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On Properties of Nonlinear Second Order

Systems under Nonlinear Impulse Perturbations ∗

John R. Graef & János Karsai

Abstract

In this paper, we consider the impulsive second order system

ẍ+ f(x) = 0 (t 6= tn); ẋ(tn + 0) = bnẋ(tn) (t = tn)

where tn = t0 + np (p > 0, n = 1, 2 . . .). In a previous paper, the authors
proved that if f(x) is strictly nonlinear, then this system has infinitely
many periodic solutions. The impulses account for the main differences
in the attractivity properties of the zero solution. Here, we prove that
these periodic solutions are attractive in some sense, and we give good
estimates for the attractivity region.

1 Introduction

Investigations of asymptotic stability problems for the intermittently damped
second order differential equation

ẍ+ g(t)ẋ+ f(x) = 0 (1)

have led to asymptotic stability investigations of the impulsive system

ẍ+ f(x) = 0, (t 6= tn)

x(tn + 0) = x(tn), (2)

ẋ(tn + 0) = bnẋ(tn),

where tn → ∞ (n → ∞), xf(x) > 0 (x 6= 0), and f is continuous (x ∈
R) (see [3, 7, 8]). Although there are analogies between the systems (1) and
(2) in the case 0 ≤ bn ≤ 1, system (2) has unexpected properties due to the
instantaneous effects. In addition, if bn < 0 ([3, 5]), there are some new beating
phenomena, and the beating impulses can stabilize the oscillatory behavior of
the system (see [5]). In particular, in both the positive and negative impulse
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cases, if tn = t0 + n p (p > 0), there can exist nonzero periodic solutions, which
are small or large depending on the nonlinearity of the function f(x). The
existence of such solutions can destroy the global nature of the attractivity, or
the attractivity itself, of the zero solution. In this paper, we investigate the
attractivity properties of these periodic solutions. We show that the periodic
solutions are attractive in some sense, and we describe the attractivity regions
as well.

2 Definitions and Preliminaries

For the system (2), we use the following assumptions: tn = t0 + n p (p > 0),
f(x) is continuous, xf(x) > 0 (x 6= 0), and for the sake of simplicity, we assume
that f is an odd function, i.e., f(−x) = −f(x).
We say that the zero solution of (2) or (1) is stable if for any ε > 0 there

exists δ > 0 such that |x(0)|+ |ẋ(0)| < δ implies |x(t)|+ |ẋ(t)| < ε (t ≥ 0). The
zero solution is asymptotically stable (a.s.) if it is stable and there exists δ > 0
such that |x(0)|+ |ẋ(0)| < δ implies limt→∞(x(t), ẋ(t)) = (0, 0). The asymptotic
stability is global (g.a.s.) if δ =∞.
We investigate the solutions of the equations with the aid of the energy

function

V (x, y) = y2 + 2

x∫
0

f =: y2 + F (x), (3)

and often use the notation V (t) = V (x(t), ẋ(t)) for the solutions of system (2).
Furthermore, without future reference, we assume that

lim
x→±∞

F (x) =∞.

This condition allows us to obtain boundedness of the solutions from the bound-
edness of the energy.
Let us consider the undamped equation

ü+ f(u) = 0. (4)

All solutions are periodic, and the energy is constant along each solution. The
distance between the extremal points is given by (see [9])

∆(r) =

F−1(r)∫
−F−1(r)

dx√
r − F (x)

, (5)

where F−1 is the inverse of the positive part of F (x). Calculations yield the
following expressions for ∆(r) in the case where f(x) = |x|αsgn (x):

a) α = 1, ∆(r) = π, (6)
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b) α 6= 1, ∆(r) = Arβ with β =
1− α

2(α+ 1)
and

A = 2

(
α+ 1

2

) 1
α+1

√
πΓ
(
1
α+1

)

(α+ 1)Γ
(
3+α
2(1+α)

) ,

where Γ(·) denotes Euler’s Γ function. In the linear case, we obtain the known
value π provided β < 0 for α > 1 or 0 < β < 1/2 for 0 < α < 1.
Consider the system (2). Since limn→∞ tn =∞, every solution can be con-

tinued to ∞. In addition, the solutions are differentiable, and ẋ(t) is piecewise
continuous and continuous from the left at every t > 0.
The variation of the energy along the solutions of (2) is given by

V (tn+1)− V (tn) = V (tn + 0)− V (tn)

= ẋ2(tn + 0) + F (x(tn + 0))− ẋ
2(tn)− F (x(tn)) (7)

= b2nẋ
2(tn)− ẋ

2(tn) = −ẋ
2(tn)(1 − b

2
n) = −anẋ

2(tn),

where an = 1 − b2n is the n-th energy-quantum. The energy is nonincreasing if
b2n ≤ 1, independent of the sign of bn, and it is constant between any tn and
tn+1. In case bn = 0, the solutions of initial value problems are not unique in the
backwards direction. In this case, there can be solutions which are identically
zero on [tn,∞).
Consider the energy along the solutions of (2) on the interval [0, t]. Using

(7) repeatedly easily yields

V (t) = V (0)−
∑
tn<t

anẋ
2(tn) (8)

along solutions of (2). From inequality (8), it is easy to prove the following
lemma.

Lemma 1 If |bn| ≤ 1 for every n = 1, 2, . . ., then V (t) is nonincreasing along
every solution. Moreover, every solution is bounded, and the zero solution of
(2) is stable.

3 Asymptotic Stability and Existence of Peri-
odic Solutions

The following theorem guarantees the existence of periodic solutions; it is based
on Theorem 20 in [2].

Theorem 1 Suppose 0 ≤ bn ≤ 1, p > 0, and tn = t0 + n p, and let D0 = {r :
∆(r) = p/k, k = 1, 2 . . .}. The solutions of (2) with initial conditions satisfying
F (x(ti)) = r ∈ D0, ẋ(ti) = 0 (i = 0, 1, . . .) are periodic and satisfy equation
(4).
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This theorem assures the existence of periodic solutions in both the superlin-
ear and sublinear cases. If lim supr→∞∆(r) = 0, then the set D0 is unbounded,
i.e., there are infinitely many periodic solutions in some set {V (x, y) > r0}. This
is the case if f(x) = |x|α sgnx (α > 1). On the other hand, if lim infr→0∆(r) =
0, then D0 has no positive infimum, i.e., there are arbitrarily small periodic so-
lutions (e.g., f(x) = |x|α sgnx (0 < α < 1)). If limr→0∆(r) = ∞, D0 has a
positive minimal element.
As consequence of the above statements, we obtain that the zero solution of

the system (2) cannot be globally asymptotically stable in the strictly super-
linear case (lim supr→∞∆(r) = 0), and it cannot be asymptotically stable in
the strictly sublinear case (lim infr→0∆(r) = 0). More precisely, a simplified
version of Corollary 3.3 in [5] is the following.

Theorem 2 Let tn = t0 + n p and |bn| ≤ 1, and assume that there exists a
sequence of integers {nk} such that

∑
k

min(ank , ank+1) =∞. (9)

Then:
Case (a): 0 < infr>0∆(r). If p < infr>0∆(r), the zero solution is globally
asymptotically stable. If p > infr>0∆(r), the behavior depends on the shape of
∆(r).
Case (b): limr→0∆(r) =∞ and limr→∞∆(r) = 0. The zero solution is asymp-
totically (but not globally) stable.
Case (c): limr→0∆(r) = 0. The zero solution is not asymptotically stable.

4 Attractivity of the Periodic Solutions

Following Theorem 1, let up denote the periodic solution of equation (4) (it
is also a solution of system (2)) such that rp = V (up(t0), u̇p(t0)) = ∆

−1(p)
and u̇p(t0) = 0 (i.e., F (up(t0)) = ∆

−1(p)). First, we consider which attrac-
tivity properties might reasonably be expected. Let x(t) be another solu-
tion of (2) for which r = V (x(t0), ẋ(t0)) < rp. Since V (up(t), u̇p(t)) is con-
stant and V (x(t), ẋ(t)) is nonincreasing, x(t) − up(t) cannot tend to zero as
t → ∞. Consequently, the relation limt→∞(x(t) − up(t)) = 0 can hold only if
V (x(t0), ẋ(t0)) ≥ rp.
To formulate our results, we need some additional concepts. We assume that

∆(r) is monotone on some interval Ip of form [rp, rp+ ε] or in [rp,∞). This is a
reasonable assumption since it is satisfied, for example, if f(x) is an odd power
of x. More generally, if f(x)/x is monotone, then ∆(F (x)) is monotone in the
opposite direction ([15; Theorem 3.1.6]).
For a solution u(t) of (4), let U0 = (u(0), u̇(0)) ∈ R2 and U(t;U0) =

(u(t), u̇(t)), and for a solution x(t) of the impulsive system (2), let X0 =
(x(0+0), ẋ(0+0)) ∈ R2 andX(t;X0) = (x(t), ẋ(t)). To simplify the notation, let
up > 0 be such that F (up) = rp, and define τ(p, r) = ∆(r)−∆(rp) = ∆(r)−p. If
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Figure 1: The mapping δ− → γ+ → {(−xp, y)}

∆(r) is increasing on the interval Ip, then τ(p, r) > 0, and if ∆(r) is decreasing,
then τ(p, r) < 0; moreover, |τ(p, r)| is increasing for x ≥ u0.

Let γ+ and γ− be the curves which are mapped to the sets {(−up, y) : y ∈
R} and {(up, y) : y ∈ R}, respectively, by the mapping U(p; ·). It is easy to
see that this is equivalent to γ+ = {U(τ(p, r);U0) : U0 = (up, y)} and γ− =
{U(τ(p, r);U0) : U0 = (−up, y)} where r = V (up, y) is the energy of U(t;U0).
From the symmetry of f(x), we see that γ− = {(x, y) : (−x,−y) ∈ γ+}. The
mapping δ− → γ+ → {(−xp, y)} is shown in Figure 1.

The monotonicity of ∆(r) and the continuous dependence of solutions on ini-
tial conditions imply that the curve γ+ is a graph of a continuous function of one
variable, and so it can be written in the form u̇(τ(p, r);U0) = γ+(u(τ(p, r);U0)).
To see this, assume the contrary. Let (x, y1), (x, y2) ∈ γ+, |y1| < |y2|, and let
r1 = V (x, y1) < r2 = V (x, y2). Then

|τ(p, r1)| =

x∫
up

ds√
r1 − F (s)

>

x∫
up

ds√
r2 − F (s)

= |τ(p, r2)|,

which contradicts the monotonicity of |τ(r, p)|. The case y1 = −y2 cannot hap-
pen because of the uniqueness of solutions to initial value problems for equation
(4).

Note that γ+(x) is positive (negative) if ∆(r) is increasing (decreasing),
x− up is small enough, and x > up. Let x̂ be the first zero of γ+ if F (x̂) ∈ Ip,
let x̄ = min{x̂, sup Ip}, and let r̄ = F (x̄). We also use the notation γ

−
+ =

{(x, y) : (x,−y) ∈ γ+} and γ
−
− = {(x, y) : (x,−y) ∈ γ−}. Now, we can define
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the following closed sets:

G+ :=

{
{(x, y) : x ≥ xp, V (x, y) ≤ r̄, y ≤ γ+(x)}, if ∆(r) is increasing,
{(x, y) : x ≥ xp, V (x, y) ≤ r̄, y ≥ γ+(x)}, if ∆(r) is decreasing,

G− := {(x, y) : (−x,−y) ∈ G+},

G−+ := {(x, y) : (x,−y) ∈ G+},

G−− := {(x, y) : (x,−y) ∈ G−}.

Next, we consider the impulsive system (2), and assume that X(tn−1 +
0;X0) ∈ G+ (G−) and −1 ≤ bn ≤ 0 for an impulse at tn−1. Then X(tn −
0;X0) ∈ G

−
− (G−+) and X(tn + 0;X0) ∈ G− (G+). The first relation follows

immediately from the properties of the sets Gji (i, j ∈ {+,−}). For the second
one, we only have to prove that (x, y) ∈ G+ implies (x, b y) ∈ G+ for every
0 ≤ b ≤ 1. But this immediately follows from the fact that γ+ is a function of
x.
Applying the above arguments, we can formulate the basic attractivity the-

orem for the beating impulses.

Theorem 3 Assume that ∆(r) is monotone on an interval [rp, rp+ε] or [rp,∞),
and −1 < bn ≤ 0 for every n = 1, 2, . . .. If a solution x(t) of (2) satisfies
(x(t0+0), ẋ(t0+0)) = X0 ∈ G+ (G−), then (x(t0+2np+0), ẋ(t0+2np+0)) =
X0 ∈ G+ (G−) for every n = 1, 2, . . .. Since V (x(t), ẋ(t)) is nonincreasing, the
solution up(t) is conditionally stable with respect to the set G+. If, in addition,
condition (9) holds, then limt→∞ V (x(t), ẋ(t)) = rp, i.e., limt→∞(x(t)−up(t)) =
0.

Proof We only have to prove the second part. This proof is analogous to
the proof of Theorem 19 in [2]. Consider the case where ∆(r) increasing; the
decreasing case can be proved analogously. To the contrary, suppose x(t) is
a solution of (2) such that (x(t0 + 2np + 0), ẋ(t0 + np + 0)) ∈ G+ ∪ G− and
limt→∞ V (x(t), ẋ(t)) = r > rp. Then ∆(V (x(tn), ẋ(tn))) > p1 > p for n > N .
Now, it is easy to see that there exist a positive number µ, independent of n,
such that

max(ẋ2(tn), ẋ
2(tn+1)) > µ

for n > N . Consequently,

V (t) = V (t0)−
∑
tn<t

anẋ
2(tn)

≤ V (0)−
∑

tnk+1<t

min(ank + ank+1)(ẋ
2(tnk) + ẋ

2(tnk+1)

≤ V (0)−
∑

tnk+1<t

µ min(ank + ank+1),

which tends to −∞ as k → ∞. This contradiction completes the proof of the
theorem. ♦
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Figure 2: The sets G+, G−, H+, and H−, and the trajectory of up(t)

The left hand side of Figure 3 shows the attractivity of up for negative
impulses.

Remark. As was the case with the asymptotic stability theorems in [8], con-
dition (9) can not be replaced by the weaker condition

∑
n an =∞.

To see this, let p > 0, tn = np. b2n = 0, and b2n−1 = −1, (n = 1, 2, . . .).
Let x(t) be any solution with ẋ(t2) = 0. This solution is periodic but does not
satisfy the equation ẍ+ f(x) = 0.

We can observe that the conditional stability of the solution up is satisfied
independently of the specific values of the impulse constants bn. The negative
sign guarantees that the sets G+ and G− map into each other by the mapping
X(tn−1 + p + 0; ·). The case of positive impulses is different. If bn is positive,
such invariance will hold for much narrower sets under stronger conditions on
bn.

To formulate results for the case 0 ≤ bn ≤ 1, we need some additional
definitions. Let δ+ and δ− be the curves that are mapped respectively to γ− and
γ+ by the mapping U(p; ·). Obviously, these curves can be defined analogously
to the γ curves above, that is, δ+ = {U(2τ(p, r);U0) : U0 = (up, y)} and δ− =
{U(2τ(p, r);U0) : U0 = (−up, y)} = {(x, y) : (−x,−y) ∈ δ+}.

The curves δ+ and δ− also represent graphs of continuous functions of one
variable, and can be written in the form δ+(x) and δ−(x). Similarly, δ+(x) is
positive (negative) if ∆(r) is increasing (decreasing), x − up is small enough,
and x > up. Let x̌ be the first zero of δ+ if F (x̌) ∈ Ip, let x̃ = min{x̌, sup Ip},
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Figure 3: The attractivity of up(t), f(x) = x
1/3, bn = 0.7 (l.h.s) and bn = 0.6

(r.h.s)

and let r̃ = F (x̃). We can then define the following closed sets:

H+ :=

{
{(x, y) : x ≥ xp, V (x, y) ≤ r̃, y ≤ δ+(x)}, if ∆(r) is increasing,
{(x, y) : x ≥ xp, V (x, y) ≤ r̃, y ≥ δ+(x)}, if ∆(r) is decreasing,

H− := {(x, y) : (−x,−y) ∈ H+}.

The sets G+, G−, H+, and H− are shown in Figure 2.
It follows immediately from the definition of the sets that the mapping U(p; ·)

maps the sets H+ and H− into G− ∩ {V (x, y) ≤ r̃} and G+ ∩ {V (x, y) ≤ r̃},
respectively. Now let x(t) be a solution of (2) such that X(tn−1 + 0;X0) ∈
H+ (H−) and 0 ≤ bn ≤ 1. Then X(tn − 0;X0) ∈ G− ∩ {V (x, y) ≤ r̃} (G+ ∩
{V (x, y) ≤ r̃}). To guarantee that X(tn + 0;X0) ∈ H− (X(tn + 0;X0) ∈ H+),
we need an additional condition on bn, such as bn ≤ sup{δ+(x)/γ+(x) : x ∈
(up, x(tn − 0))}. The following theorem then holds.

Theorem 4 Assume that ∆(r) is monotonic on an interval [rp, rp + ε] or
[rp,∞). Let r0 ≤ r̃, and assume that

0 ≤ bn ≤ sup{δ+(x)/γ+(x) : x ∈ (up, F
−1(r0))}, n = 1, 2, . . . (10)

If a solution x(t) of (2) satisfies (x(t0 + 0), ẋ(t0 + 0)) = X0 ∈ H+ ∩ {V (x, y) ≤
r0} (H− ∩ {V (x, y) ≤ r0}), then (x(t0 +2n p+0), ẋ(t0+2n p+0)) ∈ H+ (H−).
In addition, limt→∞ V (x(t), ẋ(t)) = rp, i.e., limt→∞(x(t) − up(t)) = 0.

For the proof of the last statement, we have only to note that condition (10)
is stronger than (9) since the supremum in (10) is smaller than 1. The right
hand side of Figure 3 shows the attractivity of up for positive impulses.
To illustrate our theorem, in Figure 4 we show the values of the mappings

X(t0+np; ·) for bn = 1, 0.9, 0.8, 0.7, 0.6, 0.5. Later, we will return to the question
of the sharpness of the estimates of the fraction δ+(x)/γ+(x).
Combining the arguments for negative and positive impulses, we can formu-

late the following more general theorem.
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b=1 b=0.9 b=0.8

Figure 4: Mappings X(t0+np; ·), f(x) = x1/3, p = 3, bn = 1, 0.9, 0.8, 0.7, 0.6, 0.5

Theorem 5 Assume that ∆(r) is monotone on an interval [rp, rp+ε] or [rp,∞),
r0 ≤ r̃, and assume that conditions (9) and

−1 ≤ bn ≤ sup{δ+(x)/γ+(x) : x ∈ (up, F
−1(r0))} n = 1, 2, . . . (11)

hold. If a solution x(t) of (2) satisfies (x(t0 + 0), ẋ(t0 + 0)) = X0 ∈ H+ ∩
{V (x, y) ≤ r0 ≤ r̃} (H−∩{V (x, y) ≤ r0 ≤ r̃}), then limt→∞ V (x(t), ẋ(t)) = rp,
i.e., limt→∞(x(t) − up(t)) = 0.

The key to the applicability of our results is to either find the curves γ+ and
δ+ analytically or to approximate them numerically. In either case, computer
algebra programs are very useful. The curves in Figures 1 and 2 are obtained
from the definitions of γ+ and δ+, interpolating the points {U(p, U0) : U0 ∈
{(u0, i d), i = 1, . . .}} and {U(2p, U0) : U0 ∈ {(u0, i d), i = 1, . . .}}, respectively,
where the step size d is small enough. This approach is quite fast and good
enough (although not analytically certain) to verify that a point (x, y) is in
G+ (H+), but it is not applicable to estimate the quotient δ+(x)/γ+(x) if x is
close to up since limx→u0+0 δ+(x)/γ+(x) is of form 0/0.
First, let us give estimates for the sets G+ and H+; for simplicity, we assume

that f is monotonic. From the definition, we have

γ+(x) = yp −

τ(p,r)∫
0

f(u(s; (up, yp))) ds.

Let rp < r0 ≤ r̃ be given, and assume that x > up and V (x, γ+(x)) = r ≤ r0.
Since γ+(x) > 0 (< 0) and τ(p, r) > 0 (< 0) for x > u0, r > rp, ∆(r) is
increasing (decreasing), and f(x) is monotonic, we have√
|r − rp|−f(F

−1(rp))|∆(r)−p| ≥ |γ+(x)| ≥
√
|r − rp|−f(F

−1(r0))|∆(r)−p|,
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where |yp| =
√
|r − rp| =

√
|r −∆−1(p)|. If, in addition, ∆(r) is differentiable

and |τ(p, r)| is concave up for rp < r ≤ r0, then

√
|r − rp| − f(F

−1(rp))|∆
′(rp)||r − rp|

≥ |γ+(x)|

≥
√
|r − rp| − f(F

−1(r0))|∆
′(r0)||r − rp|.

From the above estimates, we can easily give sufficient conditions for (x, y) to
be in H+. Let (x, y) be such that rp ≤ r = V (x, y) ≤ r0, x ≥ u0, and y ≥ 0
if ∆(r) is increasing and y ≤ 0 if ∆(r) is decreasing. Then (x, y) ∈ H+, if and
only if x = u(t1; (up, yp)) and t1 ≥ τ(p, r). Obviously, for up ≤ x̄, the inequality
t1 ≥ τ(p, r) is equivalent to |y| ≤ |u̇(τ(p, r))| = |γ+(F−1(r))|. If the inequality

|y| ≤
√
|r − rp| − f(F

−1(r0))|∆
′(r0)||r − rp| (12)

holds, then (x, y) ∈ G+ since

|y| ≤
√
|r − rp| − f(F

−1(r))|∆(r) − p| ≤ |yp| −

|τ(p,r)|∫
0

f(u(s; (up, yp))) ds

= |γ+(F
−1(r))| .

Similarly, for δ+, we obtain

√
|r − rp| − 2f(F

−1(rp))|∆
′(rp)||r − rp|

≥ |γ+(x)|

≥
√
|r − rp| − 2f(F

−1(r0))|∆
′(r0)||r − rp|.

A sufficient condition for (x, y) to be inH+ for x ≥ up and rp ≤ V (x, y) = r ≤ r0
is

|y| ≤
√
|r − rp| − 2f(F

−1(r0))|∆
′(r0)||r − rp|. (13)

On the basis of the above estimations, we can define the curves γ
+
and δ+

as the set of points (x, y) satisfying

y = sgn(τ(p, V (x, y)))(
√
|V (x, y)− rp| − f(F

−1(r0))|∆
′(r0)||V (x, y)− rp|)

and

y = sgn(τ(p, V (x, y)))(
√
|V (x, y)− rp| − 2f(F

−1(r0))|∆
′(r0)||V (x, y)− rp|),

respectively. The above equations can be solved for y, and the curves can be
written in the form γ

+
(x) and δ+(x). The expressions are very complicated, and
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Figure 5: The curves δ+(x), δ+(x), δ̄+(x), γ+(x), γ+(x), γ̄+(x); the fraction
δ+(x)

γ̄+(x)
(f(x) = x1/3, p = 3, up = 1.06813, x0 = 1.3)

we omit the details here. (We suggest that the reader perform the calculations
with the aid of a computer algebra system such as Mathematica.) Using the
curves γ

+
and δ+ instead of γ+ and δ+, we can define the sets G+, G−, H+

and H− as attractivity regions.
Finally, to increase the applicability of Theorems 4 and 5, we give a lower

estimate for δ+(x)/γ+(x). Let γ̄+ be the set of points (x, y) satisfying

y = sgn(τ(p, V (x, y)))(
√
|V (x, y)− rp| − f(F

−1(r0))|∆
′(rp)||V (x, y) − rp|);

a similar expression holds for the curve y = δ̄+. If x ≥ up, V (x, γ̄+(x))) ≤ r0,
and δ+(x) has no zero on (up, F

−1(r0)), then

δ+(x)

γ+(x)
≥
δ+(x)

γ̄+(x)
.

Computer calculations with Mathematica resulted in Figure 5, which shows

the curves δ+(x), δ+(x), δ̄+(x), γ+(x), γ+(x), and γ̄+(x), and the fraction
δ+(x)

γ̄+(x)

for the case f(x) = x1/3, p = 3, up = 1.06813, and x0 = 1.3. This explains why,
in Figure 4, the attractivity properties change somewhere around 0.7.

5 Generalizations and Open Problems

In the theorems in the previous section, we considered only the periodic solu-
tion with energy rp = ∆

−1(p), but in the proofs we did not use the fact that
2p is the smallest period. Thus, the theorems can also be formulated for the
periodic solutions rp/k = ∆

−1(p/k) by changing rp to rp/k. The definition of τ
is τ(p/k, r) = k(∆(r) −∆(rp/k)) = k∆(r) − p.
If limr→0∆(r) = 0, then there are infinitely many periodic solutions, and

they accumulate at the origin (this is the case for f(x) = x1/3). The following
question arises: are all the solutions trapped at some tn and by some periodic
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trajectory? The answer is closely related to the classical problem on the exis-
tence of solutions that tend to zero as t → ∞. We note that this problem is
still unsolved for the equation

ẍ+ g(t)ẋ+ f(x) = 0

if f(x) is a nonlinear function, e.g., a power function. For the linear case, see
[6].
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