dispersion fourth-order nonlinear Schrödinger equation in physical contexts, it remains inadequately understood, as addressed in [4, 8, 15, 29, 30, 32 .

In this article, we are concerned with equation 1.1) and its standing waves solutions of the form $\psi(t, x)=e^{i \omega t} u(x)$, where $\omega \in \mathbb{R}$ is a Lagrange multiplier and $u(x)$ satisfies

$$
\begin{equation*}
\epsilon \Delta^{2} u-\gamma \Delta u+\omega u-\mu|u|^{q-2} u-|u|^{p-2} u=0 \quad \text { in } \mathbb{R}^{N} \tag{1.2}
\end{equation*}
$$

When we consider solutions to 1.2 , a possible choice is to consider a fixed value $\omega \in \mathbb{R}$ and search for solutions as the critical points of the action functional

$$
A_{\omega, \mu}(u)=\frac{\epsilon}{2}\|\Delta u\|_{2}^{2}+\frac{\gamma}{2}\|\nabla u\|_{2}^{2}+\frac{\omega}{2}\|u\|_{2}^{2}-\frac{\mu}{q}\|u\|_{q}^{q}-\frac{1}{p}\|u\|_{p}^{p} .
$$

In this case, we focus on the existence of minimal action solutions, namely, solutions minimizing $A_{\omega, \mu}$ among all non-trivial solutions [6, 3].

Alternatively, we can search for solutions to 1.2 with a prescribed L^{2}-norm. Define the energy functional on $H^{2}=H^{2}\left(\mathbb{R}^{N}, \mathbb{C}\right)$ by

$$
E_{p, q}(u):=\frac{\epsilon}{2}\|\Delta u\|_{2}^{2}+\frac{\gamma}{2}\|\nabla u\|_{2}^{2}-\frac{\mu}{q}\|u\|_{q}^{q}-\frac{1}{p}\|u\|_{p}^{p}
$$

It is standard to check that $E_{p, q}$ is of class C^{1} and a critical point of $E_{p, q}$ restricted to the mass constraint

$$
S(c)=\left\{u \in H^{2}:\|u\|_{2}^{2}=c\right\}
$$

gives rise to a solution to 1.2 with $\|u\|_{2}^{2}=c$.
If $\mu=0$, the corresponding functional is denoted by E_{p}. When $\epsilon>0$ and $\gamma>0$, with a pure mass subcritical nonlinearity, i.e., $2<p<\bar{p}$ as considered in 5], the functional E_{p} has been shown to be bounded from below on $S(c)$, and critical points of E can be sought as global minimizers for any $c>0$. Bonheure et al [3] investigated the existence of normalized ground states of 1.2 by exploiting the constrained minimization method and explored the normalized solutions of equation (1.2) with pure mass-critical and mass-supcritical nonlinearity, i.e., $\bar{p} \leq p<4^{*}$.

When $\epsilon=1, \gamma<0$ and $\mu=0$, Luo et al [24] used a profile decomposition technique to study the existence of ground states for 1.2 with $c=1$ and $2<p \leq \bar{p}$. Boussaid et al [9] obtained the existence of normalized ground state solutions for all $c>0, \gamma<0$ and $2<p \leq \bar{p}$ without the restriction on c and γ imposed in [24]. For $\bar{p}<p<4^{*}$, Luo-Yang [25] identified at least two radial normalized solutions: a ground state and an excited state, along with associated asymptotic properties. Recently, Fernández et al [14] utilized the Tomas-Stein inequality to develop a novel approach for establishing non-homogeneous Gagliardo-Nirenberg-type inequalities in \mathbb{R}^{N}. These inequalities play a crucial role in proving optimal results regarding the existence of global minimizers for $2<q \leq \bar{p}$. Additionally, for the case $2<q \leq \bar{p}$, they showed the existence of local minimizers in $H^{2}\left(\mathbb{R}^{N}\right)$ but not $H_{r}^{2}\left(\mathbb{R}^{N}\right)$.

When $\epsilon>0$ and $\gamma=0$, equation (1.1) becomes the biharmonic nonlinear Schrödinger equation, in which the stability of solitons in magnetic materials was investigated 16, 37. Phan 33] presented the existence of normalized ground state solutions of 1.1 for $\epsilon>0$ and $\gamma=0$ with the pure mass-critical nonlinearity. The case involving mass supercritical nonlinearities was discussed in [27, where normalized ground states were shown to exist for $2<q<\bar{p}<p=4^{*}$. The existence of normalized ground state solutions for $\bar{p} \leq q<p \leq 4^{*}$ was shown in [28].

As for the case $\epsilon>0, \gamma>0$ and $\mu>0$, however, as far as we know, very little has been known for the mixed dispersion fourth-order nonlinear Schrödinger equation with combined nonlinearities. This constitutes one of our primary motivations of study in the existence of normalized ground state solutions of 1.1) for $2<q<$ $2+\frac{4}{N}<\bar{p}<p \leq 4^{*}$ and $\bar{p} \leq q<p<4^{*}$, respectively. For simplicity, we set $\epsilon=\gamma=1$.

Definition 1.1. We say that a solution $u_{c} \in S(c)$ of equation 1.2 is a ground state solution to $\sqrt{1.2}$ if it possesses the minimal energy among all solutions in $S(c)$, i.e., if

$$
E_{p, q}\left(u_{c}\right)=\inf \left\{E_{p, q}(u), u \in S(c),\left(\left.E_{p, q}\right|_{S(c)}\right)^{\prime}(u)=0\right\}
$$

We start with the case $2<q<2+\frac{4}{N}<\bar{p}<p \leq 4^{*}$ by setting

$$
\begin{aligned}
& V(c):=\left\{u \in S(c):\|\Delta u\|_{2}^{2}+\mid \nabla u \|_{2}^{2}<\rho_{0}\right\} \\
& \partial V(c)=\left\{u \in S(c):\|\Delta u\|_{2}^{2}+\mid \nabla u \|_{2}^{2}=\rho_{0}\right\}
\end{aligned}
$$

where ρ_{0} is a suitable positive constant. For any given $\mu>0$, we aim to determine a specific value $c_{0}=c_{0}(\mu)>0$ such that for any $c \in\left(0, c_{0}\right)$ it holds

$$
m_{p, q}(c):=\inf _{u \in V(c)} E_{p, q}(u)<0<\inf _{u \in \partial V(c)} E_{p, q}(u)
$$

Theorem 1.2. Let $N \geq 5, \mu>0$ and $2<q<2+\frac{4}{N}<\bar{p}<p \leq 4^{*}$. For any $\mu>0$, there exists $c_{0}=c_{0}(\mu)>0$ such that for any $c \in\left(0, c_{0}\right)$, the constraint functional $\left.E_{p, q}\right|_{S(c)}$ admits a ground state, which corresponds to a local minimizer of $E_{p, q}$ in the set $V(c)$.

As $p>\bar{p}$, it is evident that the constrained functional $\left.E_{p, q}\right|_{S(c)}$ is unbounded from below. However, the presence of the lower order term $|u|^{q-2} u$ with $2<$ $q<2+\frac{4}{N}$ creates a geometry of local minima on $S(c)$ for sufficiently small $c>$ 0 . The challenge in establishing the existence of local minimizers arises from the lack of compactness of the bounded minimizing sequence $\left\{u_{n}\right\} \subset V(c)$ due to the noncompact embedding $H^{2}\left(\mathbb{R}^{N}\right) \hookrightarrow L^{2}\left(\mathbb{R}^{N}\right)$. By employing a minimization approach and incorporating the subadditivity of ground state energy, we overcome this obstacle and demonstrate the existence of local minima. Furthermore, we find that any ground state serves as a local minimum for the associated energy functional.

Theorem 1.3. Let $N \geq 5, \mu>0$ and $\bar{p} \leq q<p<4^{*}$. If $q=\bar{p}$, we assume that $\mu c^{4 / N}<\frac{N+4}{N C_{N, q}^{q}}$. Then there exists a sufficiently small $c^{*}>0$ such that for any $c \in\left(0, c^{*}\right)$, the constrained functional $\left.E_{p, q}\right|_{S(c)}$ possesses a critical point u at a positive level $E_{p, q}(u)>0$ with the following properties: u satisfies 1.2) for some $\omega>0$ and represents a normalized ground state of 1.2 on $S(c)$.

We introduce the Nehari-Pohozaev set of $\left.E_{p, q}\right|_{S(c)}$ as follows

$$
\mathcal{Q}_{p, q}(c)=\left\{u \in S(c): Q_{p, q}(u)=0\right\}
$$

where

$$
\begin{gathered}
Q_{p, q}(u)=\|\Delta u\|_{2}^{2}+\frac{1}{2}\|\nabla u\|_{2}^{2}-\mu \gamma_{q}\|u\|_{q}^{q}-\gamma_{p}\|u\|_{p}^{p} \\
\gamma_{r}:=\frac{N(r-2)}{4 r}=\frac{N}{2}\left(\frac{1}{2}-\frac{1}{r}\right), \quad \forall r \in\left(2,4^{*}\right] .
\end{gathered}
$$

It is easily seen that all critical points of $E_{p, q} \mid S(c)$ lie in $\mathcal{Q}_{p, q}(c)$.
To prove Theorem 1.3 we shall employ a direct minimization method for $E_{p, q}$ on $\mathcal{Q}_{p, q}(c)$. A crucial step is to show the convergence of a minimizing sequence $\left\{u_{n}\right\} \subset \mathcal{Q}_{p, q}(c)$ of $E_{p, q}$ at $m_{p, q}(c)$. The sign of the Lagrange multiplier $\omega \in \mathbb{R}$ plays a pivotal role in the analysis. However, tackling this issue is challenging because of the presence of the term $\|\nabla u\|_{2}$. As demonstrated in Lemma 4.5, we identify a sufficiently small $c^{*}>0$ such that for any $c \in\left(0, c^{*}\right)$, the corresponding ω_{c} remains positive.

Another difficulty comes from weak limits of the minimizing sequence, which may violate the constraint due to the non-compactness of the embedding $H^{2}\left(\mathbb{R}^{N}\right) \hookrightarrow$ $L^{2}\left(\mathbb{R}^{N}\right)$. Overcoming this obstacle, we need to show that the mapping $c \mapsto m_{p, q}(c)$ is strictly decreasing. This, together with the relationship between the energy functional $E_{p, q}$ and the Nehari-Pohozaev functional $Q_{p, q}$, leads to strong convergence of the minimizing sequence in $H^{2}\left(\mathbb{R}^{N}\right)$. Subsequently, by showing that $\mathcal{Q}_{p, q}(c)$ is a natural constraint, we observe that the minimizer of $E_{p, q}$ on $\mathcal{Q}_{p, q}(c)$ constitutes a normalized ground state solution of 1.2 .

The paper is organized as follows. In Section 2, we provide some preliminary concepts and lemmas that will be utilized throughout the paper. We prove Theorem 1.2 in Section 3 and prove Theorem 1.3 in Section 4, respectively.

2. Preliminary Results

Throughout this article, for $1 \leq r<\infty, L^{r}\left(\mathbb{R}^{N}\right)$ denotes the standard Lebesgue space with norm $\|u\|_{r}^{r}:=\int_{\mathbb{R}^{N}}|u|^{r} d x$. Additionally, the positive constants are denote by C, C_{1}, C_{2}, \ldots, with values that may vary from line to line. The open ball in \mathbb{R}^{N} is denoted as $B_{R}(x)$ with center at x and radius R.

In this section, we present some preliminary results which will be used in the next two sections. We start with recalling the well-known Gagliardo-Nirenberg inequality and Sobolev inequality.

Lemma 2.1 (31). If $N \geq 5$ and $2<r<4^{*}$, then the Gagliardo-Nirenberg inequality

$$
\|u\|_{r}^{r} \leq C_{N, r}^{r}\|\Delta u\|_{2}^{r \gamma_{r}}\|u\|_{2}^{r\left(1-\gamma_{r}\right)}
$$

holds for $u \in H^{2}\left(\mathbb{R}^{N}\right)$, where $C_{N, r}$ denotes the sharp constant.
Lemma 2.2 ([36]). When $N \geq 5$, we have

$$
\mathcal{S}\|u\|_{4^{*}}^{2} \leq\|\Delta u\|_{2}^{2}, \quad \forall u \in H^{2}\left(\mathbb{R}^{N}\right)
$$

where $\mathcal{S}>0$ depending only on N denotes an optimal constant.
Note that the following interpolation inequality holds:

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}|\nabla u|^{2} d x \leq\left(\int_{\mathbb{R}^{N}}|\Delta u|^{2} d x\right)^{1 / 2}\left(\int_{\mathbb{R}^{N}}|u|^{2} d x\right)^{1 / 2}, \quad \forall u \in H^{2}\left(\mathbb{R}^{N}\right) \tag{2.1}
\end{equation*}
$$

By similar arguments as those in [39], we can obtain the Lions' type lemma in $H^{2}\left(\mathbb{R}^{N}\right)$.

Lemma 2.3. Assume that $\left\{u_{n}\right\}$ is bounded in $H^{2}\left(\mathbb{R}^{N}\right)$. For any $R>0$, if

$$
\sup _{y \in \mathbb{R}^{N}} \int_{B_{R}(y)}\left|u_{n}\right|^{2} d x \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

then $u_{n} \rightarrow 0$ in $L^{r}\left(\mathbb{R}^{N}\right)$ for $r \in\left(2,4^{*}\right)$.

To understand the geometry of the constrained functional, we consider the function $f(c, \rho)$ defined on $\mathbb{R}^{+} \times \mathbb{R}^{+}$by

$$
f(c, \rho)=\frac{1}{2}-\frac{\mu}{q} C_{N, q}^{q} \rho^{\alpha_{0}} c^{\alpha_{1}}-\frac{C_{N, p}^{p}}{p} \rho^{\alpha_{2}} c^{\alpha_{3}}
$$

and its restriction $g_{c}(\rho)$ is defined on $(0, \infty)$ by $\rho \mapsto g_{c}(\rho):=f(c, \rho)$ for each $c \in(0, \infty)$, where

$$
\begin{array}{ll}
\alpha_{0}=\frac{N(q-2)}{8}-1, & \alpha_{1}=\frac{2 N-q(N-4)}{8} \\
\alpha_{2}=\frac{N(p-2)}{8}-1, & \alpha_{3}=\frac{2 N-p(N-4)}{8}
\end{array}
$$

Note that for any $N \geq 5$ and $2<q<2+\frac{4}{N}<\bar{p}<p \leq 4^{*}$, we have $\alpha_{0} \in$ $\left(-1,-\frac{1}{2}\right), \alpha_{1} \in\left(\frac{N+4}{2 N}, 1\right), \alpha_{2} \in\left(0, \frac{4}{N-4}\right]$, and $\alpha_{3} \in\left[0, \frac{4}{N}\right)$.
Lemma 2.4. For each $c>0$, the function $g_{c}(\rho)$ has a unique global maximum and the maximum value satisfies

$$
\max _{\rho>0} g_{c}(\rho) \begin{cases}>0 & \text { if } c<c_{0} \\ =0 & \text { if } c=c_{0} \\ \max _{\rho>0} g_{c}(\rho)<0 & \text { if } c>c_{0}\end{cases}
$$

where

$$
\begin{equation*}
c_{0}=\left(\frac{1}{2 K}\right)^{N / 4}>0 \tag{2.2}
\end{equation*}
$$

with

$$
K=\frac{\mu}{q} C_{N, q}^{q}\left[-\frac{\alpha_{0}}{\alpha_{2}} \frac{\mu p}{q} \frac{C_{N, q}^{q}}{C_{N, p}^{p}}\right]^{\frac{\alpha_{0}}{\alpha_{2}-\alpha_{0}}}+\frac{C_{N, p}^{p}}{p}\left[-\frac{\alpha_{0}}{\alpha_{2}} \frac{\mu p}{q} \frac{C_{N, q}^{q}}{C_{N, p}^{p}}\right]^{\frac{\alpha_{2}}{\alpha_{2}-\alpha_{0}}}>0
$$

Proof. From the definition of $g_{c}(\rho)$ it follows that

$$
g_{c}^{\prime}(\rho)=-\alpha_{0} \frac{\mu}{q} C_{N, q}^{q} \rho^{\alpha_{0}-1} c^{\alpha_{1}}-\alpha_{2} \frac{1}{p} C_{N, p}^{p} \rho^{\alpha_{2}-1} c^{\alpha_{3}} .
$$

Hence, the equation $g_{c}^{\prime}(\rho)=0$ has a unique solution:

$$
\begin{equation*}
\rho_{c}=\left[-\frac{\alpha_{0}}{\alpha_{2}} \frac{\mu p}{q} \frac{C_{N, q}^{q}}{C_{N, p}^{p}}\right]^{\frac{1}{\alpha_{2}-\alpha_{0}}} c^{\frac{\alpha_{1}-\alpha_{3}}{\alpha_{2}-\alpha_{0}}} . \tag{2.3}
\end{equation*}
$$

Taking into account that $g_{c}(\rho) \rightarrow-\infty$ as $\rho \rightarrow 0$ and $g_{c}(\rho) \rightarrow-\infty$ as $\rho \rightarrow \infty$, we obtain that ρ_{c} is the unique global maximum point of $g_{c}(\rho)$ and the maximum value is

$$
\begin{aligned}
\max _{\rho>0} g_{c}(\rho)= & \frac{1}{2}-\frac{\mu}{q} C_{N, q}^{q}\left[-\frac{\alpha_{0}}{\alpha_{2}} \frac{\mu p}{q} \frac{C_{N, q}^{q}}{C_{N, p}^{p}}\right]^{\frac{\alpha_{0}}{\alpha_{2}-\alpha_{0}}} c^{\frac{\alpha_{0}\left(\alpha_{1}-\alpha_{3}\right)}{\alpha_{2}-\alpha_{0}}} c^{\alpha_{1}} \\
& -\frac{C_{N, p}^{p}}{p}\left[-\frac{\alpha_{0}}{\alpha_{2}} \frac{\mu p}{q} \frac{C_{N, q}^{q}}{C_{N, p}^{p}}\right]^{\frac{\alpha_{2}}{\alpha_{2}-\alpha_{0}}} c^{\frac{\alpha_{2}\left(\alpha_{1}-\alpha_{3}\right)}{\alpha_{2}-\alpha_{0}}} c^{\alpha_{3}} \\
= & \frac{1}{2}-\frac{\mu}{q} C_{N, q}^{q}\left[-\frac{\alpha_{0}}{\alpha_{2}} \frac{\mu p}{q} \frac{C_{N, q}^{q}}{C_{N, p}^{p}}\right]^{\frac{\alpha_{0}}{\alpha_{2}-\alpha_{0}}} c^{\frac{\alpha_{1} \alpha_{2}-\alpha_{0} \alpha_{3}}{\alpha_{2}-\alpha_{0}}} \\
& -\frac{C_{N, p}^{p}}{p}\left[-\frac{\alpha_{0}}{\alpha_{2}} \frac{\mu p}{q} \frac{C_{N, q}^{q}}{C_{N, p}^{p}}\right]^{\frac{\alpha_{2}}{\alpha_{2}-\alpha_{0}}} c^{\frac{\alpha_{1} \alpha_{2}-\alpha_{0} \alpha_{3}}{\alpha_{2}-\alpha_{0}}}
\end{aligned}
$$

$$
=\frac{1}{2}-K c^{N / 4}
$$

By the definition of c_{0}, we obtain $\max _{\rho>0} g_{c_{0}}(\rho)=0$.
Remark 2.5. When $p=4^{*}$, we use $\mathcal{S}^{-4^{*} / 2}$ instead of $C_{N, p}^{p}$, where \mathcal{S} is the optimal constant given in Lemma 2.2 .

Lemma 2.6. Let $\left(c_{1}, \rho_{1}\right) \in \mathbb{R}^{+} \times \mathbb{R}^{+}$be such that $f\left(c_{1}, \rho_{1}\right) \geq 0$. Then for any $c_{2} \in\left(0, c_{1}\right]$ we have

$$
f\left(c_{2}, \rho_{2}\right) \geq 0, \text { if } \rho_{2} \in\left[\frac{c_{2}}{c_{1}} \rho_{1}, \rho_{1}\right] .
$$

Proof. Since $c \rightarrow f(\cdot, \rho)$ is a non-increasing function, we have

$$
f\left(c_{2}, \rho_{1}\right) \geq f\left(c_{1}, \rho_{1}\right) \geq 0
$$

Taking into account $\alpha_{0}+\alpha_{1}=\frac{q-2}{2}$ and $\alpha_{2}+\alpha_{3}=\frac{p-2}{2}$, we obtain

$$
\begin{aligned}
& f\left(c_{2}, \frac{c_{2}}{c_{1}} \rho_{1}\right)-f\left(c_{1}, \rho_{1}\right) \\
& =\frac{\mu}{q} C_{N, q}^{q} \rho_{1}^{\alpha_{1}} c_{1}^{\alpha_{1}}\left(1-\left(\frac{c_{2}}{c_{1}}\right)^{\alpha_{0}+\alpha_{1}}\right)+\frac{1}{p} C_{N, p}^{p} \rho_{1}^{\alpha_{1}} c_{1}^{\alpha_{3}}\left(1-\left(\frac{c_{2}}{c_{1}}\right)^{\alpha_{2}+\alpha_{3}}\right) \\
& =\frac{\mu}{q} C_{N, q}^{q} \rho_{1}^{\alpha_{1}} c_{1}^{\alpha_{1}}\left(1-\left(\frac{c_{2}}{c_{1}}\right)^{\frac{q-2}{2}}\right)+\frac{1}{p} C_{N, p}^{p} \rho_{1}^{\alpha_{1}} c_{1}^{\alpha_{3}}\left(1-\left(\frac{c_{2}}{c_{1}}\right)^{\frac{p-2}{2}}\right)
\end{aligned}
$$

Since $c_{2}<c_{1}, 2<q<2+\frac{4}{N}$ and $\bar{p}<p \leq 4^{*}$, we derive

$$
f\left(c_{2}, \frac{c_{2}}{c_{1}} \rho_{1}\right) \geq f\left(c_{1}, \rho_{1}\right) \geq 0
$$

We claim that if $g_{c_{2}}\left(\frac{c_{2}}{c_{1}} \rho\right) \geq 0$ and $g_{c_{2}}\left(\rho_{1}\right) \geq 0$, then

$$
f\left(c_{2}, \rho\right)=g_{c_{2}}(\rho) \geq 0, \quad \text { for } \rho \in\left[\frac{c_{2}}{c_{1}} \rho, \rho_{1}\right] .
$$

Indeed, if $g_{c_{2}}(\rho)<0$ for some $\rho \in\left[\frac{c_{2}}{c_{1}} \rho, \rho_{1}\right]$, then there exists a local minimum point on $\left(\frac{c_{2}}{c_{1}} \rho, \rho_{1}\right)$. This contradicts the fact in Lemma 2.4 that the function $g_{c_{2}}(\rho)$ has a unique critical point which has to be its unique global maximum.

Lemma 2.7. For $\bar{p}<q<p<4^{*}, a>0, b \geq 0, c \geq 0$ and $d \geq 0$ with $c+d>0$, which are independent of t, we denote

$$
H(a, b, c, d)=\max _{t>0}\left\{a \cdot t^{2}+b \cdot t-c \cdot t^{\frac{N(q-2)}{4}}-d \cdot t^{\frac{N(p-2)}{4}}\right\}
$$

Then the function $(a, b, c, d) \mapsto H(a, b, c, d)$ is continuous.
Proof. By making slight modifications to the proof of [2, Lemma 5.2], we can arrive at the desired result. So, we omit the details here.

3. Case $2<q<2+\frac{4}{N}<\bar{p}<p \leq 4^{*}$

In this section, we show that ground states of equation $\sqrt{1.2}$ exist which correspond to the local minima of the associated functional.
3.1. Properties of mapping $c \mapsto m_{p, q}(c)$. Let $c_{0}>0$ be determined by equation (2.2) and let $\rho_{0}:=\rho_{c_{0}}>0$ be defined by equation 2.3. According to Lemmas 2.4 and 2.6, it follows that $f\left(c_{0}, \rho_{0}\right)=0$, and $f\left(c, \rho_{0}\right)>0$ for all $c \in\left(0, c_{0}\right)$. Set

$$
B_{\rho_{0}}=\left\{u \in H^{2}\left(\mathbb{R}^{N}\right):\|\Delta u\|_{2}^{2}+\|\nabla u\|_{2}^{2}<\rho_{0}\right\} \quad \text { and } \quad V(c):=S(c) \cap B_{\rho_{0}} .
$$

For $c \in\left(0, c_{0}\right)$, we consider the local minimization problem:

$$
m_{p, q}(c)=\inf _{u \in V(c)} E_{p, q}(u)
$$

Lemma 3.1. Let $c \in\left(0, c_{0}\right)$ and $2<q<2+\frac{4}{N}<\bar{p}<p \leq 4^{*}$. Then the following three assertions hold.
(1) $m_{p, q}(c)=\inf _{u \in V(c)} E_{p, q}(u)<0<\inf _{u \in \partial V(c)} E_{p, q}(u)$;
(2) The function $c \mapsto m_{p, q}(c)$ is a continuous mapping.
(3) For all $\alpha \in(0, c)$, we have $m_{p, q}(c) \leq m_{p, q}(\alpha)+m_{p, q}(c-\alpha)$. If $m_{p, q}(\alpha)$ or $m_{p, q}(c-\alpha)$ is attained, then the inequality is strict.
Proof. (1) For any $u \in \partial V(c)$, we have $\|\Delta u\|_{2}^{2}+\|\nabla u\|_{2}^{2}=\rho_{0}$. Applying the Gagliardo-Nirenberg inequality leads to

$$
\begin{align*}
E_{p, q}(u) \geq & \frac{1}{2}\left(\|\Delta u\|_{2}^{2}+\|\nabla u\|_{2}^{2}\right)-\frac{\mu}{q} C_{N, q}^{q}\left(\|\Delta u\|_{2}^{2}+\|\nabla u\|_{2}^{2}\right)^{\alpha_{0}+1}\left(\|u\|_{2}^{2}\right)^{\alpha_{1}} \\
& -\frac{C_{N, p}^{p}}{p}\left(\|\Delta u\|_{2}^{2}+\|\nabla u\|_{2}^{2}\right)^{\alpha_{2}+1}\left(\|u\|_{2}^{2}\right)^{\alpha_{3}} \tag{3.1}\\
= & \left(\|\Delta u\|_{2}^{2}+\|\nabla u\|_{2}^{2}\right) f\left(\|u\|_{2}^{2},\|\Delta u\|_{2}^{2}+\|\nabla u\|_{2}^{2}\right) \\
= & \rho_{0} f\left(c, \rho_{0}\right)>\rho_{0} f\left(c_{0}, \rho_{0}\right)=0 .
\end{align*}
$$

Let $u \in S(c)$ be arbitrary but fixed. For $s \in \mathbb{R}^{+}$, set $u_{s}(x)=s^{N / 2} u(s x)$. Clearly, $u_{s} \in S(c)$ for any $s \in \mathbb{R}^{+}$. We define

$$
\begin{aligned}
\psi_{u}(s) & =E_{p, q}\left(u_{s}\right) \\
& =\frac{s^{4}}{2}\|\Delta u\|_{2}^{2}+\frac{s^{2}}{2}\|\nabla u\|_{2}^{2}-\frac{\mu}{q} s^{N(q-2) / 2}\|u\|_{q}^{q}-\frac{1}{p} s^{N(p-2) / 2}\|u\|_{p}^{p},
\end{aligned}
$$

for all $s>0$.
It is easily seen that $\psi_{u}(s) \rightarrow 0^{-}$as $s \rightarrow 0$. Hence, there exists sufficiently small $s_{0}>0$ such that $\left\|\Delta u_{s_{0}}\right\|_{2}^{2}+\left\|\nabla u_{s_{0}}\right\|_{2}^{2}<\rho_{0}$ and $E_{p, q}\left(u_{s_{0}}\right)=\psi_{u}\left(s_{0}\right)<0$. Consequently, we have $m_{p, q}(c)<0$.
(2) Let $c \in\left(0, c_{0}\right)$ be arbitrary and $\left\{c_{n}\right\} \subset\left(0, c_{0}\right)$ be such that $c_{n} \rightarrow c$. By the definition of $m_{p, q}\left(c_{n}\right)$ with $m_{p, q}\left(c_{n}\right)<0$, for any $\epsilon>0$ small enough, there exists $u_{n} \in V(c)$ such that

$$
\begin{equation*}
E_{p, q}\left(u_{n}\right) \leq m_{p, q}\left(c_{n}\right)+\epsilon \quad \text { and } \quad E_{p, q}\left(u_{n}\right)<0 . \tag{3.2}
\end{equation*}
$$

Let $z_{n}=\sqrt{\frac{c}{c_{n}}} u_{n}$. Clearly, $z_{n} \in S(c)$. On the one hand, if $c_{n} \geq c$, then

$$
\left\|\Delta z_{n}\right\|_{2}^{2}+\left\|\nabla z_{n}\right\|_{2}^{2}=\frac{c}{c_{n}}\left(\left\|\Delta u_{n}\right\|_{2}^{2}+\left\|\nabla u_{n}\right\|_{2}^{2}\right)<\rho_{0}
$$

On the other hand, if $c_{n}<c$, by Lemma 2.6 and $f\left(c_{n}, \rho_{0}\right) \geq f\left(c_{0}, \rho_{0}\right)=0$, we have $f\left(c_{n}, \rho\right) \geq 0$ for any $\rho \in\left[\frac{c_{n}}{c} \rho_{0}, \rho_{0}\right]$. However, from (3.1) and (3.2) it follows that $f\left(\left\|u_{n}\right\|_{2}^{2},\left\|\Delta u_{n}\right\|_{2}^{2}+\left\|\nabla u_{n}\right\|_{2}^{2}\right)<0$. Hence, $\left\|\Delta u_{n}\right\|_{2}^{2}+\left\|\nabla u_{n}\right\|_{2}^{2}<\frac{c_{n}}{c} \rho_{0}$ and $\left\|\Delta z_{n}\right\|_{2}^{2}+\left\|\nabla z_{n}\right\|_{2}^{2}<\frac{c}{c_{n}} \cdot \frac{c_{n}}{c} \rho_{0}=\rho_{0}$. Since $z_{n} \in V(c)$, we have

$$
m_{p, q}(c) \leq E_{p, q}\left(z_{n}\right)
$$

$$
\begin{aligned}
= & E_{p, q}\left(u_{n}\right)+\left(E_{p, q}\left(z_{n}\right)-E_{p, q}\left(u_{n}\right)\right) \\
= & E_{p, q}\left(u_{n}\right)+\frac{1}{2}\left(\frac{c}{c_{n}}-1\right)\left\|\Delta u_{n}\right\|_{2}^{2}+\frac{1}{2}\left(\frac{c}{c_{n}}-1\right)\left\|\nabla u_{n}\right\|_{2}^{2} \\
& -\frac{\mu}{q}\left[\left(\frac{c}{c_{n}}\right)^{\frac{q}{2}}-1\right]\left\|u_{n}\right\|_{q}^{q}-\frac{1}{p}\left[\left(\frac{c}{c_{n}}\right)^{p / 2}-1\right]\left\|u_{n}\right\|_{p}^{p} .
\end{aligned}
$$

That is,

$$
\begin{equation*}
m_{p, q}(c) \leq E_{p, q}\left(z_{n}\right)=E_{p, q}\left(u_{n}\right)+o_{n}(1) \quad \text { as } n \rightarrow \infty \tag{3.3}
\end{equation*}
$$

Using (3.2) and (3.3) yields

$$
m_{p, q}(c) \leq m_{p, q}\left(c_{n}\right)+\epsilon+o_{n}(1)
$$

Now, we let $u \in V(c)$ be such that

$$
E_{p, q}(u) \leq m_{p, q}(c)+\epsilon \quad \text { and } \quad E_{p, q}(u)<0
$$

Set $u_{n}:=\sqrt{\frac{c_{n}}{c}} u$. Then $u_{n} \in S\left(c_{n}\right)$, and $c_{n} \rightarrow c$ implies that $\left\|\Delta u_{n}\right\|_{2}^{2}+\left\|\nabla u_{n}\right\|_{2}^{2}<\rho_{0}$ for n large enough. So $u_{n} \in V\left(c_{n}\right)$. Note that $E_{p, q}\left(u_{n}\right) \rightarrow E_{p, q}(u)$. Thus, we obtain

$$
m_{p, q}\left(c_{n}\right) \leq E_{p, q}(u)+\left(E_{p, q}\left(u_{n}\right)-E_{p, q}(u)\right) \leq m_{p, q}(c)+\epsilon+o_{n}(1)
$$

Because of the arbitrariness of $\epsilon>0$, we infer that $m_{p, q}\left(c_{n}\right) \rightarrow m_{p, q}(c)$.
(3) Given $\alpha \in(0, c)$, it suffices to prove that

$$
\forall \theta \in\left(1, \frac{c}{\alpha}\right]: m_{p, q}(\theta \alpha) \leq \theta m_{p, q}(\alpha)
$$

and that, if $m_{p, q}(\alpha)$ is attained, the inequality is strict. Using (i), for any $\epsilon>0$ small enough, there exists $u \in V(\alpha)$ such that

$$
E_{p, q}(u) \leq m_{p, q}(\alpha)+\epsilon \quad \text { and } \quad E_{p, q}(u)<0 .
$$

From Lemma 2.6 and $f\left(\alpha, \rho_{0}\right) \geq f\left(c_{0}, \rho_{0}\right)=0$, it follows that $f(\alpha, \rho) \geq 0$ for any $\rho \in\left[\frac{\alpha}{c} \rho_{0}, \rho_{0}\right]$. Hence, using (3.1) and (3.2) we obtain $f\left(\|u\|_{2}^{2},\|\Delta u\|_{2}^{2}+\|\nabla u\|_{2}^{2}\right)<0$. That is,

$$
\|\Delta u\|_{2}^{2}+\|\nabla u\|_{2}^{2}<\frac{\alpha}{c} \rho_{0}
$$

Set $v=\sqrt{\theta} u$. Then $\|v\|_{2}^{2}=\theta \alpha$ and $\|\Delta v\|_{2}^{2}+\|\nabla v\|_{2}^{2}<\rho_{0}$. Thus $v \in V(\theta \alpha)$. A direct calculation yields

$$
\begin{aligned}
m_{p, q}(\theta \alpha) \leq E_{p, q}(v) & <\frac{1}{2} \theta\|\Delta u\|_{2}^{2}+\frac{1}{2} \theta\|\nabla u\|_{2}^{2}-\frac{\mu}{q} \theta\|v\|_{q}^{q}-\frac{1}{p} \theta\|v\|_{p}^{p} \\
& =\theta E_{p, q}(u) \leq \theta\left(m_{p, q}(\alpha)+\epsilon\right)
\end{aligned}
$$

Because of the arbitrariness of ϵ, we obtain $m_{p, q}(\theta \alpha) \leq \theta m_{p, q}(\alpha)$. If $m_{p, q}(\alpha)$ is attained, we can choose $\epsilon=0$.
3.2. Proof of Theorem 1.2, We define

$$
\mathcal{M}_{c}=\left\{u \in V(c): E_{p, q}(u)=m_{p, q}(c)\right\} .
$$

Lemma 3.2. Let $2<q<2+\frac{4}{N}<\bar{p}<p \leq 4^{*}$. For any $c \in\left(0, c_{0}\right)$ and the sequence $\left\{u_{n}\right\} \subset B_{\rho_{0}}$ such that $\left\|u_{n}\right\|_{2} \rightarrow c$ and $E_{p, q}\left(u_{n}\right) \rightarrow m_{p, q}(c)$, there exists a sequence $\left\{y_{n}\right\} \subset \mathbb{R}^{N}$ such that for some $R>0$ it holds

$$
\begin{equation*}
\int_{B_{R}\left(y_{n}\right)}\left|u_{n}\right|^{2} d x \geq \beta>0 \tag{3.4}
\end{equation*}
$$

Proof. By way of contradiction, we assume that 3.4 does not hold. From $\left\{u_{n}\right\} \subset$ $B_{\rho_{0}}$ and $\left\|u_{n}\right\|_{2} \rightarrow c$ it follows that $\left\{u_{n}\right\}$ is bounded in $H^{2}\left(\mathbb{R}^{N}\right)$. For $2<q<$ $2+\frac{4}{N}<\bar{p}<p<4^{*}$, by Lemma 2.3, we deduce that $\left\|u_{n}\right\|_{q}^{q} \rightarrow 0$ and $\left\|u_{n}\right\|_{p}^{p} \rightarrow 0$, as $n \rightarrow \infty$. At this point, it follows that $E_{p, q}\left(u_{n}\right) \geq o_{n}(1)$. If $p=4^{*}$, in view of $f\left(c_{0}, \rho_{0}\right)=0$, a straightforward computation yields

$$
\begin{aligned}
E_{p, q}\left(u_{n}\right) & =\frac{1}{2}\left\|\Delta u_{n}\right\|_{2}^{2}+\frac{1}{2}\left\|\nabla u_{n}\right\|_{2}^{2}-\frac{1}{4^{*}}\left\|u_{n}\right\|_{4^{*}}^{4^{*}}+o_{n}(1) \\
& \geq \frac{1}{2}\left\|\Delta u_{n}\right\|_{2}^{2}+\frac{1}{2}\left\|\nabla u_{n}\right\|_{2}^{2}-\frac{1}{4^{*}} \frac{1}{\mathcal{S}^{4^{*} / 2}}\left(\left\|\Delta u_{n}\right\|_{2}^{2}+\left\|\nabla u_{n}\right\|_{2}^{2}\right)^{\frac{4^{*}}{2}}+o_{n}(1) \\
& \geq\left(\left\|\Delta_{n}\right\|_{2}^{2}+\left\|\nabla u_{n}\right\|_{2}^{2}\right)\left(\frac{1}{2}-\frac{1}{4^{*}} \frac{1}{\mathcal{S}^{4^{*} / 2}} \rho_{0}^{\alpha_{2}}\right)+o_{n}(1) \\
& =\left(\left\|\Delta_{n}\right\|_{2}^{2}+\left\|\nabla u_{n}\right\|_{2}^{2}\right) \frac{\mu}{q} C_{N, q}^{q} \rho_{0}^{\alpha_{0}} c_{0}^{\alpha_{1}}+o_{n}(1)>0 .
\end{aligned}
$$

Both cases contradict the fact $m_{p, q}(c)<0$. Thus, we arrive at the desired result.
Proposition 3.3. For any $c \in\left(0, c_{0}\right)$, if $\left\{u_{n}\right\} \subset B_{\rho_{0}}$ is such that $\left\|u_{n}\right\|_{2}^{2} \rightarrow c$ and $E_{p, q}\left(u_{n}\right) \rightarrow m_{p, q}(c)$, then, up to translation, $u_{n} \longrightarrow u_{c} \in \mathcal{M}_{c}$ in $H^{2}\left(\mathbb{R}^{N}\right)$. In particular, the set \mathcal{M}_{c} is compact in $H^{2}\left(\mathbb{R}^{N}\right)$, up to translation.

The proof of the above proposition can be obtained by similar arguments as in [27] (see also [18]).
Proposition 3.4. For any $c \in\left(0, c_{0}\right)$, if $m_{p, q}(c)$ is reached, then any ground state is contained in $V(c)$.

Proof. For any $v \in S(c)$ and $s \in(0, \infty)$, we obtain

$$
\psi_{v}^{\prime}(s)=\frac{2}{s} Q\left(v_{s}\right)
$$

which implies that if $w \in S(c)$ is a ground state solution, then there exist $v \in S(c)$ and $s_{0}>0$ such that $w=v_{s_{0}}, E_{p, q}(w)=\psi_{v}\left(s_{0}\right)$ and $\psi_{v}^{\prime}\left(s_{0}\right)=0$. To conclude the proof, it suffices to show that $\psi_{v}^{\prime}(s)$ has at most two zeros. This is equivalent to showing that the function

$$
s \mapsto \frac{\psi_{v}^{\prime}(s)}{s}
$$

has at most two zeros. Note that

$$
\begin{aligned}
\xi(s)= & \frac{\psi_{v}^{\prime}(s)}{s}=2 s^{2}\|\Delta u\|_{2}^{2}+\|\nabla u\|_{2}^{2}-s^{\frac{N(q-2)}{2}-2} \frac{\mu N(q-2)}{2 q}\|u\|_{q}^{q} \\
& -s^{\frac{N(p-2)}{2}-2} \frac{N(p-2)}{2 p}\|u\|_{p}^{p}
\end{aligned}
$$

and

$$
\begin{aligned}
\xi^{\prime}(s)= & s\left[4\|\Delta u\|_{2}^{2}-s^{\frac{N(q-2)}{2}-4} \cdot \frac{\mu N(q-2)}{2 q}\left(\frac{N(q-2)}{2}-2\right)\|u\|_{q}^{q}\right. \\
& \left.-s^{\frac{N(p-2)}{2}-4} \cdot \frac{N(p-2)}{2 p}\left(\frac{N(p-2)}{2}-2\right)\|u\|_{p}^{p}\right] \\
= & s\left[4\|\Delta u\|_{2}^{2}-f(s)\right] .
\end{aligned}
$$

So we need to show that $\xi^{\prime}(s)$ is the unique solution. Since $2<q<2+\frac{4}{N}<$ $\bar{p}<p \leq 4^{*}, N \geq 5$ and $s>0$, it is easy to see that $s \rightarrow f(s)$ is a non-increasing function. Hence, $\xi^{\prime}(s)$ has a unique solution and $\xi(s)$ has at most two zeros.

Now, since $\psi_{v}(s) \rightarrow 0^{-},\left\|\Delta v_{s}\right\|_{2}^{2}+\left\|\nabla v_{s}\right\|_{2}^{2} \rightarrow 0$ as $s \rightarrow 0$ and $\psi_{v}(s)=E_{p, q}\left(v_{s}\right)>$ 0 , when $v_{s} \in \partial V(c), \psi_{v}^{\prime}$ has a first zero $s_{1}>0$ corresponding to a local minima. Also, from $\psi_{v}\left(s_{1}\right)<0, \psi_{v}(s)>0$ when $v_{s} \in \partial V(c)$ and $\psi_{v}(s) \rightarrow-\infty$ as $s \rightarrow \infty, \psi_{v}$ has a second zero $s_{2}>s_{1}$ corresponding to a local maxima. In particular, $v_{s_{1}} \in V(c)$ and $E_{p, q}\left(v_{s_{1}}\right)=\psi_{v}\left(s_{1}\right)<0$. Thus, if $m_{p, q}(c)$ is achieved, it is a ground state level.

Proof of Theorem 1.2. The existence of a minimizer for $E_{p, q}$ on $V(c)$ follows from Proposition 3.3. By Proposition 3.4, this local minimizer is a ground state.

$$
\text { 4. CASE } \bar{p} \leq q<p<4^{*}
$$

In this section, we present the proof of Theorem 1.3
4.1. Monotonicity of ground state energy $m_{p, q}(c)$. We start by showing some properties of $\mathcal{Q}_{p, q}(c)$ and the energy functional $E_{p, q}$ restricted on it. For any $u \in$ $S(c)$ and $s \in(0,+\infty)$, we define

$$
u_{s}(x)=s^{N / 4} u(\sqrt{s} x), \quad \text { for a.e. } x \in \mathbb{R}^{N} .
$$

Clearly, $u_{s} \in S(c)$ for any $s>0$. It follows that

$$
E_{p, q}\left(u_{s}\right)=\frac{s^{2}}{2}\|\Delta u\|_{2}^{2}+\frac{s}{2}\|\nabla u\|_{2}^{2}-\frac{\mu}{q} s^{\frac{N(q-2)}{4}}\|u\|_{q}^{q}-\frac{1}{p} s^{\frac{N(p-2)}{4}}\|u\|_{p}^{p}
$$

and

$$
Q_{p, q}\left(u_{s}\right)=s^{2}\|\Delta u\|_{2}^{2}+\frac{s}{2}\|\nabla u\|_{2}^{2}-\mu \gamma_{q} s^{\frac{N(q-2)}{4}}\|u\|_{q}^{q}-\gamma_{p} s^{\frac{N(p-2)}{4}}\|u\|_{p}^{p}
$$

Then, we have the following properties for $E_{p, q}\left(u_{s}\right)$ and $Q_{p, q}\left(u_{s}\right)$.
Lemma 4.1. . Let $N \geq 5, c>0, \mu>0$ and $\bar{p} \leq q<p<4^{*}$. When $q=\bar{p}$, we assume that $\mu c^{4 / N}<\frac{N+4}{N C_{N, q}^{q}}$. Then for any $u \in S(c)$, there exists a unique $s_{u} \in$ $(0,+\infty)$ such that $u_{s_{u}} \in \mathcal{Q}_{p, q}(c)$ and s_{u} is the unique critical point of $E_{p, q}\left(u_{s}\right)$ such that $E_{p, q}\left(u_{s_{u}}\right)=\max _{s \in(0,+\infty)} E_{p, q}\left(u_{s}\right)$. The function $u \mapsto E_{p, q}\left(u_{s_{u}}\right)$ is concave on $\left[s_{u},+\infty\right)$. In particular, if $Q_{p, q}(u) \leq 0$, then $s_{u} \in(0,1]$. Moreover, the map $u \mapsto s_{u}$ is of class C^{1}.

Since the proof is similar to the one of [28, Lemma 3.4], we omit it here. Under the same assumptions described in Lemma4.1, we can obtain the following results concerning the Nehari-Pohozaev's type set $\mathcal{Q}_{p, q}(c)$ and the constrained functional $E_{p, q}$.

Lemma 4.2. Let $N \geq 5, c>0, \mu>0$ and $\bar{p} \leq q<p<4^{*}$. When $q=\bar{p}$, we assume that $\mu c^{4 / N}<\frac{N+4}{N C_{N, q}^{q}}$. Then we have
(1) $\mathcal{Q}_{p, q}(c) \neq \emptyset$;
(2) $\inf _{u \in \mathcal{Q}_{p, q}(c)}\|\Delta u\|_{2}^{2}+\frac{1}{2}\|\nabla u\|_{2}^{2}>0$ and $\inf _{u \in \mathcal{Q}_{p, q}(c)}\|\Delta u\|_{2}^{2}>0$;
(3) $\inf _{u \in \mathcal{Q}_{p, q}(c)} E_{p, q}(u)>0$;
(4) $E_{p, q}$ is coercive on $\mathcal{Q}_{p, q}(c)$.

Proof. (1) By Lemma 4.1, for any $u \in S(c)$, there always exists $s_{u}>0$ such that $u_{s_{u}} \in \mathcal{Q}_{p, q}(c)$, it follows that $\mathcal{Q}_{p, q}(c) \neq \emptyset$.
(2) For any $u \in \mathcal{Q}_{p, q}(c)$, using the Gagliardo-Nirenberg inequality yields

$$
\|\Delta u\|_{2}^{2}+\frac{1}{2}\|\nabla u\|_{2}^{2}=\mu \gamma_{q}\|u\|_{q}^{q}+\gamma_{p}\|u\|_{p}^{p}
$$

$$
\begin{aligned}
\leq & \mu \gamma_{q} C_{N, q}^{q}(\sqrt{c})^{q\left(1-\gamma_{q}\right)}\left(\|\Delta u\|_{2}+\frac{1}{2}\|\nabla u\|_{2}^{2}\right)^{\frac{q \gamma_{q}}{2}} \\
& +\gamma_{p} C_{N, p}^{p}(\sqrt{c})^{p\left(1-\gamma_{p}\right)}\left(\|\Delta u\|_{2}+\frac{1}{2}\|\nabla u\|_{2}^{2}\right)^{\frac{p \gamma_{p}}{2}}
\end{aligned}
$$

If $\bar{p}<q<p$, then $p \gamma_{p}>q \gamma_{q}>2$. If $\bar{p}=q<p$ and $\mu c^{4 / N}<\frac{N+4}{N C_{N, q}^{q}}$, then $p \gamma_{p}>q \gamma_{q}=2$ and $\frac{\mu N C_{N, q}^{q}}{N+4} c^{4 / N}<1$. In either case, there exists a constant $C>0$ such that $\|\Delta u\|_{2}^{2}+\frac{1}{2}\|\nabla u\|_{2}^{2} \geq C$, which implies $\inf _{u \in \mathcal{Q}_{p, q}(c)}\|\Delta u\|_{2}^{2}+\frac{1}{2}\|\nabla u\|_{2}^{2}>0$. By a similar argument, we can deduce that $\inf _{u \in \mathcal{Q}_{p, q}(c)}\|\Delta u\|_{2}^{2}>0$.
(3) For eachy $u \in \mathcal{Q}_{p, q}(c)$, we have

$$
\begin{equation*}
E_{p, q}(u)=\frac{q \gamma_{q}-2}{2 q \gamma_{q}}\|\Delta u\|_{2}^{2}+\frac{q \gamma_{q}-1}{2 q \gamma_{q}}\|\nabla u\|_{2}^{2}+\frac{p \gamma_{p}-q \gamma_{q}}{p q \gamma_{q}}\|u\|_{p}^{p} \tag{4.1}
\end{equation*}
$$

From (2) it follows that $\inf _{u \in \mathcal{Q}_{p, q}(c)} E_{p, q}(u)>0$.
(4) By 4.1), it is easily seen that (4) holds.

For any fixed $c>0$, Lemma 4.2 indicates that

$$
m_{p, q}(c)=\inf _{u \in \mathcal{Q}_{p, q}(c)} E_{p, q}(u)
$$

is well-defined and strictly positive. We now analyze the behaviors of $m_{p, q}(c)$ when $c>0$ varies.

Lemma 4.3. Let $\bar{p} \leq p<q<4^{*}$. When $q=\bar{p}$, we assume that $\mu c^{4 / N}<\frac{N+4}{N C_{N, q}^{q}}$.
Then the function $c \mapsto m_{p, q}(c)$ is continuous for $c \in(0,+\infty)$.
Proof. We define

$$
\begin{equation*}
\gamma(c)=\inf _{u \in S(c)} \max _{s>0} E_{p, q}\left(u_{s}\right) \tag{4.2}
\end{equation*}
$$

To prove $\gamma(c)=m_{p, q}(c)$, for any $u \in \mathcal{Q}_{p, q}(c)$ we have $E_{p, q}(u)=\max _{s>0} E_{p, q}\left(u_{s}\right)$, which implies that $\gamma(c) \leq m_{p, q}(c)$. On the other hand, for any $u \in S(c)$, by Lemma 4.1 there exists $s_{u}>0$ such that $u_{s_{u}} \in \mathcal{Q}_{p, q}(c)$ and $\max _{s>0} E_{p, q}\left(u_{s}\right)=E_{p, q}\left(u_{s_{u}}\right) \geq$ $m_{p, q}(c)$. Thus, we have $\gamma(c)=m_{p, q}(c)$.

For each fixed $c>0$, taking $\left\{c_{n}\right\} \subset \mathbb{R}^{+}$such that $c_{n} \rightarrow c$, we shall prove $\lim _{n \rightarrow \infty} m_{p, q}\left(c_{n}\right)=m_{p, q}(c)$. For any $\epsilon>0$, by the definition of $m_{p, q}(c)$ there exists $v \in \mathcal{Q}_{p, q}(c)$ such that $E_{p, q}(v) \leq m_{p, q}(c)+\frac{\epsilon}{2}$. Set $v_{n}:=\sqrt{\frac{c_{n}}{c}} v \in S\left(c_{n}\right)$. From the fact $\mu c^{4 / N}<\frac{N+4}{N C_{N, \bar{p}}^{\bar{p}}}, c_{n} \rightarrow c$ and Lemma 2.7 , it follows that

$$
\begin{aligned}
m_{p, q}\left(c_{n}\right) & \leq \max _{s>0} E_{p, q}\left(\left(v_{n}\right)_{s}\right) \\
& =\max _{s>0}\left(\frac{s^{2}}{2}\left\|\Delta v_{n}\right\|_{2}^{2}+\frac{s}{2}\left\|\nabla v_{n}\right\|_{2}^{2}-\frac{\mu}{q} s^{\frac{N(q-2)}{4}}\left\|v_{n}\right\|_{q}^{q}-\frac{1}{p} s^{\frac{N(p-2)}{4}}\left\|v_{n}\right\|_{p}^{p}\right) \\
& \leq \max _{s>0}\left(\frac{s^{2}}{2}\|\Delta v\|_{2}^{2}+\frac{s}{2}\|\nabla v\|_{2}^{2}-\frac{\mu}{q} s^{\frac{N(q-2)}{4}}\|v\|_{q}^{q}-\frac{1}{p} s^{\frac{N(p-2)}{4}}\|v\|_{p}^{p}\right)+\frac{\epsilon}{2} \\
& =\max _{s>0} E_{p, q}\left((v)_{s}\right)+\frac{\epsilon}{2} \\
& =E_{p, q}(v)+\frac{\epsilon}{2} \leq m_{p, q}(c)+\epsilon .
\end{aligned}
$$

That is,

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} m_{p, q}\left(c_{n}\right) \leq m_{p, q}(c) \tag{4.3}
\end{equation*}
$$

Then we take $\left\{u_{n}\right\} \subset \mathcal{Q}_{p, q}\left(c_{n}\right)$ such that

$$
\begin{equation*}
E_{p, q}\left(u_{n}\right) \leq m_{p, q}\left(c_{n}\right)+\frac{\epsilon}{2} . \tag{4.4}
\end{equation*}
$$

In view of $Q_{p, q}\left(u_{n}\right)=0$, for n large enough, from 4.3 and 4.4 it follows that

$$
\begin{aligned}
& \left(\frac{1}{2}-\frac{1}{q \gamma_{q}}\right)\left\|\Delta u_{n}\right\|_{2}^{2}+\frac{1}{2}\left(1-\frac{1}{q \gamma_{q}}\right)\left\|\nabla u_{n}\right\|_{2}^{2}+\left(\frac{\gamma_{p}}{q \gamma_{q}}-\frac{1}{p}\right)\left\|u_{n}\right\|_{p}^{p} \\
& \leq E_{p, q}\left(u_{n}\right) \leq m_{p, q}\left(c_{n}\right)+\frac{\epsilon}{2} \\
& \leq m_{p, q}(c)+\frac{3 \epsilon}{4}
\end{aligned}
$$

If $p \gamma_{p}>q \gamma_{q}>2$, we can derive that $\left\{u_{n}\right\}$ is bounded in $H^{2}\left(\mathbb{R}^{N}\right)$. If $p \gamma_{p}>q \gamma_{q}=2$, recalling Lemma 4.2 (2), we can see the same result.

Without loss of generality, as $n \rightarrow \infty$ we assume that

$$
\left\|\Delta u_{n}\right\|_{2}^{2} \rightarrow C_{1}, \quad\left\|\nabla u_{n}\right\|_{2}^{2} \rightarrow C_{2}, \quad\left\|u_{n}\right\|_{q}^{q} \rightarrow C_{3}, \quad\left\|u_{n}\right\|_{p}^{p} \rightarrow C_{4}
$$

If follows from Lemma 4.2 (2) that $C_{1}>0, C_{2} \geq 0$, and $C_{3} \geq 0, C_{4} \geq 0$ with $C_{3}+C_{4}>0$.

Let $\tilde{u}_{n}:=\sqrt{\frac{c}{c_{n}}} u_{n}$. Clearly, $\tilde{u}_{n} \in S(c)$. From Lemma 2.7 it follows that

$$
\begin{aligned}
m_{p, q}(c) \leq & \max _{s>0} E_{p, q}\left(\left(\tilde{u}_{n}\right)_{s}\right)=\max _{s>0}\left[\frac{s^{2}}{2}\left(\frac{c}{c_{n}}\right)\left\|\Delta u_{n}\right\|_{2}^{2}+\frac{s}{2}\left(\frac{c}{c_{n}}\right)\left\|\nabla u_{n}\right\|_{2}^{2}\right. \\
& \left.-\frac{\mu}{q} s^{\frac{N(q-2)}{4}}\left(\frac{c}{c_{n}}\right)^{\frac{q}{2}}\left\|u_{n}\right\|_{q}^{q}-\frac{1}{p} s^{\frac{N(p-2)}{4}}\left(\frac{c}{c_{n}}\right)^{p / 2}\left\|u_{n}\right\|_{p}^{p}\right] \\
\leq & \max _{s>0}\left(\frac{s^{2}}{2}\left\|\Delta u_{n}\right\|_{2}^{2}+\frac{s}{2}\left\|\nabla u_{n}\right\|_{2}^{2}\right. \\
& \left.-\frac{\mu}{q} s^{\frac{N(q-2)}{4}}\left\|u_{n}\right\|_{q}^{q}-\frac{1}{p} s^{\frac{N(p-2)}{4}}\left\|u_{n}\right\|_{p}^{p}\right)+\frac{3 \epsilon}{4} \\
= & \max _{s>0} E_{p, q}\left(\left(u_{n}\right)_{s}\right)+\frac{3 \epsilon}{4} \\
= & E_{p, q}\left(u_{n}\right)+\frac{3 \epsilon}{4} \leq m_{p, q}\left(c_{n}\right)+\epsilon
\end{aligned}
$$

That is,

$$
m_{p, q}(c) \leq \liminf _{n \rightarrow \infty} m_{p, q}\left(c_{n}\right)
$$

Hence, we arrive at the desired result.
Lemma 4.4. Let $\bar{p} \leq p<q<4^{*}$. When $q=\bar{p}$, we assume that $\mu c^{4 / N}<\frac{N+4}{N C_{N, q}^{u}}$. Then the function $c \mapsto m_{p, q}(c)$ is non-increasing for $c \in(0,+\infty)$.

Proof. For $0<c_{1}<c_{2}<+\infty$, we shall prove that $m_{p, q}\left(c_{2}\right) \leq m_{p, q}\left(c_{1}\right)$. According to the definition of $\gamma(c)$ in 4.2, for any $\epsilon>0$ there exists $u_{1} \in \mathcal{Q}_{p, q}\left(c_{1}\right)$ such that

$$
E_{p, q}\left(u_{1}\right) \leq m_{p, q}\left(c_{1}\right)+\frac{\epsilon}{2} \quad \text { and } \quad \max _{\lambda>0} E_{p, q}\left(\left(u_{1}\right)_{\lambda}\right)=E\left(u_{1}\right)
$$

For $\kappa>0$ and $\lambda \in(0,1)$, we define

$$
w_{\lambda}^{\kappa}:=u_{1}^{\kappa}+\left(v_{0}^{\kappa}\right)_{\lambda} .
$$

We choose $u_{1}^{\kappa} \in H^{2}\left(\mathbb{R}^{N}\right)$ such that $\operatorname{supp} u_{1}^{\kappa} \subset B_{\frac{1}{k}}(0)$ and $\left\|u_{1}^{\kappa}-u_{1}\right\|=o(\kappa)$, while $v_{0}^{\delta}:=\left(c_{2}-\left\|u_{1}^{\kappa}\right\|_{2}^{2}\right)^{1 / 2} \frac{v^{\kappa}}{\left\|v^{\kappa}\right\|_{2}}$, where $v^{\kappa} \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ such that $\operatorname{supp} v^{\kappa} \subset$
$B_{\frac{2}{\kappa}+1}(0) \backslash B_{\frac{2}{\kappa}}(0)$. It is obvious that $\operatorname{dist}\left(\operatorname{supp}\left(v_{0}^{\kappa}\right)_{\lambda}, \operatorname{supp} u_{1}^{\kappa}\right) \geq \frac{1}{\kappa}\left(\frac{2}{\sqrt{\lambda}}-1\right)>0$. Hence, $\left\|w_{\lambda}^{\kappa}\right\|_{2}^{2}=c_{2}$. By a standard argument, as $\lambda, \kappa \rightarrow 0$, we derive

$$
\left\|\Delta w_{\lambda}^{\kappa}\right\|_{2}^{2} \rightarrow\left\|\Delta u_{1}\right\|_{2}^{2}, \quad\left\|\nabla w_{\lambda}^{\kappa}\right\|_{2}^{2} \rightarrow\left\|\nabla u_{1}\right\|_{2}^{2}, \quad\left\|w_{\lambda}^{\kappa}\right\|_{q}^{q} \rightarrow\left\|u_{1}\right\|_{q}^{q}, \quad\left\|w_{\lambda}^{\kappa}\right\|_{p}^{p} \rightarrow\left\|u_{1}\right\|_{p}^{p}
$$

Letting $\left(w_{\lambda}^{\kappa}\right)_{t}=t^{N / 4} w_{\lambda}^{\kappa}(\sqrt{t} x)$, by Lemma 2.7 again, we can deduce that for $\lambda, \kappa>0$ small enough, it holds
$m_{p, q}\left(c_{2}\right) \leq \max _{t>0} E_{p, q}\left(\left(w_{\lambda}^{\kappa}\right)_{t}\right) \leq \max _{t>0} E_{p, q}\left(\left(u_{1}\right)_{t}\right)+\frac{\epsilon}{2}=E_{p, q}\left(u_{1}\right)+\frac{\epsilon}{2} \leq m_{p, q}\left(c_{1}\right)+\epsilon$.

Lemma 4.5. Let $\bar{p} \leq q<p<4^{*}$. Assume that $u_{c} \in S(c)$ solves

$$
\begin{equation*}
\Delta^{2} u-\Delta u+\omega_{c} u=\mu|u|^{q-2} u+|u|^{p-2} u \tag{4.5}
\end{equation*}
$$

Then there exists $c^{*}>0$ such that $\omega_{c}>0$ for any $c \in\left(0, c^{*}\right)$.
Proof. By 4.5 we deduce $Q_{p, q}(u)=0$ and

$$
\left\|\Delta u_{c}\right\|_{2}^{2}+\left\|\nabla u_{c}\right\|_{2}^{2}+\omega_{c}\left\|u_{c}\right\|_{2}^{2}-\mu\left\|u_{c}\right\|_{q}^{q}-\left\|u_{c}\right\|_{p}^{p}=0 .
$$

Then

$$
\begin{equation*}
\omega_{c} \gamma_{q} c=\left(1-\gamma_{q}\right)\left\|\Delta u_{c}\right\|_{2}^{2}+\left(\frac{1}{2}-\gamma_{q}\right)\left\|\nabla u_{c}\right\|_{2}^{2}-\left(\gamma_{p}-\gamma_{q}\right)\left\|u_{c}\right\|_{p}^{p} \tag{4.6}
\end{equation*}
$$

For small $c>0$, using the Gagliardo-Nirenberg inequality leads to

$$
\begin{aligned}
\left\|\Delta u_{c}\right\|_{2}^{2} & =\gamma_{p} C_{N, q}^{q}\left\|\Delta u_{c}\right\|_{2}^{q \gamma_{q}}(\sqrt{c})^{q\left(1-\gamma_{q}\right)}+\gamma_{p} C_{N, p}^{p}\left\|\Delta u_{c}\right\|_{2}^{p \gamma_{p}}(\sqrt{c})^{p\left(1-\gamma_{p}\right)} \\
& \leq \gamma_{p} \max \left\{C_{N, q}^{q}, C_{N, p}^{p}\right\}(\sqrt{c})^{q\left(1-\gamma_{q}\right)}\left(\left\|\Delta u_{c}\right\|_{2}^{q \gamma_{q}}+\left\|\Delta u_{c}\right\|_{2}^{p \gamma_{p}}\right) .
\end{aligned}
$$

Then, for $\bar{p} \leq q<p<4^{*}$, as $c \rightarrow 0$ we obtain

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}\left|\Delta u_{c}\right|^{2} d x \rightarrow \infty \tag{4.7}
\end{equation*}
$$

On the other hand, we from (2.1) and (4.6) derive

$$
\begin{aligned}
\omega_{c} \gamma_{q} c & =\left(1-\gamma_{q}\right)\left\|\Delta u_{c}\right\|_{2}^{2}+\left(\frac{1}{2}-\gamma_{q}\right)\left\|\nabla u_{c}\right\|_{2}^{2}-\left(\gamma_{p}-\gamma_{q}\right)\left\|u_{c}\right\|_{p}^{p} \\
& >\left(1-\gamma_{q}\right)\left\|\Delta u_{c}\right\|_{2}^{2}+\left(\frac{1}{2}-\gamma_{q}\right) \sqrt{c}\left\|\Delta u_{c}\right\|_{2}
\end{aligned}
$$

From 4.7, it follows that $\omega_{c}>0$ if $c>0$ is small enough.
Lemma 4.6. Let $\bar{p} \leq q<p<4^{*}$ and $c \in\left(0, c^{*}\right)$. When $q=\bar{p}$, we assume that $\mu c^{4 / N}<\frac{N+4}{N C_{N, q}^{q}}$. Suppose that $u \in S(c)$ such that $E_{p, q}(u)=m_{p, q}(c)$ and

$$
\Delta^{2} u-\Delta u+\omega u=\mu|u|^{q-2} u+|u|^{p-2} u
$$

Then the function $c \mapsto m_{p, q}(c)$ is strictly decreasing in a right neighborhood of c.
Proof. By Lemma 4.5. we know that $\omega>0$. Set $u_{\lambda, t}(x)=t^{N / 4} \sqrt{\lambda} u(\sqrt{t} x)$ for $\lambda, t>0$. We define
$\mathcal{K}(\lambda, t)=E_{p, q}\left(u_{\lambda, t}\right)=\frac{t^{2}}{2} \lambda\|\Delta u\|_{2}^{2}+\frac{t}{2} \lambda\|\nabla u\|_{2}^{2}-\frac{\mu \cdot t^{\frac{N(q-2)}{4}}}{q} \lambda^{\frac{q}{2}}\|u\|_{q}^{q}-\frac{t^{\frac{N(p-2)}{4}}}{p} \lambda^{p / 2}\|u\|_{p}^{p}$ and

$$
\begin{aligned}
\mathcal{M}(\lambda, t) & =Q_{p, q}\left(u_{\lambda, t}\right) \\
& =t^{2} \lambda\|\Delta u\|_{2}^{2}+\frac{t}{2} \lambda\|\nabla u\|_{2}^{2}-\mu \gamma_{q} t^{\frac{N(q-2)}{4}} \lambda^{\frac{q}{2}}\|u\|_{q}^{q}-\gamma_{p} t^{\frac{N(p-2)}{4}} \lambda^{p / 2}\|u\|_{p}^{p}
\end{aligned}
$$

By a direct calculation, we have

$$
\begin{gathered}
\frac{\partial \mathcal{K}}{\partial \lambda}(1,1)=\frac{1}{2}\|\Delta u\|_{2}^{2}+\frac{1}{2}\|\nabla u\|_{2}^{2}-\frac{\mu}{2}\|u\|_{q}^{q}-\frac{1}{2}\|u\|_{p}^{p}=-\frac{1}{2} \omega c \\
\frac{\partial \mathcal{K}}{\partial t}(1,1)=\|\Delta u\|_{2}^{2}+\frac{1}{2}\|\nabla u\|_{2}^{2}-\mu \gamma_{q}\|u\|_{q}^{q}-\gamma_{p}\|u\|_{p}^{p}=0 \\
\frac{\partial^{2} \mathcal{K}}{\partial t^{2}}(1,1)=\|\Delta u\|_{2}^{2}-\mu \gamma_{q}\left(\frac{N(q-2)}{4}-1\right)\|u\|_{q}^{q}-\gamma_{p}\left(\frac{N(p-2)}{4}-1\right)\|u\|_{p}^{p}<0
\end{gathered}
$$

which yields for δ_{t} small enough and $\delta_{\lambda}>0$,

$$
\begin{equation*}
\mathcal{K}\left(1+\delta_{\lambda}, 1+\delta_{t}\right)<\mathcal{K}(1,1) \quad \text { for } \omega>0 \tag{4.8}
\end{equation*}
$$

In addition, we observe that

$$
\mathcal{M}(1,1)=Q_{p, q}(u)=\|\Delta u\|_{2}^{2}+\frac{1}{2}\|\nabla u\|_{2}^{2}-\mu \gamma_{q}\|u\|_{q}^{q}-\gamma_{p}\|u\|_{p}^{p}=0
$$

We now claim that

$$
\frac{\partial \mathcal{M}}{\partial t}(1,1)=2\|\Delta u\|_{2}^{2}+\frac{1}{2}\|\nabla u\|_{2}^{2}-\mu \gamma_{q} \frac{N(q-2)}{4}\|u\|_{q}^{q}-\gamma_{p} \frac{N(p-2)}{4}\|u\|_{p}^{p} \neq 0
$$

Otherwise, we assume that

$$
\frac{\partial \mathcal{M}}{\partial t}(1,1)=\|\Delta u\|_{2}^{2}+\frac{1}{4}\|\nabla u\|_{2}^{2}-\mu \gamma_{q} \frac{N(q-2)}{8}\|u\|_{q}^{q}-\gamma_{p} \frac{N(p-2)}{8}\|u\|_{p}^{p}=0
$$

Then for any $\bar{p} \leq q<p<4^{*}$, we have that

$$
\frac{1}{4}\|\nabla u\|_{2}^{2}=\mu \gamma_{q}\left(1-\frac{N(q-2)}{8}\right)\|u\|_{q}^{q}+\gamma_{p}\left(1-\frac{N(p-2)}{8}\right)\|u\|_{p}^{p}
$$

which is impossible. According to the implicit function theorem, we deduce that there exists $\epsilon>0$ and a continuous function $g:[1-\epsilon, 1+\epsilon] \mapsto \mathbb{R}$ satisfying $g(1)=1$ such that $\mathcal{M}(\lambda, g(\lambda))=0$ for $\lambda \in[1-\epsilon, 1+\epsilon]$. This together with 4.8 gives

$$
m_{p, q}((1+\epsilon) c) \leq E_{p, q}\left(u_{1+\epsilon, g(1+\epsilon)}\right)<E_{p, q}(u)=m_{p, q}(c) .
$$

We have arrived at the desired result.
4.2. Ground states. In this subsection, before presenting the proof of Theorem 1.3 , we show the minimizer of $E_{p, q}(u)$ constrained on $\mathcal{Q}_{p, q}(c)$. For convenience, we set $f(s)=\mu|s|^{q-2} s+|s|^{p-2} s, F(s)=\frac{\mu}{q}|s|^{q}+\frac{1}{p}|s|^{p}$ and $H(s)=f(s) s-2 F(s)$.

Lemma 4.7. Let $\bar{p} \leq q<p<4^{*}$ and $c \in\left(0, c^{*}\right)$. When $q=\bar{p}$, we assume that $\mu c^{4 / N}<\frac{N+4}{N C_{N, q}^{q}}$. Then there exists $u_{0} \in \mathcal{Q}_{p, q}(c)$ such that $E_{p, q}\left(u_{0}\right)=m_{p, q}(c)$.

Proof. Using the Ekeland variational principle, there exists a minimizing sequence $\left\{u_{n}\right\} \subset \mathcal{Q}_{p, q}(c)$ such that

$$
\begin{equation*}
E_{p, q}\left(u_{n}\right) \rightarrow m_{p, q}(c) \quad \text { as } n \rightarrow+\infty . \tag{4.9}
\end{equation*}
$$

By Lemma $4.2(4)$, it follows that $\left\{u_{n}\right\}$ is bounded in $H^{2}\left(\mathbb{R}^{N}\right)$. We claim that $\left\{u_{n}\right\}$ is non-vanishing. Indeed, if $\left\{u_{n}\right\}$ is vanishing, then it follows from Lemma 2.1 that

$$
\int_{\mathbb{R}^{N}}\left|u_{n}\right|^{r} d x \rightarrow 0, \quad \text { for } r \in\left(2,4^{*}\right)
$$

Since $Q_{p, q}\left(u_{n}\right)=0$ and $\bar{p} \leq q<p<4^{*}$, it follows that

$$
\left|\Delta u_{n}\right|^{2}+\frac{1}{2}\left|\nabla u_{n}\right|^{2}=\mu \gamma_{q}\left\|u_{n}\right\|_{q}^{q}+\gamma_{p}\left\|u_{n}\right\|_{p}^{p} \rightarrow 0, \quad \text { as } n \rightarrow \infty
$$

which contradicts Lemma 4.2(2). Thus, up to a subsequence, we obtain that $u_{n} \rightharpoonup$ $u_{0} \neq 0$ in $H^{2}\left(\mathbb{R}^{N}\right)$. Denote $u_{n, 0}=u_{n}-u_{0}$. It is easily seen that

$$
\begin{gathered}
\left\|u_{n}\right\|_{2}^{2}=\left\|u_{0}\right\|_{2}^{2}+\left\|u_{n, 0}\right\|_{2}^{2}+o_{n}(1), \\
\left\|\nabla u_{n}\right\|_{2}^{2}=\left\|\nabla u_{0}\right\|_{2}^{2}+\left\|\nabla u_{n, 0}\right\|_{2}^{2}+o_{n}(1), \\
\left\|\Delta u_{n}\right\|_{2}^{2}=\left\|\Delta u_{0}\right\|_{2}^{2}+\left\|\Delta u_{n, 0}\right\|_{2}^{2}+o_{n}(1) .
\end{gathered}
$$

By the splitting properties of Brezis-Lieb we have

$$
\begin{gather*}
H\left(u_{n}\right)=H\left(u_{0}\right)+H\left(u_{n, 0}\right)+o_{n}(1) \tag{4.10}\\
E_{p, q}\left(u_{n}\right)=E_{p, q}\left(u_{0}\right)+E_{p, q}\left(u_{n, 0}\right)+o_{n}(1) \tag{4.11}\\
Q_{p, q}\left(u_{n}\right)=Q_{p, q}\left(u_{0}\right)+Q_{p, q}\left(u_{n, 0}\right)+o_{n}(1) \tag{4.12}
\end{gather*}
$$

We claim that $Q_{p, q}\left(u_{0}\right) \leq 0$. Up to a subsequence, we assume that $\delta_{n}:=$ $\int_{\mathbb{R}^{N}}\left|\Delta u_{n, 0}\right|^{2} d x+\frac{1}{2} \int_{\mathbb{R}^{N}}\left|\nabla u_{n, 0}\right|^{2} d x \rightarrow \delta_{0} \geq 0$. Now we need to consider two cases.
Case 1. $\delta_{0}=0$. By Lemma 2.3 for any $r \in\left(2,4^{*}\right)$, we have $\int_{\mathbb{R}^{N}}\left|u_{n, 0}\right|^{r} d x \rightarrow 0$. Then $Q_{p, q}\left(u_{n, 0}\right) \rightarrow 0$ as $n \rightarrow+\infty$. Hence, from 4.12) we derive $Q_{p, q}\left(u_{0}\right)=0$.
Case 2. $\delta_{0}>0$. By contradiction, we suppose that $Q_{p, q}\left(u_{0}\right)>0$. From 4.12 it follows that $Q_{p, q}\left(u_{n, 0}\right) \leq 0$. According to Lemma 4.1. there exists $s_{u_{n, 0}} \in(0,1]$ such that $Q_{p, q}\left(\left(u_{n, 0}\right)_{s_{u_{n}, 0}}\right)=0$. In view of the fact that $\frac{H(s)}{|s|^{2+\frac{8}{N}}}$ is strictly increasing for $s \in(0, \infty)$, we deduce

$$
\begin{aligned}
& E_{p, q}\left(u_{n, 0}\right)-E_{p, q}\left(\left(u_{n, 0}\right)_{s_{u_{n, 0}}}\right) \\
&= \frac{1-s_{u_{n, 0}}^{2}}{2} \int_{\mathbb{R}^{N}}\left|\Delta u_{n, 0}\right|^{2} d x+\frac{1-s_{u_{n, 0}}}{2} \int_{\mathbb{R}^{N}}\left|\nabla u_{n, 0}\right|^{2} d x \\
&-\int_{\mathbb{R}^{N}} F\left(u_{n, 0}\right) d x+s_{u_{n, 0}}^{-N / 2} \int_{\mathbb{R}^{N}} F\left(s_{u_{n, 0}}^{N / 4} u_{n, 0}\right) d x \\
&= \frac{1-s_{u_{n, 0}}^{2}}{2} Q_{p, q}\left(u_{n, 0}\right)+\left(\frac{1-s_{n, 0}}{2}-\frac{1-s_{n, 0}^{2}}{4}\right) \int_{\mathbb{R}^{N}}\left|\nabla u_{n, 0}\right|^{2} d x \\
&+\frac{1-s_{n, 0}^{2}}{2} \frac{N}{4} \int_{\mathbb{R}^{N}}\left(f\left(u_{n, 0}\right) u_{n, 0}-2 F\left(u_{n, 0}\right)\right) d x \\
&-\int_{\mathbb{R}^{N}} F\left(u_{n, 0}\right) d x+s_{u_{n, 0}}^{-N / 2} \int_{\mathbb{R}^{N}} F\left(s_{u_{n, 0}}^{N / 4} u_{n, 0}\right) d x \\
& \geq \frac{1-s_{n, 0}^{2}}{2} \frac{N}{4} \int_{\mathbb{R}^{N}}\left(f\left(u_{n, 0}\right) u_{n, 0}-2 F\left(u_{n, 0}\right)\right) d x \\
&-\int_{\mathbb{R}^{N}} F\left(u_{n, 0}\right) d x+s_{u_{n, 0}}^{-N / 2} \int_{\mathbb{R}^{N}} F\left(s_{u_{n, 0}}^{N / 4} u_{n, 0}\right) d x+\frac{1-s_{u_{n, 0}}^{2}}{2} Q_{p, q}\left(u_{n, 0}\right) \\
&= \int_{\mathbb{R}^{N}} \int_{s_{n, 0}}^{1} \frac{N}{4} s\left|u_{n, 0}\right|^{2+\frac{8}{N}}\left(\frac{H\left(u_{n, 0}\right)}{\left|u_{n, 0}\right|^{2+\frac{8}{N}}}-\frac{H\left(s^{N / 4} u_{n, 0}\right)}{\left|s^{N / 4} u_{n, 0}\right|^{2+\frac{8}{N}}}\right) d s d x \\
&+\frac{1-s_{u_{n, 0}}^{2}}{2} Q_{p, q}\left(u_{n, 0}\right) \\
& \geq \frac{1-s_{u_{n, 0}}^{2}}{2} Q_{p, q}\left(u_{n, 0}\right) .
\end{aligned}
$$

We denote $c_{n, 0}:=\left\|u_{n, 0}\right\|_{2}^{2}$. Clearly, $c_{n, 0} \leq c$. From Lemma 4.4 we derive

$$
\begin{aligned}
m_{p, q}(c)= & \lim _{n \rightarrow+\infty}\left(E_{p, q}\left(u_{n}\right)-\frac{1}{2} Q_{p, q}\left(u_{n}\right)\right) \\
= & \lim _{n \rightarrow+\infty}\left[\left(\frac{N}{8} \int_{\mathbb{R}^{N}} H\left(u_{n}\right) d x-\int_{\mathbb{R}^{N}} F\left(u_{n}\right) d x\right)+\frac{1}{4}\left\|\nabla u_{n}\right\|_{2}^{2}\right] \\
= & \left(\frac{N}{8} \int_{\mathbb{R}^{N}} H\left(u_{0}\right) d x-\int_{\mathbb{R}^{N}} F\left(u_{0}\right) d x+\frac{1}{4}\left\|\nabla u_{0}\right\|_{2}^{2}\right) \\
& +\lim _{n \rightarrow+\infty}\left(\frac{N}{8} \int_{\mathbb{R}^{N}} H\left(u_{n, 0}\right) d x-\int_{\mathbb{R}^{N}} F\left(u_{n, 0}\right) d x+\frac{1}{4}\left\|\nabla u_{n, 0}\right\|_{2}^{2}\right) \\
= & {\left[\frac{N}{8} \int_{\mathbb{R}^{N}}\left(f\left(u_{0}\right) u_{0}-\left(2+\frac{8}{N}\right) F\left(u_{0}\right)\right) d x+\frac{1}{4}\left\|\nabla u_{0}\right\|_{2}^{2}\right] } \\
& +\lim _{n \rightarrow+\infty}\left(E_{p, q}\left(u_{n, 0}\right)-\frac{1}{2} Q_{p, q}\left(u_{n, 0}\right)\right) \\
\geq & \lim _{n \rightarrow+\infty}\left(E_{p, q}\left(u_{n, 0}\right)-\frac{1}{2} Q_{p, q}\left(u_{n, 0}\right)\right) \\
\geq & \lim _{n \rightarrow+\infty}\left(E_{p, q}\left(\left(u_{n, 0}\right)_{s_{u_{n}, 0}}\right)-\frac{s_{u_{n, 0}}^{2}}{2} Q_{p, q}\left(u_{n, 0}\right)\right) \\
\geq & \lim _{n \rightarrow+\infty} E_{p, q}\left(\left(u_{n, 0}\right)_{s_{u_{n, 0}}}\right) \\
\geq & \lim _{n \rightarrow+\infty} m_{p, q}\left(c_{n, 0}\right) \geq m_{p, q}(c) .
\end{aligned}
$$

This indicates that $\lim _{n \rightarrow+\infty} Q_{p, q}\left(u_{n, 0}\right)=0$ and

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} E_{p, q}\left(u_{n, 0}\right)=\lim _{n \rightarrow+\infty} m_{p, q}\left(c_{n, 0}\right)=m_{p, q}(c) \tag{4.13}
\end{equation*}
$$

On the other hand, combining 4.9) and 4.11 yields

$$
m_{p, q}(c)=E_{p, q}\left(u_{n}\right)+o_{n}(1)=E_{p, q}\left(u_{0}\right)+E_{p, q}\left(u_{n, 0}\right)+o_{n}(1)
$$

In view of $E_{p, q}\left(u_{0}\right)>0$, from 4.13) it follows that

$$
m_{p, q}(c)>m_{p, q}(c)-E_{p, q}\left(u_{0}\right)=\lim _{n \rightarrow+\infty} E_{p, q}\left(u_{n, 0}\right)=\lim _{n \rightarrow+\infty} m_{p, q}\left(c_{n, 0}\right)=m_{p, q}(c)
$$

This yields a contradiction.
Using $Q_{p, q}\left(u_{0}\right) \leq 0$ and similar arguments as above, there exists $s_{0} \in(0,1]$ such that $\left(u_{0}\right)_{s_{0}} \in \mathcal{Q}_{p, q}\left(c_{0}\right)$ and

$$
\begin{equation*}
E_{p, q}\left(u_{0}\right)-E_{p, q}\left(\left(u_{0}\right)_{s_{0}}\right) \geq \frac{1-s_{0}^{2}}{2} Q_{p, q}\left(u_{0}\right) \tag{4.14}
\end{equation*}
$$

We denote $c_{0}=\left\|u_{0}\right\|_{2}^{2}$. Clearly, $c_{0} \in(0, c]$. By 4.14) and Lemma 4.4 we have

$$
\begin{aligned}
m_{p, q}(c)= & \lim _{n \rightarrow+\infty}\left(E_{p, q}\left(u_{n}\right)-\frac{1}{2} Q_{p, q}\left(u_{n}\right)\right) \\
= & \lim _{n \rightarrow+\infty}\left[\left(\frac{N}{8} \int_{\mathbb{R}^{N}} H\left(u_{n}\right) d x-\int_{\mathbb{R}^{N}} F\left(u_{n}\right) d x\right)+\frac{1}{4}\left\|\nabla u_{n}\right\|_{2}^{2}\right] \\
= & \lim _{n \rightarrow+\infty}\left[\frac{N}{8} \int_{\mathbb{R}^{N}}\left(f\left(u_{n, 0}\right) u_{n, 0}-\left(2+\frac{8}{N}\right) F\left(u_{n, 0}\right)\right) d x\right. \\
& \left.+\frac{1}{4}\left\|\nabla u_{n, 0}\right\|_{2}^{2}\right]+\left(E_{p, q}\left(u_{0}\right)-\frac{1}{2} Q_{p, q}\left(u_{0}\right)\right) \\
\geq & E_{p, q}\left(\left(u_{0}\right)_{s_{0}}\right)-\frac{s_{0}^{2}}{2} Q_{p, q}\left(u_{0}\right)
\end{aligned}
$$

$$
\geq m_{p, q}\left(c_{0}\right) \geq m_{p, q}(c)
$$

which implies $m_{p, q}\left(c_{0}\right)=m_{p, q}(c)$ and $Q_{p, q}\left(u_{0}\right)=0$, that is, $s_{0}=1$. Thus we have $u_{0} \in \mathcal{Q}_{p, q}\left(c_{0}\right)$ and $E_{p, q}\left(u_{0}\right)=m_{p, q}\left(c_{0}\right)$. Using Lemma 4.6 at c_{0} and $m_{p, q}\left(c_{0}\right)=$ $m_{p, q}(c)$, we obtain $c_{0}=c$ and thus $E_{p, q}\left(u_{0}\right)=m_{p, q}(c)$.

Proof of Theorem 1.3. Consider the functional $\Psi(u): S(c) \rightarrow \mathbb{R}$ defined by

$$
\Psi(u):=E_{p, q}\left(u_{s_{u}}\right)=\frac{1}{2} s_{u}^{2}\|\Delta u\|_{2}^{2}+\frac{s_{u}}{2}\|\nabla u\|_{2}^{2}-\frac{\mu}{q} s^{\frac{N(q-2)}{4}}\|u\|_{q}^{q}-\frac{1}{p} s^{\frac{N(p-2)}{4}}\|u\|_{p}^{p},
$$

where s_{u} is given in Lemma 4.1 and $u_{s_{u}} \in \mathcal{Q}_{p, q}(c)$.
According to Lemma 4.7, we find $u_{0} \in \mathcal{Q}_{p, q}(c)$ such that $E_{p, q}\left(u_{0}\right)=m_{p, q}(c)$. Then there exists $v_{0} \in S(c)$ such that $\left(v_{0}\right)_{s_{v_{0}}}=u_{0}$ and $\Psi\left(v_{0}\right)=E_{p, q}\left(\left(v_{0}\right)_{s_{v_{0}}}\right)=$ $E_{p, q}\left(u_{0}\right)=m_{p, q}(c)$. This implies that v_{0} is a minimizer of $E_{p, q}$ restricted on $S(c)$.

We claim that Ψ is of class C^{1} and

$$
\begin{equation*}
d \Psi(u)[\varphi]=d E_{p, q}\left(u_{s_{u}}\right)\left[\varphi_{s_{u}}\right] \tag{4.15}
\end{equation*}
$$

for any $u \in S(c)$ and $\varphi \in T_{u} S(c)$. In fact, by the definition of Ψ we have

$$
\Psi(u+t \varphi)-\Psi(u)=E_{p, q}\left((u+t \varphi)_{s_{t}}\right)-E_{p, q}\left(u_{s_{0}}\right),
$$

where $|t|$ is small enough, $s_{t}=s_{u+t \varphi}$ and $s_{0}=s_{u}$ is the unique maximum point of the functional $E_{p, q}\left(u_{s}\right)$. By the mean value theorem we obtain

$$
\begin{align*}
& E_{p, q}\left((u+t \varphi)_{s_{t}}\right)-E_{p, q}\left(u_{s_{0}}\right) \\
& \leq E_{p, q}\left((u+t \varphi)_{s_{t}}\right)-E_{p, q}\left(u_{s_{t}}\right) \\
& =\frac{s_{t}^{2}}{2}\left(\int_{\mathbb{R}^{N}} 2 t \Delta u \cdot \Delta \varphi+t^{2}|\Delta \varphi|^{2} d x\right)+\frac{s_{t}}{2}\left(\int_{\mathbb{R}^{N}} 2 t \nabla u \cdot \nabla \varphi+t^{2}|\nabla \varphi|^{2} d x\right) \tag{4.16}\\
& \quad-\mu s_{t}^{\frac{N(q-2)}{4}} \int_{\mathbb{R}^{N}}\left(\int_{0}^{1}\left|u+s \eta_{t} \varphi\right|^{q-2}\left(u+t \eta_{t} \varphi\right) t \varphi d t\right) d x \\
& \quad-s_{t}^{\frac{N(p-2)}{4}} \int_{\mathbb{R}^{N}}\left(\int_{0}^{1}\left|u+t \eta_{t} \varphi\right|^{p-2}\left(u+t \eta_{t} \varphi\right) t \varphi d t\right) d x,
\end{align*}
$$

where $\eta_{t} \in(0,1)$. Similarly, we derive

$$
\begin{align*}
& E_{p, q}\left((u+t \varphi)_{s_{t}}\right)-E_{p, q}\left(u_{s_{0}}\right) \\
& \geq E_{p, q}\left((u+t \varphi)_{s_{0}}\right)-E_{p, q}\left(u_{s_{0}}\right) \\
& =\frac{s_{0}^{2}}{2}\left(\int_{\mathbb{R}^{N}} 2 t \Delta u \cdot \Delta \varphi+t^{2}|\Delta \varphi|^{2} d x\right)+\frac{s_{0}}{2}\left(\int_{\mathbb{R}^{N}} 2 t \nabla u \cdot \nabla \varphi+t^{2}|\nabla \varphi|^{2} d x\right) \tag{4.17}\\
& \quad-\mu s_{0}^{\frac{N(q-2)}{4}} \int_{\mathbb{R}^{N}}\left(\int_{0}^{1}\left|u+t \theta_{t} \varphi\right|^{q-2}\left(u+t \theta_{t} \varphi\right) t \varphi d t\right) d x \\
& \quad-s_{0}^{\frac{N(p-2)}{4}} \int_{\mathbb{R}^{N}}\left(\int_{0}^{1}\left|u+t \theta_{t} \varphi\right|^{p-2}\left(u+t \theta_{t} \varphi\right) t \varphi d t\right) d x,
\end{align*}
$$

where $\theta_{t} \in(0,1)$. Since the map $u \mapsto s_{u}$ is of class C^{1}, from (4.16) and 4.17) it follows that

$$
\begin{aligned}
& \lim _{t \rightarrow 0} \frac{\Psi(u+t \varphi)-\Psi(u)}{t} \\
& =s_{u}^{2} \int_{\mathbb{R}^{N}} \Delta u \cdot \Delta \varphi d x+s_{u} \int_{\mathbb{R}^{N}} \nabla u \cdot \nabla \varphi d x
\end{aligned}
$$

$$
-s_{u}^{\frac{N(q-2)}{4}} \mu \int_{\mathbb{R}^{N}}|u|^{q-2} u \cdot \varphi d x-s_{u}^{\frac{N(p-2)}{4}} \mu \int_{\mathbb{R}^{N}}|u|^{p-2} u \cdot \varphi d x
$$

So the Gâteaux derivative of Ψ is bounded linear in φ and continuous in u. Therefore, Ψ is of class C^{1}. In particular, by changing variables in the integrals, we have

$$
\begin{aligned}
d \Psi(u)[\varphi]= & s_{u}^{2} \int_{\mathbb{R}^{N}} \Delta u \cdot \Delta \varphi d x+s_{u} \int_{\mathbb{R}^{N}} \nabla u \cdot \nabla \varphi d x \\
& -s_{u}^{\frac{N(q-2)}{4}} \mu \int_{\mathbb{R}^{N}}|u|^{q-2} u \cdot \varphi d x-s_{u}^{\frac{N(p-2)}{4}} \int_{\mathbb{R}^{N}}|u|^{p-2} u \cdot \varphi d x \\
= & \int_{\mathbb{R}^{N}} \Delta u_{s_{u}} \cdot \Delta \varphi_{s_{u}} d x+\int_{\mathbb{R}^{N}} \nabla u_{s_{u}} \cdot \nabla \varphi_{s_{u}} d x \\
& -\mu \int_{\mathbb{R}^{N}}\left|u_{s_{u}}\right|^{q-2} u_{s_{u}} \cdot \varphi_{s_{u}} d x-\int_{\mathbb{R}^{N}}\left|u_{s_{u}}\right|^{p-2} u_{s_{u}} \cdot \varphi_{s_{u}} d x . \\
= & d E_{p, q}\left(u_{s_{u}}\right)\left[\varphi_{s_{u}}\right] .
\end{aligned}
$$

So the claim 4.15 is true, from which we deduce

$$
\begin{aligned}
\left\|d E_{p, q}\left(u_{0}\right)\right\|_{\left(T_{u_{0}} S(c)\right)^{*}} & =\sup _{\varphi \in T_{u_{0}} S(c),\|\varphi\| \leq 1}\left|d E_{p, q}\left(u_{0}\right)[\varphi]\right| \\
& =\sup _{\varphi \in T_{u_{0}} S(c),\|\varphi\| \leq 1}\left|d E_{p, q}\left(\left(v_{0}\right)_{s_{v_{0}}}\right)\left[\left(\varphi_{s_{v_{0}}^{-1}}\right)_{s_{v_{0}}}\right]\right| \\
& =\sup _{\varphi \in T_{u_{0}} S(c),\|\varphi\| \leq 1}\left|d \Psi\left(v_{0}\right)\left[\varphi_{s_{v_{0}}^{-1}}\right]\right| \\
& \leq\left\|d \Psi\left(v_{0}\right)\right\|_{\left(T_{v_{0}} S(c)\right)^{*}} \cdot \sup _{\varphi \in T_{u_{0}} S(c),\|\varphi\| \leq 1}\left\|\varphi_{s_{v_{0}}^{-1}}\right\| \\
& \leq \max \left\{s_{v_{0}}^{-1}, 1\right\}\left\|d E_{p, q}\left(v_{0}\right)\right\|_{\left(T_{v_{0}} S(c)\right)^{*}}=0 .
\end{aligned}
$$

It follows that u_{0} is a critical point of $E_{p, q}$ restricted on $S(c)$. By Lemma 4.5 for some $\omega>0, u_{0}$ weakly solves 1.2 . In view of $E_{p, q}\left(u_{0}\right)=m_{p, q}(c)$, we infer that u_{0} is a normalized ground state solution of problem (1.2).

Acknowledgments. This work is supported by National Natural Science Foundation of China No. 11971095.

References

[1] T. Bartsch, N. Soave; A natural constraint approach to normalized solutions of nonlinear Schrödinger equations and systems, J. Funct. Anal., 272 (2017), 4998-5037.
[2] J. Bellazzini, L. Jeanjean, T. Luo; Existence and instability of standing waves with prescribed norm for a class of Schrödinger-Poisson equations, Proc. Lond. Math. Soc. (3), 107 (2013), 303-339.
[3] D. Bonheure, J.-B. Casteras, T. Gou, L. Jeanjean; Normalized solutions to the mixed dispersion nonlinear Schrödinger equation in the mass critical and subcritical regime, Trans. Amer. Math. Soc., 372 (2019), 2167-2212.
[4] D. Bonheure, J.-B. Casteras, T. Gou, L. Jeanjean; Strong instability of ground states to a fourth order Schrödinger equation, Int. Math. Res. Not. IMRN, (2019), 5299-5315.
[5] D. Bonheure, J.-B. Casteras, E. Moreira dos Santos, R. Nascimento; Orbitally stable standing waves of a mixed dispersion nonlinear Schrödinger equation, SIA M J. Math. Anal., 50 (2018), 5027-5071.
[6] D. Bonheure, R. Nascimento; Waveguide solutions for a nonlinear Schrödinger equations with mixed dispersion, in: Contributions to nonlinear elliptic equations and systems, Progr. Nonlinear Differential Equations Appl., 86, Birkhäuser/Springer, Cham, (2015), 31-53.
[7] J. Borthwick, X. Chang, L. Jeanjean, N. Soave; Normalized solutions of L^{2}-supercritical NLS equations on noncompact metric graphs with localized nonlinearities, Nonlinearity, 36, (2023), 3776-3795.
[8] T. Boulenger, E. Lenzman; Blowup for biharmonic NLS, Ann. Sci. Éc. Norm. Supér. (4), 50 (2017), 503-544.
[9] N. Boussaïd, A. J. Fernández, L. Jeanjean; Some remarks on a minimization problem associated to a fourth order nonlinear Scrhödinger equation, arXiv.1910.13177.
[10] T. Cazenave, P.-L. Lions; Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys., 85 (1982), 549-561.
[11] L. Cely; Stability of ground states of nonlinear Schrodinger systems, Electron. J. Differential Equations, 2023 (2023), no. 76, 1-20.
[12] X. Chang, L. Jeanjean, N. Soave; Normalized solutions of L^{2}-supercritical NLS equations on compact metric graphs, Ann. Inst. H. Poincaré C Anal. Non Linéaire, DOI: 10.4171/AIHPC/8.
[13] X. Chang, M. Liu, D. Yan; Normalized ground state solutions of nonlinear Schrödinger equations involving exponential critical growth, J. Geom. Anal., 33 (2023), Paper No. 83, 20pp.
[14] A. Fernández, L. Jeanjean, R. Mandel, M. Maris; Non-homogeneous Gagliardo-Nirenberg inequalities in \mathbb{R}^{N} and application to a biharmonic non-linear Schrödinger equation, J. Differential Equations, 330 (2022), 1-65.
[15] G. Fibich, B. Ilan, G. Papanicolaou; Self-focusing with fourth-order dispersion, SIAM J. Appl. Math., 62 (2002), 1437-1462.
[16] B. A. Ivanov, A. M. Kosevich; Stable three-dimensional small-amplitude soliton in magnetic materials, So. J. Low Temp. Phys., 9 (1983), 439-442.
[17] L. Jeanjean; Existence of solutions with prescribed norm for semilinear elliptic equations, Nonlinear Anal., 28 (1997), 1633-1659.
[18] L. Jeanjean, J. Jendrej, T. T. Le, N. Visciglia; Orbital stability of ground states for a Sobolev critical Schrödinger equation, J. Math. Pures Appl. (9), 164 (2022), 158-179.
[19] L. Jeanjean, T. T. Le; Multiple normalized solutions for a Sobolev critical Schrödinger equation, Math. Ann., 384 (2022), 101-134.
[20] V. I. Karpman; Stabilization of soliton instabilities by higher-order dispersion: Fourth-order nonlinear Schrödinger-type equations, Phys. Rev. E, 53 (1996), 1336-1339.
[21] V. I. Karpman, A. G. Shagalov; Stability of solitons described by nonlinear Schrödinger-type equations with higher-order dispersion, Phys D, 144 (2000), 194-210.
[22] Y. Li, X. Chang, Z. Feng; Normalized solutions for Sobolev critical Schrödinger-BoppPodolsky systems, Electron. J. Differential Equations, 2023 (2023), no. 56, 1-19.
[23] M. Liu, X. Chang; Normalized ground state solutions for nonlinear Schrödinger equations with general Sobolev critical nonlinearities, Discrete Contin. Dyn. Syst. Ser. S., DOI: 10.3934/dcdss. 2024035.
[24] T. Luo, S. Zheng, S. Zhu; The existence and stability of normalized solutions for a bi-harmonic nonlinear Schrödinger equation with mixed dispersion, Acta Math. Sci. Ser. B (Engl. Ed.), 43 (2023), 539-563.
[25] X. Luo, T. Yang; Normalized solutions for a fourth-order Schrödinger equation with a positive second-order dispersion coefficient, Sci. China Math., 66 (2023), 1237-1262.
[26] H. Lv, S. Zheng, Z. Feng, Existence results for nonlinear Schrödinger equations involving the fractional (p,q)-Laplacian and critical nonlinearities, Electron. J. Differential Equations, 2021 (2021), no. 100, 1-24.
[27] Z. Ma, X. Chang; Normalized ground states of nonlinear biharmonic Schrödinger equations with Sobolev critical growth and combined nonlinearities, Appl. Math. Lett., 135 (2023), Paper 108388, 7pp.
[28] Z. Ma, X. Chang, H. Hajaiej, L. Song; Existence and instability of standing waves for the biharmonic nonlinear Schrödinger equation with combined nonlinearities, arXiv.2305.00327.
[29] C. Miao, G. Xu, L. Zhao; Global well-posedness and scattering for the focusing energy-critical nonlinear Schrödinger equations of fourth order in the radial case, J. Differential Equations, 246 (2009), 3715-3749.
[30] F. Natali, A. Pastor; The fourth-order dispersive nonlinear Schrödinger equation: orbital stability of a standing wave, SIAM J. Appl. Dyn. Syst., 14 (2015), 1326-1347.
[31] L. Nirenberg; On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3), $\mathbf{1 3}$ (1959), 115-162.
[32] B. Pausader, S. Xia; Scattering theory for the fourth-order Schrödinger equation in low dimensions, Nonlinearity, 26 (2013), 2175-2191.
[33] T. V. Phan; Blowup for biharmonic Schrödinger equation with critical nonlinearity, Z. Angew. Math. Phys., 69 (2018), Paper No. 31, 11pp.
[34] N. Soave; Normalized ground states for the NLS equation with combined nonlinearities, J. Differential Equations, 269 (2020), 6941-6987.
[35] N. Soave; Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case, J. Funct. Anal., 279 (2020), 108610, 43pp.
[36] C. A. Swanson; The best Sobolev constant, Appl. Anal., 47 (1992), 227-239.
[37] S. K. Turitsyn; Three-dimensional dispersion of nonlinearity and stability of multidimensional solitons, Teoret. Mat. Fiz., 64 (1985), 226-232. (in Russian)
[38] J. Wei, Y. Wu; Normalized solutions for Schrödinger equations with critical Sobolev exponent and mixed nonlinearities, J. Funct. Anal., 283 (2022), Paper No. 109574, 46pp.
[39] M. Willem; Minimax Theorems, Progr. Nonlinear Differential Equations Appl., 24. Birkhäuser Boston, Inc., Boston, MA, 1996.

Zhouji Ma
School of Mathematics and Statistics, Northeast Normal University, Changchun, Jilin 130024, China

Email address: mazj588@nenu.edu.cn
Xiaojun Chang (Corresponding author)
School of Mathematics and Statistics \& Center for Mathematics and Interdisciplinary Sciences, Northeast Normal University, Changchun, Jilin 130024, China

Email address: changxj100@nenu.edu.cn
Zhaosheng Feng
School of Mathematical and Statistical Sciences, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA

Email address: zhaosheng.feng@utrgv.edu

[^0]: 2020 Mathematics Subject Classification. 35Q55, 31B30, 35J30.
 Key words and phrases. Normalized solutions; Schrödinger equation; Lagrange multiplier; ground states; Nehari-Pohozaev manifold.
 (C)2024. This work is licensed under a CC BY 4.0 license.

 Submitted November 18, 2023. Published April 1, 2024.

