NODAL SOLUTIONS FOR NONLINEAR SCHRÖDINGER SYSTEMS

XUE ZHOU, XIANGQING LIU

Abstract. In this article we consider the nonlinear Schrödinger system

$$
\begin{gathered}
-\Delta u_{j}+\lambda_{j} u_{j}=\sum_{i=1}^{k} \beta_{i j} u_{i}^{2} u_{j}, \quad \text { in } \Omega \\
u_{j}(x)=0, \quad \text { on } \partial \Omega, j=1, \ldots, k
\end{gathered}
$$

where $\Omega \subset \mathbb{R}^{N}(N=2,3)$ is a bounded smooth domain, $\lambda_{j}>0, j=1, \ldots, k$, $\beta_{i j}$ are constants satisfying $\beta_{j j}>0, \beta_{i j}=\beta_{j i} \leq 0$ for $1 \leq i<j \leq k$. The existence of sign-changing solutions is proved by the truncation method and the invariant sets of descending flow method.

1. Introduction

We consider the nonlinear Schödinger system

$$
\begin{gather*}
-\Delta u_{j}+\lambda_{j} u_{j}=\sum_{i=1}^{k} \beta_{i j} u_{i}^{2} u_{j}, \quad \text { in } \Omega \tag{1.1}\\
u_{j}(x)=0, \quad \text { on } \partial \Omega, j=1, \ldots, k
\end{gather*}
$$

where $\Omega \subset \mathbb{R}^{N}(N=2,3)$ is a bounded domain with smooth boundary, and $\lambda_{j}>0$, $\beta_{j j}>0,1 \leq j \leq k, \beta_{i j}=\beta_{j i}, 1 \leq i<j \leq k$ are constants.

This type of coupled systems, also known as Gross-Pitaevskii equations, have applications in many physical problems such as nonlinear optics and multispecies Bose-Einstein condensates [8, 18. Physically, $\beta_{j j}, \beta_{i j}(i \neq j)$ are the intraspecies and interspecies scattering lengths respectively. In the physics literature, the signs of the coupling constants $\beta_{i j}$ being positive or negative determine the nature of the system being attractive or repulsive. In the repulsive case ($\beta_{i j}<0, i \neq j$, $i, j=1, \ldots, k)$, the components tend to segregate with each other leading to phase separations. These phenomena have been documented in experiments as well as in numeric simulations; see [4, 17] and references therein. Mathematical work has been done extensively in recent years, refer the reader to [1, 3, 7, 9, 14, 15, 16, 19 , for the existence theory and the studies of qualitative property of solutions to attractive and repulsive systems.

[^0]Over the years there have been systematic studies on nodal solutions for scalar equations by using a combination of minimax methods and the method of invariant sets of gradient flows. We refer the reader to [2, 6, 13]. However, most of the methods in treating scalar equations are not applicable directly to systems. In [14, 15] a construction of invariant sets has been developed to locate multiple nontrivial solutions, but without giving any information about nodal property of the components of solutions. Compared with scalar equations, there are many new challenges for coupled equations in dealing with the existence of multiple solutions, in particular multiple sign-changing solutions. An attempt was made in [10, 11 , for establishing an abstract framework to deal with sign-changing solutions for systems that share some of the above features. The authors in [10, 11] developed the method of multiple invariant sets of decreasing flow. In 10 for the subcritical case infinitely many sign-changing solutions were established. Specially, Chen, Lin and Zou [5] proved the existence of multiple sign-changing (i.e., both two components change sign) and semi-nodal solutions (i.e., one component changes sign and the other one is positive) for coupled Schrödinger equations for the case of $k=2$, $\beta_{12}=\beta_{21}=\beta>0$. Motivated by the works we mentioned above, in this paper we consider the existence of sign-changing solutions for the system (1.1) in the general case, by using the method of invariant sets of decreasing flow (see [10) and the truncation method (see [12]).

We assume that
(A1) $\Omega \subset \mathbb{R}^{N}, N=2,3, k \geq 2, \lambda_{j}>0$ for $j=1, \ldots, k$.
(A2) $\beta_{j j}>0, \beta_{i j}=\beta_{j i} \leq 0$ for $1 \leq i<j \leq k$.
Solutions of (1.1) correspond to critical points of the functional

$$
I(U)=\frac{1}{2} \int_{\Omega} \sum_{j=1}^{k}\left(\left|\nabla u_{j}\right|^{2}+\lambda_{j} u_{j}^{2}\right) d x-\frac{1}{4} \int_{\Omega} \sum_{i, j=1}^{k} \beta_{i j} u_{i}^{2} u_{j}^{2} d x
$$

for $U=\left(u_{1}, \ldots, u_{k}\right) \in X=H_{0}^{1}(\Omega) \times \cdots \times H_{0}^{1}(\Omega)$, the k-fold product of $\left(H_{0}^{1}(\Omega)\right)^{k}$. We shall use the equivalent inner products

$$
(u, v)_{j}=\int_{\Omega}\left(\nabla u \nabla v+\lambda_{j} u v\right) d x, \quad j=1, \ldots, k
$$

and the induced norm $\|\cdot\|_{j}$. The inner product

$$
(U, V)=\sum_{j=1}^{k}(u, v)_{j}, \quad U=\left(u_{1}, \ldots, u_{k}\right), V=\left(v_{1}, \ldots, v_{k}\right)
$$

gives rise to a norm $\|\cdot\|$ on X.
Firstly, we introduce the following perturbation problem. We assume $U=$ $\left(u_{1}, \ldots, u_{k}\right), \varepsilon \in \mathbb{R}$ is a small parameter, $F(U, \varepsilon), \frac{\partial F}{\partial u_{j}}(U, \varepsilon)$ are continuous functions, and $F(U, \varepsilon)=F(-U, \varepsilon)$. For $\varepsilon=0$, we understand

$$
F(U, 0)=0, \quad \frac{\partial F}{\partial u_{j}}(U, 0)=0
$$

Then we consider the perturbed problem

$$
\begin{align*}
-\Delta u_{j}+\lambda_{j} u_{j} & =\sum_{i=1}^{k} \beta_{i j} u_{i}^{2} u_{j}+\frac{\partial F}{\partial u_{j}}(U, \varepsilon), \quad \text { in } \Omega, \tag{1.2}\\
u_{j}(x) & =0, \quad \text { on } \partial \Omega, j=1, \ldots, k
\end{align*}
$$

Here are our main results.
Theorem 1.1. Assume (A1), (A2) hold. Then system 1.1) has infinitely many solutions with each component being sign-changing.
Theorem 1.2. Assume (A1), (A2) hold and let $l \in \mathbb{N}^{+}$. Then there exists $\varepsilon_{l}>0$ such that for $|\varepsilon| \leq \varepsilon_{l}$, the system $\sqrt{1.2}$ has l pairs of sign-changing solutions.

Corollary 1.3. For each $l \in \mathbb{N}^{+}$, there exists $\beta_{l}>0$ such that for $\beta_{i j}=\beta_{j i} \leq \beta_{l}$ with $1 \leq i<j \leq k$, system (1.1) has at least l pairs of sign-changing solutions.

Note that we do not assume any growth conditions for the perturbation function F. To apply critical point theorem [10, 11, we firstly have the following truncated function; the idea comes from [12]. For $M>0$, we define

$$
F_{M}(U, \varepsilon)=F\left(f_{M}(|U|) \frac{U}{|U|}\right)
$$

where f_{M} is a monotonic smooth function, satisfying $f_{M}(t)=t$ if $t \leq M, f_{M}(t)=$ $M+\frac{1}{2}$ if $t \geq M$. Then we consider the truncated system

$$
\begin{align*}
-\Delta u_{j}+\lambda_{j} u_{j} & =\sum_{i=1}^{k} \beta_{i j} u_{i}^{2} u_{j}+\frac{\partial F_{M}}{\partial u_{j}}(U, \varepsilon), \quad \text { in } \Omega, \tag{1.3}\\
u_{j}(x) & =0, \quad \text { on } \partial \Omega, j=1, \ldots, k
\end{align*}
$$

If $U=\left(u_{1}, \ldots, u_{k}\right)$ is a solution of 1.3 , and there exists $M>0$ such that $|U(x)|<$ M for all $x \in \bar{\Omega}$, then U is also a solution of the perturbed problem 1.2 . System (1.3) has a variational structure given by the functional

$$
\begin{align*}
I_{M}(U) & =I(U)-\int_{\Omega} F_{M}(U, \varepsilon) d x \\
& =\frac{1}{2} \int_{\Omega} \sum_{j=1}^{k}\left(\left|\nabla u_{j}\right|^{2}+\lambda_{j} u_{j}^{2}\right) d x-\frac{1}{4} \int_{\Omega} \sum_{i, j=1}^{k} \beta_{i j} u_{i}^{2} u_{j}^{2} d x-\int_{\Omega} F_{M}(U, \varepsilon) d x \tag{1.4}
\end{align*}
$$

This article organized as follows. In Section 2, we study the truncated functional I_{M}, and construct a sequence of critical values for I_{M} by using the method of multiple invariant sets of descending flow. In Section 3, we obtain the sign-changing solutions of the perturbed problem $\sqrt{1.2)}$, then we obtain the main result.

Throughout this article, we use $\|\cdot\|_{L^{p}}$ and $\|\cdot\|$ to denote the norms of L^{p} and X, respectively. c, c_{1}, \ldots denote constants that are independent of the sequences in the arguments but maybe different from line to line, and $c(\cdot)$ will be used to indicate the dependency of the constant c on the relevant quantity.

2. Critical points of the truncated functional I_{M}

To obtain sign-changing critical points of I_{M}, we apply an abstract critical point theorem (Theorem 2.1) to the truncated functional I_{M}.

Theorem 2.1. Let X be a Banach space, f be an even C^{1}-functional on X, A be an odd, continuous mapping from X to X, and $P_{j}, Q_{j}, j=1, \ldots, k$ be open convex subsets of X with $Q_{j}=-P_{j}$. Denote $W=\cup_{j=1}^{k}\left(P_{j} \cup Q_{j}\right), \Sigma=\cap_{j=1}^{k}\left(\partial P_{j} \cap \partial Q_{j}\right)$. Assume
(A3) f satisfies the Palais-Smale condition.
(A4) $c^{*}=\inf _{x \in \Sigma} f(x)>0$.
(A5) For each $b_{0}>0$ and $c_{0}>0$, there exists $b=b\left(b_{0}, c_{0}\right)$, such that if $|f(x)| \leq$ $c_{0},\|D f(x)\| \geq b_{0}$, then

$$
\langle D f(x), x-A x\rangle \geq b\|x-A x\|>0
$$

(A6) $A\left(\partial P_{j}\right) \subset P_{j}, A\left(\partial Q_{j}\right) \subset Q_{j}, j=1, \ldots, k$.
We define

$$
\begin{aligned}
\Gamma_{j}= & \left\{E \subset X: E \text { is compact, }-E=E, \gamma\left(E \cap \sigma^{-1}(\Sigma)\right) \geq j \text { for } \sigma \in \Lambda\right\}, \\
\Lambda= & \left\{\sigma \in C(X, X): \sigma \text { is odd, } \sigma\left(P_{j}\right) \subset P_{j}, \sigma\left(Q_{j}\right) \subset Q_{j}, j=1, \ldots, k,\right. \\
& \sigma(x)=x \text { if } f(x)<0\}
\end{aligned}
$$

where $\gamma=\gamma(E)$ denotes the genus of a symmetric set E

$$
\gamma=\min \left\{n: \text { there is an odd } \operatorname{map} \varphi^{(j)}: E \rightarrow \mathbb{R}^{n} \backslash\{0\}\right\}
$$

We ssume that
(A7) Γ_{j} is nonempty for $j=1,2, \ldots$.
Then we define

$$
\begin{gathered}
c_{j}=\inf _{E \in \Gamma_{j}} \sup _{x \in E \backslash W} f(x), j=1,2, \ldots \\
K_{c}=\{x \in X: D f(x)=0, f(x)=c\}, \quad K_{c}^{*}=K_{c} \backslash W .
\end{gathered}
$$

Then
(1) $c_{j} \geq c_{*}, K_{c_{j}}^{*} \neq \emptyset$ for $j=1,2, \ldots$
(2) $c_{j} \rightarrow+\infty$, as $j \rightarrow \infty$.
(3) If $c_{j}=c_{j+1}=\cdots=c_{j+l-1}=c$, then $\gamma\left(K_{c}^{*}\right) \geq l$.

Lemma 2.2. I_{M} is a C^{1}-functional on X, and satisfies the Palais-Smale condition.
Proof. It is easy to verify that I_{M} is a C^{1}-functional. Also, for $\Phi=\left(\varphi_{1}, \ldots, \varphi_{k}\right) \in$ X, we have

$$
\begin{align*}
\left\langle D I_{M}(U), \Phi\right\rangle= & \int_{\Omega} \sum_{j=1}^{k}\left(\nabla u_{j} \nabla \varphi_{j}+\lambda_{j} u_{j} \varphi_{j}\right) d x-\int_{\Omega} \sum_{i, j=1}^{k} \beta_{i j} u_{i}^{2} u_{j} \varphi_{j} d x \tag{2.1}\\
& -\int_{\Omega} \sum_{j=1}^{k} \frac{\partial F_{M}}{\partial u_{j}}(U, \varepsilon) \varphi_{j} d x
\end{align*}
$$

there exists an arbitrary small constant ε_{M}, such that for $|\varepsilon| \leq \varepsilon_{M}$, we have

$$
\begin{align*}
& I_{M}(U)-\frac{1}{4}\left\langle D I_{M}(U), U\right\rangle \\
& =\frac{1}{4} \int_{\Omega} \sum_{j=1}^{k}\left(\left|\nabla u_{j}\right|^{2}+\lambda_{j} u_{j}^{2}\right) d x-\int_{\Omega}\left(F_{M}(U, \varepsilon)-\frac{1}{4} \sum_{j=1}^{k} \frac{\partial F_{M}}{\partial u_{j}}(U, \varepsilon) u_{j}\right) d x \tag{2.2}\\
& \geq \frac{1}{4}\|U\|^{2}-c
\end{align*}
$$

Then any Palais-Smale sequence of I_{M} is bounded in X. Let $U_{n}=\left(u_{n, 1}, \ldots, u_{n, k}\right) \in$ X be a Palais-Smale sequence of the functional I_{M}. Notice that the imbedding
$H_{0}^{1}(\Omega) \hookrightarrow L^{4}(\Omega)$ is compact and we can assume that $U_{n} \rightarrow U$ in $L^{4}(\Omega)$. Then we have

$$
\begin{aligned}
& \int_{\Omega} \sum_{j=1}^{k}\left(\left|\nabla\left(u_{n, j}-u_{m, j}\right)\right|^{2}+\lambda_{j}\left(u_{n, j}-u_{m, j}\right)^{2}\right) d x \\
&=\left\langle D I_{M}\left(U_{n}\right)-D I_{M}\left(U_{m}\right), U_{n}-U_{m}\right\rangle+\int_{\Omega} \sum_{i, j=1}^{k} \beta_{i j} u_{n, i}^{2} u_{n, j}\left(u_{n, j}-u_{m, j}\right) d x \\
&-\int_{\Omega} \sum_{i, j=1}^{k} \beta_{i j} u_{m, i}^{2} u_{m, j}\left(u_{n, j}-u_{m, j}\right) d x \\
&+\int_{\Omega} \sum_{j=1}^{k}\left(\frac{\partial F_{M}}{\partial u_{j}}\left(U_{n}, \varepsilon\right)-\frac{\partial F_{M}}{\partial u_{j}}\left(U_{m}, \varepsilon\right)\right)\left(u_{n, j}-u_{m, j}\right) d x \\
& \leq o(1)+c\left\|U_{n}\right\|_{L^{4}(\Omega)}^{3}\left(\int_{\Omega} \sum_{j=1}^{k}\left(u_{n, j}-u_{m, j}\right)^{4} d x\right)^{1 / 4} \\
&+c\left\|U_{m}\right\|_{L^{4}(\Omega)}^{3}\left(\int_{\Omega} \sum_{j=1}^{k}\left(u_{n, j}-u_{m, j}\right)^{4} d x\right)^{1 / 4} \\
&+\int_{\Omega} \sum_{j=1}^{k}\left|\frac{\partial F_{M}}{\partial u_{j}}\left(U_{n}, \varepsilon\right)-\frac{\partial F_{M}}{\partial u_{j}}\left(U_{m}, \varepsilon\right)\right|\left|u_{n, j}-u_{m, j}\right| d x \\
& \leq o(1)+c\left\|U_{n}-U_{m}\right\|_{L^{4}(\Omega)} \rightarrow 0, \quad \text { as } n, m \rightarrow \infty .
\end{aligned}
$$

Therefore, we conclude that up to a subsequence a Palais-Smale sequence U_{n} is a Cauchy sequence in X, hence a convergent sequence.

Definition 2.3. An odd and continuous operator $A: U=\left(u_{1}, \ldots, u_{k}\right) \in X \mapsto$ $V=\left(v_{1}, \ldots, v_{k}\right)=A U \in X$ is defined by the system

$$
\begin{align*}
& \int_{\Omega}\left(\nabla v_{j} \nabla \varphi_{j}+\lambda_{j} v_{j} \varphi_{j}\right) d x-\int_{\Omega} \sum_{i=1, i \neq j}^{k} \beta_{i j} u_{i}^{2} v_{j} \varphi_{j} d x \tag{2.3}\\
& =\int_{\Omega} \beta_{j j} u_{j}^{3} \varphi_{j} d x+\int_{\Omega} \frac{\partial F_{M}}{\partial u_{j}}(U, \varepsilon) \varphi_{j} d x
\end{align*}
$$

For $j=1, \ldots, k$ and $\Phi=\left(\varphi_{1}, \ldots, \varphi_{k}\right) \in X$.
Lemma 2.4. The operator A is well-defined and continuous.
Proof. Note that $V=A U$ can be obtained by solving the minimization problem

$$
\inf \{G(V): V \in X\}
$$

where

$$
\begin{aligned}
G(V)= & \frac{1}{2} \int_{\Omega} \sum_{j=1}^{k}\left(\left|\nabla v_{j}\right|^{2}+\lambda_{j} v_{j}^{2}\right) d x-\frac{1}{2} \int_{\Omega} \sum_{i, j=1, i \neq j}^{k} \beta_{i j} u_{i}^{2} v_{j}^{2} d x \\
& -\int_{\Omega} \sum_{j=1}^{k} \beta_{j j} u_{j}^{3} v_{j} d x-\int_{\Omega} \sum_{j=1}^{k} \frac{\partial F_{M}}{\partial u_{j}}(U, \varepsilon) v_{j} d x
\end{aligned}
$$

Let $V=A U, \bar{V}=A \bar{U}, \bar{V}=\left(\bar{v}_{1}, \ldots, \bar{v}_{k}\right), \bar{U}=\left(\bar{u}_{1}, \ldots, \bar{u}_{k}\right)$. By 2.3), we have

$$
\begin{aligned}
&\|V-\bar{V}\|^{2} \\
&= \int_{\Omega} \sum_{j=1}^{k}\left(\left|\nabla\left(v_{j}-\bar{v}_{j}\right)\right|^{2}+\lambda_{j}\left(v_{j}-\bar{v}_{j}\right)^{2}\right) d x \\
&= \int_{\Omega} \sum_{i, j=1, i \neq j}^{k} \beta_{i j}\left(u_{i}^{2} v_{j}-\bar{u}_{i}^{2} \bar{v}_{j}\right)\left(v_{j}-\bar{v}_{j}\right) d x+\int_{\Omega} \sum_{j=1}^{k} \beta_{j j}\left(u_{j}^{3}-\bar{u}_{j}^{3}\right)\left(v_{j}-\bar{v}_{j}\right) d x \\
&+\int_{\Omega} \sum_{j=1}^{k}\left(\frac{\partial F_{M}}{\partial u_{j}}(U, \varepsilon)-\frac{\partial F_{M}}{\partial u_{j}}(\bar{U}, \varepsilon)\right)\left(v_{j}-\bar{v}_{j}\right) d x \\
& \leq c \int_{\Omega} \sum_{i, j=1, i \neq j}^{k}\left|u_{i}^{2}-\bar{u}_{i}^{2}\right|\left|v_{j}\right|\left|v_{j}-\bar{v}_{j}\right| d x+c \int_{\Omega} \sum_{j=1}^{k}\left|u_{j}^{3}-\bar{u}_{j}^{3}\right|\left|v_{j}-\bar{v}_{j}\right| d x \\
&+\int_{\Omega} \sum_{j=1}^{k}\left|\frac{\partial F_{M}}{\partial u_{j}}(U, \varepsilon)-\frac{\partial F_{M}}{\partial u_{j}}(\bar{U}, \varepsilon)\right|\left|v_{j}-\bar{v}_{j}\right| d x \\
& \leq c\left(\|U-\bar{U}\|\|V-\bar{V}\|+\left\|\frac{\partial F_{M}}{\partial u_{j}}(U, \varepsilon)-\frac{\partial F_{M}}{\partial u_{j}}(\bar{U}, \varepsilon)\right\|\|V-\bar{V}\|\right)
\end{aligned}
$$

hence $A U-A \bar{U}=V-\bar{V} \rightarrow 0$ as $U \rightarrow \bar{U}$ in X.
Lemma 2.5. For each $b_{0}, c_{0}>0$, then the following property holds: if $\left|I_{M}(U)\right| \leq c_{0}$ and $\left\|D I_{M}(U)\right\| \geq b_{0}$, then there exists $b=b\left(b_{0}, c_{0}\right)$ such that

$$
\left\langle D I_{M}(U), U-A U\right\rangle \geq b\|U-A U\|>0
$$

Proof. We have

$$
\begin{align*}
& \left\langle D I_{M}(U), \Phi\right\rangle \\
& =\int_{\Omega} \sum_{j=1}^{k}\left(\nabla\left(u_{j}-v_{j}\right) \nabla \varphi_{j}+\lambda_{j}\left(u_{j}-v_{j}\right) \varphi_{j}\right) d x-\int_{\Omega_{i, j=1, i \neq j}} \sum_{i j}^{k} u_{i}^{2}\left(u_{j}-v_{j}\right) \varphi_{j} d x \\
& =\langle U-V, \Phi\rangle-\int_{\Omega} \sum_{i, j=1, i \neq j}^{k} \beta_{i j} u_{i}^{2}\left(u_{j}-v_{j}\right) \varphi_{j} d x \tag{2.4}
\end{align*}
$$

for $\Phi=\left(\varphi_{1}, \ldots, \varphi_{k}\right) \in X$. By using $\Phi=U-V$ in (2.4), we obtain

$$
\left\langle D I_{M}(U), U-V\right\rangle=\|U-V\|^{2}-\int_{\Omega} \sum_{i, j=1, i \neq j}^{k} \beta_{i j} u_{i}^{2}\left(u_{j}-v_{j}\right)^{2} d x
$$

Notice that if $\beta_{i j}=\beta_{j i} \leq 0$ for $1 \leq i<j \leq k$, then

$$
\begin{equation*}
\left\langle D I_{M}(U), U-V\right\rangle \geq\|U-V\|^{2} \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\langle D I_{M}(U), U-V\right\rangle \geq-\int_{\Omega} \sum_{i, j=1, i \neq j}^{k} \beta_{i j} u_{i}^{2}\left(u_{j}-v_{j}\right)^{2} d x \tag{2.6}
\end{equation*}
$$

It follows from 2.4 and 2.6 that

$$
\begin{aligned}
\left|\left\langle D I_{M}(U), \Phi\right\rangle\right|= & \left|\langle U-V, \Phi\rangle-\int_{\Omega} \sum_{i, j=1, i \neq j}^{k} \beta_{i j} u_{i}^{2}\left(u_{j}-v_{j}\right) \varphi_{j} d x\right| \\
\leq & \|U-V\|\|\Phi\|+\left(-\int_{\Omega} \sum_{i, j=1, i \neq j}^{k} \beta_{i j} u_{i}^{2}\left(u_{j}-v_{j}\right)^{2} d x\right)^{1 / 2} \\
& \times\left(-\int_{\Omega} \sum_{i, j=1, i \neq j}^{k} \beta_{i j} u_{i}^{2} \varphi_{j}^{2} d x\right)^{1 / 2} \\
\leq & \|U-V\|\|\Phi\|+c\|U\|_{L^{4}(\Omega)}\|\Phi\|_{L^{4}(\Omega)}\left\langle D I_{M}(U), U-V\right\rangle^{1 / 2}
\end{aligned}
$$

which implies that

$$
\begin{equation*}
\left\|D I_{M}(U)\right\| \leq\|U-V\|+c\|U\|\left\langle D I_{M}(U), U-V\right\rangle^{1 / 2} \tag{2.7}
\end{equation*}
$$

There exists a small constant ε_{M}, so that for $|\varepsilon| \leq \varepsilon_{M}$, by 1.4) and (2.4), we have

$$
\begin{align*}
& I_{M}(U)-\frac{1}{4}\langle U-V, U\rangle \\
&= I_{M}(U)-\frac{1}{4}\left\langle D I_{M}(U), U\right\rangle-\frac{1}{4} \int_{\Omega} \sum_{i, j=1, i \neq j}^{k} \beta_{i j} u_{i}^{2} u_{j}\left(u_{j}-v_{j}\right) d x \\
&= \frac{1}{4}\|U\|^{2}+\int_{\Omega}\left(\frac{1}{4} \sum_{j=1}^{k} \frac{\partial F_{M}}{\partial u_{j}}(U, \varepsilon) u_{j}-F_{M}(U, \varepsilon)\right) d x \tag{2.8}\\
&-\frac{1}{4} \int_{\Omega} \sum_{i, j=1, i \neq j}^{k} \beta_{i j} u_{i}^{2} u_{j}\left(u_{j}-v_{j}\right) d x \\
& \geq \frac{1}{4}\|U\|^{2}-\frac{1}{4} \int_{\Omega} \sum_{i, j=1, i \neq j}^{k} \beta_{i j} u_{i}^{2} u_{j}\left(u_{j}-v_{j}\right) d x-c .
\end{align*}
$$

So by 2.8, we obtain

$$
\begin{align*}
& \|U\|^{2} \\
& \leq c\left(1+\left|I_{M}(U)\right|\right)+c|\langle U-V, U\rangle|+c\left|\int_{\Omega} \sum_{i, j=1, i \neq j}^{k} \beta_{i j} u_{i}^{2} u_{j}\left(u_{j}-v_{j}\right) d x\right| \tag{2.9}\\
& \leq c\left(1+\left|I_{M}(U)\right|\right)+c\|U-V\|^{2}+\frac{1}{4}\|U\|^{2}+c\|U\|_{L^{4}(\Omega)}^{2}\left\langle D I_{M}(U), U-V\right\rangle^{1 / 2} .
\end{align*}
$$

Given a positive constant a, if

$$
\left\langle D I_{M}(U), U-V\right\rangle \geq a^{2}
$$

then by 2.5 we can easily obtain

$$
\left\langle D I_{M}(U), U-V\right\rangle \geq a\|U-V\|>0
$$

The conclusion holds; if not, let

$$
\begin{equation*}
\left\langle D I_{M}(U), U-V\right\rangle \leq a^{2} \tag{2.10}
\end{equation*}
$$

by 2.9) and 2.10, we have

$$
\begin{equation*}
\|U\|^{2} \leq c\left(1+\left|I_{M}(U)\right|+\|U-V\|^{2}\right)+c_{0} a\|U\|^{2} . \tag{2.11}
\end{equation*}
$$

Hence, taking a such that $c_{0} a \leq 1 / 2$, then we have

$$
\begin{equation*}
\|U\|^{2} \leq c\left(1+\left|I_{M}(U)\right|+\|U-V\|^{2}\right) \tag{2.12}
\end{equation*}
$$

Substituting (2.12 into (2.7), we obtain

$$
\begin{align*}
& \left\|D I_{M}(U)\right\| \\
& \leq\|U-V\|+c\left(1+\left|I_{M}(U)\right|+\|U-V\|^{2}\right)^{1 / 2}\left\langle D I_{M}(U), U-V\right\rangle^{1 / 2} \tag{2.13}\\
& \leq\|U-V\|+\frac{1}{2}\left\|D I_{M}(U)\right\|+c\left(1+\left|I_{M}(U)\right|+\|U-V\|^{2}\right)\|U-V\|
\end{align*}
$$

Therefore

$$
\left\|D I_{M}(U)\right\| \leq c\left(1+\left|I_{M}(U)\right|+\|U-V\|^{2}\right)\|U-V\|
$$

If $\left|I_{M}(U)\right| \leq c_{0}$ and $\left\|D I_{M}(U)\right\| \geq b_{0}>0$, we deduce that there exists $b=$ $b\left(b_{0}, c_{0}\right)$ such that $\|U-V\|>b$. So it follows from (2.5) that

$$
\left\langle D I_{M}(U), U-A U\right\rangle \geq b\|U-A U\|>0
$$

Let P_{j}, Q_{j} for $j=1, \ldots, k$ be open convex subsets of X, defined by

$$
\begin{aligned}
& P_{j}=P_{j}(\delta)=\left\{U=\left(u_{1}, \ldots, u_{k}\right) \in X:\left\|u_{j}^{-}\right\|_{L^{4}(\Omega)}<\delta\right\} \\
& Q_{j}=Q_{j}(\delta)=\left\{U=\left(u_{1}, \ldots, u_{k}\right) \in X:\left\|u_{j}^{+}\right\|_{L^{4}(\Omega)}<\delta\right\}
\end{aligned}
$$

Lemma 2.6. There exist $\delta>0$ and $\varepsilon_{M}>0$ such that for $|\varepsilon| \leq \varepsilon_{M}$, it holds that

$$
A\left(\partial P_{j}\right) \subset P_{j}, \quad A\left(\partial Q_{j}\right) \subset Q_{j}, \quad \text { for } j=1, \ldots, k
$$

Proof. Choose $\Phi=V^{+}=\left(v_{1}^{+}, \ldots, v_{k}^{+}\right)$as test function in 2.3), we have

$$
\begin{aligned}
& \int_{\Omega}\left(\left|\nabla v_{j}^{+}\right|^{2}+\lambda_{j}\left(v_{j}^{+}\right)^{2}\right) d x-\int_{\Omega} \sum_{i=1, i \neq j}^{k} \beta_{i j} u_{i}^{2}\left(v_{j}^{+}\right)^{2} d x \\
& =\int_{\Omega} \beta_{j j} u_{j}^{3} v_{j}^{+} d x+\int_{\Omega} \frac{\partial F_{M}}{\partial u_{j}}(U, \varepsilon) v_{j}^{+} d x \\
& \leq c\left(\int_{\Omega}\left(u_{j}^{+}\right)^{3} v_{j}^{+} d x+\int_{\Omega}\left|\frac{\partial F_{M}}{\partial u_{j}}(U, \varepsilon)\right| v_{j}^{+} d x\right)
\end{aligned}
$$

Then

$$
\begin{equation*}
\left\|v_{j}^{+}\right\|_{L^{4}(\Omega)}^{2} \leq c_{1}\left\|u_{j}^{+}\right\|_{L^{4}(\Omega)}^{3}\left\|v_{j}^{+}\right\|_{L^{4}(\Omega)}+c_{2}\left\|\frac{\partial F_{M}}{\partial u_{j}}(U, \varepsilon)\right\|_{L^{\infty}(\Omega)}\left\|v_{j}^{+}\right\|_{L^{4}(\Omega)} \tag{2.14}
\end{equation*}
$$

Take $\delta>0$ such that $c_{1} \delta^{2} \leq 1 / 4$ and choose $\varepsilon_{M}>0$, such that for $|\varepsilon| \leq \varepsilon_{M}$, $c_{2}\left\|\frac{\partial F_{M}}{\partial u_{j}}(U, \varepsilon)\right\|_{L^{\infty}(\Omega)} \leq \delta / 4$. Then for $U \in \partial Q_{j},\left\|u_{j}^{+}\right\|_{L^{4}(\Omega)}=\delta$, we have

$$
\left\|v_{j}^{+}\right\|_{L^{4}(\Omega)}^{2} \leq \frac{1}{4} \delta\left\|v_{j}^{+}\right\|_{L^{4}(\Omega)}+\frac{1}{4} \delta\left\|v_{j}^{+}\right\|_{L^{4}(\Omega)}
$$

hence

$$
\left\|v_{j}^{+}\right\|_{L^{4}(\Omega)} \leq \frac{1}{2} \delta
$$

That is for $U \in \partial Q_{j}$, we have $V=A U \in Q_{j}$ and $A\left(\partial Q_{j}\right) \subset Q_{j}, j=1, \ldots, k$. Similarly, $A\left(\partial P_{j}\right) \subset P_{j}, j=1, \ldots, k$.

Lemma 2.7. There exist $\delta>0$ and $c^{*}>0$, such that if $U \in \Sigma$ and $|\varepsilon| \leq \varepsilon_{M}$, then $I_{M}(U) \geq c^{*}$.

Proof. Note that

$$
\begin{aligned}
I_{M}(U) & =\frac{1}{2} \int_{\Omega} \sum_{j=1}^{k}\left(\left|\nabla u_{j}\right|^{2}+\lambda_{j} u_{j}^{2}\right) d x-\frac{1}{4} \int_{\Omega} \sum_{i, j=1}^{k} \beta_{i j} u_{i}^{2} u_{j}^{2} d x-\int_{\Omega} F_{M}(U, \varepsilon) d x \\
& \geq \frac{1}{2}\|U\|^{2}-\frac{1}{4} \int_{\Omega} \sum_{j=1}^{k} \beta_{j j} u_{j}^{4} d x-\int_{\Omega} F_{M}(U, \varepsilon) d x \\
& \geq c_{1}\|U\|_{L^{4}(\Omega)}^{2}-c_{2}\|U\|_{L^{4}(\Omega)}^{4}-\left\|F_{M}(U, \varepsilon)\right\|_{L^{\infty}(\Omega)} .
\end{aligned}
$$

For $U \in \Sigma=\cap_{j=1}^{k}\left(\partial P_{j} \cap \partial Q_{j}\right)$, we have

$$
\|U\|_{L^{4}(\Omega)}^{4}=\int_{\Omega} \sum_{j=1}^{k}\left(\left(u_{j}^{+}\right)^{4}+\left(u_{j}^{-}\right)^{4}\right) d x=2 k\left\|u_{j}^{+}\right\|_{L^{4}(\Omega)}^{4}=2 k \delta^{4}
$$

By Lemma 2.6, taking $\delta>0$ such that $c_{2} \delta^{2} \leq \frac{1}{4} c_{1}$, and choosing ε_{M} such that for $|\varepsilon| \leq \varepsilon_{M}$, we have $\left\|F_{M}(U, \varepsilon)\right\|_{L^{\infty}(\Omega)} \leq \frac{1}{4} c_{1} \delta^{2}$. Therefore,

$$
I_{M}(U) \geq c_{1} \delta^{2}-c_{2} \delta^{4}-\frac{1}{4} c_{1} \delta^{2} \geq \frac{1}{2} c_{1} \delta^{2}:=c^{*}>0
$$

Let

$$
\begin{aligned}
& \Gamma_{j}=\left\{E \subset X: E \text { is compact, }-E=E, \gamma\left(E \cap \sigma^{-1}(\Sigma)\right) \geq j \text { for } \sigma \in \Lambda\right\}, \\
& \Lambda=\left\{\sigma \in C(X, X): \sigma \text { odd, } \sigma\left(P_{j}\right) \subset P_{j}, \sigma\left(Q_{j}\right) \subset Q_{j}, j=1, \ldots, k,\right. \\
& \\
& \left.\quad \sigma(U)=U \text { if } I_{M}(U)<0\right\},
\end{aligned}
$$

and $\gamma=\gamma(E)$ is the genus of E,

$$
\gamma=\min \left\{n: \text { there is an odd } \operatorname{map} \varphi^{(j)}: E \rightarrow \mathbb{R}^{n} \backslash\{0\}\right\}
$$

Now we define a sequence of critical values of the truncated functional I_{M},

$$
c_{j}(M, \varepsilon)=\inf _{E \in \Gamma_{j}} \sup _{U \in E \backslash W} I_{M}(U), \quad j=1,2, \ldots
$$

where $W=\cup_{j=1}^{k}\left(P_{j} \cup Q_{j}\right)$.
Lemma 2.8. The set Γ_{j} is nonempty, and there exist $d_{j}>0$ independent of M, ε and $\varepsilon_{M}^{(j)}>0$, such that if $|\varepsilon| \leq \varepsilon_{M}^{(j)}$, then $c_{j}(M, \varepsilon) \leq d_{j}$.
Proof. Let $B^{n k}$ be the unit closed ball of $\mathbb{R}^{n k}$. Assume $n=j+k$. Denote $t \in \mathbb{R}^{n k}$ by $t=\left(t_{1}, \ldots, t_{k}\right)$ and $t_{m}=\left(t_{1 m}, t_{2 m}, \ldots, t_{n m}\right) \in \mathbb{R}^{n}$ for $m=1, \ldots, k$. Let $v_{i m} \in C_{0}^{\infty}(\Omega), i=1, \ldots, n, m=1, \ldots, k$ be $n k$ functions in X with disjoint supports. Define $\varphi^{(j)}: B^{n k} \rightarrow X$ by

$$
\varphi^{(j)}(t)=R\left(\sum_{i=1}^{n} t_{i 1} v_{i 1}, \ldots, \sum_{i=1}^{n} t_{i k} v_{i k}\right) \in X
$$

where R is large enough such that $I\left(\varphi^{(j)}(t)\right)<-10$ for $t \in \partial B^{n k}$. Then there exists $\varepsilon_{M}>0$, so that if $|\varepsilon| \leq \varepsilon_{M}$, then we have

$$
I_{M}\left(\varphi^{(j)}(t)\right) \leq I\left(\varphi^{(j)}(t)\right)+1<0
$$

for $t \in \partial B^{n k}$. By [11, Lemma 5.6], we have $E_{j}:=\varphi^{(j)}\left(B^{n k}\right) \in \Gamma_{j}$. Then Γ_{j} is nonempty.

Next we estimate $c_{j}(M, \varepsilon)$ for $|\varepsilon| \leq \varepsilon_{M}$. We have

$$
c_{j}(M, \varepsilon)=\inf _{E \in \Gamma_{j}} \sup _{U \in E \backslash W} I_{M}(U) \leq \sup _{U \in E_{j}} I_{M}(U) \leq \sup _{U \in E_{j}}(I(U)+1):=d_{j}
$$

3. Proof of main results

In this section, we complete the proof of Theorem 1.1 and Theorem 1.2 For fixed $M>0$ and $\varepsilon=0$, we will obtain the critical point U of I.

Lemma 3.1. Assume $D I_{M}(U)=0, I_{M}(U) \leq L$. Then there exist $\varepsilon_{M}>0$ and $K=K(L)$ independent of M, ε, such that for $|\varepsilon| \leq \varepsilon_{M}$,

$$
\|U(x)\|_{L^{\infty}(\Omega)} \leq K
$$

Proof. Denote $U=\left(u_{1}, \ldots, u_{k}\right)$. By 2.2 , for $|\varepsilon| \leq \varepsilon_{M}$, we have

$$
\begin{align*}
L & \geq I_{M}(U)-\frac{1}{4}\left\langle D I_{M}(U), U\right\rangle \\
& =\frac{1}{4} \int_{\Omega} \sum_{j=1}^{k}\left(\left|\nabla u_{j}\right|^{2}+\lambda_{j} u_{j}^{2}\right) d x-\int_{\Omega}\left(F_{M}(U, \varepsilon)-\frac{1}{4} \sum_{j=1}^{k} \frac{\partial F_{M}}{\partial u_{j}}(U, \varepsilon) u_{j}\right) d x \tag{3.1}\\
& \geq \frac{1}{4}\|U\|^{2}-c .
\end{align*}
$$

We know that there exists $C(L)>0$, such that $\|U\| \leq C(L)$. Choose $\phi=$ $u_{j T}\left|u_{j T}\right|^{2 r-2}$ as the test function in $\left\langle D I_{M}\left(u_{j}\right), \phi\right\rangle=0$, where $r \geq 1, T>1$, and $u_{j T}(x)= \pm T$ if $\pm u_{j}(x) \geq T, u_{j T}(x)=u_{j}(x)$ if $\left|u_{j}(x)\right| \leq T$. We have

$$
\begin{equation*}
\int_{\Omega}\left(\nabla u_{j} \nabla \phi+\lambda_{j} u_{j} \phi\right) d x=\int_{\Omega} \sum_{i=1}^{k} \beta_{i j} u_{i}^{2} u_{j} \phi d x+\int_{\Omega} \frac{\partial F_{M}}{\partial u_{j}}(U, \varepsilon) \phi d x \tag{3.2}
\end{equation*}
$$

By (3.2), it is easy to obtain the inequality

$$
\begin{equation*}
\int_{\Omega} \nabla u_{j} \nabla \phi d x \leq \int_{\Omega} \beta_{j j} u_{j}^{3} \phi d x+\int_{\Omega}\left|\frac{\partial F_{M}}{\partial u_{j}}(U, \varepsilon) \phi\right| d x \tag{3.3}
\end{equation*}
$$

Firstly, we estimate the left-hand side of (3.3),

$$
\begin{align*}
\int_{\Omega} \nabla u_{j} \nabla \phi d x & \geq(2 r-1) \int_{\Omega}\left|\nabla u_{j T}\right|^{2}\left|u_{j T}\right|^{2 r-2} d x \\
& \geq\left.\left.\frac{2 r-1}{r^{2}} \int_{\Omega}|\nabla| u_{j T}\right|^{r}\right|^{2} d x \tag{3.4}\\
& \geq \frac{c(2 r-1)}{r^{2}}\left(\int_{\Omega}\left(\left|u_{j T}\right|^{r}\right)^{2^{*}} d x\right)^{2 / 2^{*}}
\end{align*}
$$

Let $M>0$, there exists ε_{M} such that for $|\varepsilon| \leq \varepsilon_{M}$, we have $\left\|\frac{\partial F_{M}}{\partial u_{j}}(U, \varepsilon)\right\|_{L^{\infty}(\Omega)}<1$.
Then the right-hand side of (3.3) satisfies

$$
\begin{align*}
& \int_{\Omega} \beta_{j j} u_{j}^{3} \phi d x+\int_{\Omega}\left|\frac{\partial F_{M}}{\partial u_{j}}(U, \varepsilon) \phi\right| d x \\
& \leq c\left(\int_{\Omega}\left|u_{j}\right|^{3}\left|u_{j T}\right|^{2 r-1} d x+\int_{\Omega} 1 \cdot\left|u_{j T}\right|^{2 r-1} d x\right) \\
& \leq c\left(\int_{\Omega}\left(1+\left|u_{j}\right|^{3}\right)\left|u_{j}\right|^{2 r-1} d x\right) \\
& \leq c\left(1+\int_{\Omega}\left|u_{j}\right|^{3}\left|u_{j}\right|^{2 r-1} d x\right) \tag{3.5}\\
& \leq c\left(1+\left(\int_{\Omega}\left|u_{j}\right|^{2^{*}} d x\right)^{\frac{2}{2 *}}\left(\int_{\Omega}\left(\left|u_{j}\right|^{r}\right)^{\frac{2 \cdot 2^{*}}{2^{*}-2}} d x\right)^{\frac{2^{*}-2}{2^{*}}}\right) \\
& \leq c\left(1+\left(\int_{\Omega}\left(\left|u_{j}\right|^{r}\right)^{\frac{2 \cdot 2 \cdot 2^{*}}{2^{*}-2}} d x\right)^{\frac{2^{*}-2}{2^{*}}}\right) \\
& \leq c \max \left\{1,\left(\int_{\Omega}\left(\left|u_{j}\right|^{r} \frac{2 \cdot 2^{*}}{2^{*+}-2} d x\right)^{\frac{2^{*}-2}{2^{*}}}\right\}\right. \text {. }
\end{align*}
$$

Let $T \rightarrow \infty$ such that $u_{j T}(x) \rightarrow u_{j}(x)$. By (3.4) and (3.5), we obtain

$$
\begin{equation*}
\left(\int_{\Omega}\left(\left|u_{j T}\right|^{r}\right)^{2^{*}} d x\right)^{\frac{2}{2^{*}}} \leq \frac{c r^{2}}{2 r-1} \max \left\{1,\left(\int_{\Omega}\left(\left|u_{j}\right|^{r}\right)^{\frac{2 \cdot 2^{*}}{2^{*}-2}} d x\right)^{\frac{2^{*}-2}{2^{*}}}\right\} \tag{3.6}
\end{equation*}
$$

Denote $d=\frac{2^{*}}{\frac{2 \cdot 2^{*}}{2^{*}-2}}=\frac{2}{N-2}>1, q=\frac{2 \cdot 2^{*}}{2^{*}-2}=N$. By (3.6), we have

$$
\begin{equation*}
\left(\int_{\Omega}\left(\left|u_{j}\right|^{r}\right)^{q d} d x\right)^{\frac{1}{q d r}} \leq\left(\frac{c r^{2}}{2 r-1}\right)^{\frac{1}{2 r}} \max \left\{1,\left(\int_{\Omega}\left(\left|u_{j}\right|^{r}\right)^{q} d x\right)^{\frac{1}{q r}}\right\} . \tag{3.7}
\end{equation*}
$$

Choose r_{0}, such that $r_{0} q=2^{*}$ and $\int_{\Omega}\left|u_{j}\right|^{q r_{0}} d x<\infty$. So

$$
\begin{equation*}
\left(\int_{\Omega}\left(\left|u_{j}\right|^{r_{0}}\right)^{q d} d x\right)^{\frac{1}{q d r_{0}}} \leq\left(\frac{c r_{0}^{2}}{2 r_{0}-1}\right)^{\frac{1}{2 r_{0}}} \max \left\{1,\left(\int_{\Omega}\left(\left|u_{j}\right|^{r_{0}}\right)^{q} d x\right)^{\frac{1}{q r_{0}}}\right\} \tag{3.8}
\end{equation*}
$$

Using iteration, we note that $r_{0} d=r_{1}$ in (3.8), then

$$
\begin{equation*}
\left(\int_{\Omega}\left|u_{j}\right|^{r_{1} q} d x\right)^{\frac{1}{q r_{1}}} \leq\left(\frac{c r_{0}^{2}}{2 r_{0}-1}\right)^{\frac{1}{2 r_{0}}} \max \left\{1,\left(\int_{\Omega}\left|u_{j}\right|^{r_{0} q} d x\right)^{\frac{1}{q r_{0}}}\right\} \tag{3.9}
\end{equation*}
$$

Therefore, by (3.9), we obtain

$$
\begin{aligned}
\left(\int_{\Omega}\left|u_{j}\right|^{r_{k+1} q} d x\right)^{\frac{1}{q r_{k+1}}} & \leq\left(\frac{c r_{k}^{2}}{2 r_{k}-1}\right)^{\frac{1}{2 r_{k}}} \max \left\{1,\left(\int_{\Omega}\left|u_{j}\right|^{r_{k} q} d x\right)^{\frac{1}{q r_{k}}}\right\} \\
& \leq \prod_{i=0}^{k}\left(\frac{c r_{i}}{2 r_{i}-1}\right)^{\frac{1}{2 r_{i}}} \max \left\{1,\left(\int_{\Omega}\left|u_{j}\right|^{r_{0} q} d x\right)^{\frac{1}{q r_{0}}}\right\}
\end{aligned}
$$

where $r_{i}=d^{i} r_{0}$, we denote $C_{0}=\prod_{i=0}^{k}\left(\frac{c r_{i}}{2 r_{i}-1}\right)^{\frac{1}{2 r_{i}}}$, then

$$
\begin{equation*}
\left\|u_{j}\right\|_{L^{r_{0} q d^{k+1}}(\Omega)} \leq C_{0}\left(1+\left\|u_{j}\right\|_{L^{2^{*}}(\Omega)}\right) \tag{3.10}
\end{equation*}
$$

Let $k \rightarrow \infty$ in 3.10, by 3.1, we have

$$
\left\|u_{j}\right\|_{L^{\infty}(\Omega)} \leq C_{0}\left(1+\left\|u_{j}\right\|_{L^{2^{*}}(\Omega)}\right) \leq c=c(L)
$$

Proof of Theorem 1.2. By Lemmas 2.2, 2.5,2.8, for a sufficiently small parameter ε, the functional I_{M} satisfies the conditions (A3), (A4)-(A7) of the abstract critical point theorem (Theorem2.1). Then, $c_{j}(M, \varepsilon)$ is a critical value of the functional I_{M}, and each component of the corresponding critical point $U_{j}(M, \varepsilon)$ is sign-changing. That is, $U_{j}(M, \varepsilon)$ is a sign-changing solution of the truncated system (1.3). Moreover, given $l \in \mathbb{N}^{+}, L^{*}>0$, by Lemma 2.8, there exists $\varepsilon_{M}^{*}>0$ such that for $|\varepsilon| \leq \varepsilon_{M}^{*}=\min \left\{\varepsilon_{M}^{(1)}, \ldots, \varepsilon_{M}^{(l)}\right\}$,

$$
c_{j}(M, \varepsilon) \leq L^{*}=\max \left\{d_{1}, \ldots, d_{l}\right\}, \quad j=1, \ldots, l
$$

By Lemma3.1, there exist the constant K^{*} independent of M, ε, and $\varepsilon_{M}>0$, such that for $|\varepsilon| \leq \varepsilon_{M}$,

$$
\left\|U_{j}(M, \varepsilon)\right\|_{L^{\infty}(\Omega)} \leq K^{*}, \quad j=1, \ldots, l
$$

Now take $M \geq K^{*}+1$, then for $|\varepsilon| \leq \varepsilon_{l}, U_{j}(\varepsilon):=U_{j}(M, \varepsilon), j=1, \ldots, l$ are sign-changing solutions of the perturbed system (1.2).

Note that taking $\varepsilon=0$, we have $F(U, 0)=0$ and $\frac{\partial F}{\partial u_{j}}(U, 0)=0$, then the solutions to the perturbed system $\sqrt{1.2}$) are also solutions to the original system (1.1).

In Section 2, we have obtained the sign-changing critical points of the truncated functional I_{M}. Therefore, by Theorem 1.2, we know that system 1.2) has l pairs of sign-changing solutions. Then, for $\varepsilon=0$, the system (1.1) has infinitely many sign-changing solutions, and we have thus proved the main result.

Acknowledgments. This work was supported by the NSFC 12161093, and by the Yunnan key Laboratory of Modern Analytical Mathematics and Applications.

References

[1] A. Ambrosetti, E. Colorado; Standing waves of some coupled nonlinear Schrödinger equations. J. Lond. Math. Soc., 75 (2007), 67-82.
[2] T. Bartsch, Z. Liu, T. Weth; Sign-changing solutions of superlinear Schrödinger equations. Comm. Partial Differential Equations, 29 (2004), 25-42.
[3] T. Bartsch, Z.-Q. Wang; Note on ground states of nonlinear Schrödinger systems, J. Patial Differential Equations, 19 (2006), 200-207.
[4] S.-M. Chang, C.-S. Lin, T.-C. Lin, W.-W. Lin; Segregated nodal domains of two-dimensional multispecies Bose-Einstein condensates. Phys. D., 196 (2004), 341-361.
[5] Z. Chen, C.-S. Lin, W. Zou; Multiple sign-changing and semi-nodal solutions for coupled Schrödinger equations. J. Differential Equations, 255 (2013), 4289-4311.
[6] M. Contiand, L. Merizzi, S. Terracini; Remarks on variational methods and lower-upper solutions. Nonlinear Differential Equations Appl., 6 (1999) 371-393.
[7] E. N. Dancer, J. Wei, T. Weth; A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system. Ann. Inst. H. poincaré Anal. Non Linéaire, 27 (2010), 953-969.
[8] B. D. Esry, C. H. Greene, J. P. Burke Jr, J. L. Bhon; Hartree-Fock theory for double condensates. Phys. Rev. Lett., 78 (1997), 3594-3597.
[9] T.-C. Lin, J. Wei; Ground state of N coupled nonlinear Schrödinger equations in $\mathbb{R}^{n}, n \leq 3$. Comm. Math. Phys., 255 (2005), 629-653.
[10] J. Liu, X. Liu, Z.-Q. Wang; Multiple mixed states of nodal solutions for nonlinear Schrödinger systems. Calc. Var. Partial Differential Equations, 52 (2015), 565-586.
[11] J. Liu, X. Liu, Z.-Q. Wang; Sign-changing solutions for coupled nonlinear Schrödinger equations with critical growth. J. Differential Equations, 261 (2016), 7194-7236.
[12] X. Liu, J. Zhao; p-Laplacian equations in \mathbb{R}^{N} with finite potential via the truncation method. Adv. Nonlinear Stud., 17 (2017), 595-610.
[13] Z. Liu, J. Sun; Invariant sets of descending flow in critical point theory with applications to nonlinear differential equations. J. Differential Equations, 172 (2001), 257-299.
[14] Z. Liu, Z.-Q. Wang; Multiple bound states of nonlinear Schrödinger systems. Comm. Math. Phys., 282 (2008), 721-731.
[15] Z. Liu, Z.-Q. Wang; Ground states and bound states of a nonlinear Schrödinger system. Adv. Nonlinear Stud., 10 (2010), 175-193.
[16] E. Montefusco, B. Pellacci, M. Squassina; Semiclassical states for weakly coupled nonlinear Schrödinger systems. J. Eur. Math. Soc., 10 (2008), 47-71.
[17] P. H. Rabinowitz; Minimax methods in critical point theory with applications to differential equations. CBMS Reg. Conf. Ser. Math. vol. 65. American Mathematical Soc., 1986.
[18] E. Timmermans; Phase separation of Bose-Einstein condensates. Phys. Rev. Lett., 81 (1998), 5718-5721.
[19] J. Wei, T. Weth; Radial solutions and phase separation in a system of two coupled Schrödinger equations. Arch. Ration Mech. Anal., 190 (2008), 83-106.

Xue Zhou
Department of Mathematics, Yunnan Normal University, Kunming 650221, China
Email address: niuzhoux@163.com
Xiangqing Liu (Corresponding author)
Department of Mathematics, Yunnan Normal University, Kunming 650221, China
Email address: lxq8u8@163.com

[^0]: 2020 Mathematics Subject Classification. 35A15, 35B20, 35J10.
 Key words and phrases. Schrödinger system; sign-changing solutions; truncation method; method of invariant sets of descending flow.
 (C)2024. This work is licensed under a CC BY 4.0 license.

 Submitted December 9, 2023. Published April 24, 2024.

